def test_save_load(self): # Create a model with a downstream task tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'), [ Transformation.SVD(n_components=2), Transformation.Pool(pool_option=PoolOptions.mean) ], dtype=torch.float32) tw.fit(docs) model = nn.Sequential(tw, nn.Linear(2, 1)).to(device) # Get results of the model expected = model(docs) # Save the model to a temporary file with NamedTemporaryFile() as file: torch.save(model.state_dict(), file) # Use string name of the file # Get rid of the original model del tw del model # Create the same model tw = TextWiser(Embedding.Word( word_option=WordOptions.word2vec, pretrained='en-turian'), [ Transformation.SVD(n_components=2), Transformation.Pool(pool_option=PoolOptions.mean) ], dtype=torch.float32) tw.fit() model = nn.Sequential(tw, nn.Linear(2, 1)).to(device) # Load the model from file file.seek(0) model.load_state_dict(torch.load(file, map_location=device)) # Do predictions with the loaded model predicted = model(docs) self.assertTrue(torch.allclose(predicted, expected, atol=1e-6))
def test_dtype(self): tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'), Transformation.Pool(pool_option=PoolOptions.max), dtype=torch.float32) predicted = tw.fit_transform(docs) self.assertEqual(predicted.dtype, torch.float32) tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'), Transformation.Pool(pool_option=PoolOptions.max), dtype=np.float32) predicted = tw.fit_transform(docs) self.assertEqual(predicted.dtype, np.float32) with warnings.catch_warnings(): warnings.simplefilter("ignore") tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'), dtype=torch.float32) predicted = tw.fit_transform(docs) self.assertEqual(predicted[0].dtype, torch.float32) tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'), dtype=np.float32) predicted = tw.fit_transform(docs) self.assertEqual(predicted[0].dtype, np.float32)
def _test_index(self, pool_option): index = 0 if pool_option == PoolOptions.first else -1 with warnings.catch_warnings(): warnings.simplefilter("ignore") tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'), dtype=torch.float32) expected = tw.fit_transform(docs[0])[0][index].view(1, -1) tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'), Transformation.Pool(pool_option=pool_option), dtype=torch.float32) pooled = tw.fit_transform(docs[0]) self.assertTrue(torch.allclose(expected.to(device), pooled.to(device)))
def test_fit_transform(self): tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'), Transformation.Pool(pool_option=PoolOptions.max), dtype=torch.float32) expected = torch.from_numpy(np.genfromtxt( self._get_test_path('data', 'pooled_embeddings.csv'), dtype=np.float32)) self._test_fit_transform(tw, expected) self._test_fit_before_transform(tw, expected)