Exemplo n.º 1
0
 def test_save_load(self):
     # Create a model with a downstream task
     tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec,
                                   pretrained='en-turian'),
                    [
                        Transformation.SVD(n_components=2),
                        Transformation.Pool(pool_option=PoolOptions.mean)
                    ],
                    dtype=torch.float32)
     tw.fit(docs)
     model = nn.Sequential(tw, nn.Linear(2, 1)).to(device)
     # Get results of the model
     expected = model(docs)
     # Save the model to a temporary file
     with NamedTemporaryFile() as file:
         torch.save(model.state_dict(), file)  # Use string name of the file
         # Get rid of the original model
         del tw
         del model
         # Create the same model
         tw = TextWiser(Embedding.Word(
             word_option=WordOptions.word2vec, pretrained='en-turian'), [
                 Transformation.SVD(n_components=2),
                 Transformation.Pool(pool_option=PoolOptions.mean)
             ],
                        dtype=torch.float32)
         tw.fit()
         model = nn.Sequential(tw, nn.Linear(2, 1)).to(device)
         # Load the model from file
         file.seek(0)
         model.load_state_dict(torch.load(file, map_location=device))
         # Do predictions with the loaded model
         predicted = model(docs)
         self.assertTrue(torch.allclose(predicted, expected, atol=1e-6))
Exemplo n.º 2
0
 def test_dtype(self):
     tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec,
                                   pretrained='en-turian'),
                    Transformation.Pool(pool_option=PoolOptions.max),
                    dtype=torch.float32)
     predicted = tw.fit_transform(docs)
     self.assertEqual(predicted.dtype, torch.float32)
     tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec,
                                   pretrained='en-turian'),
                    Transformation.Pool(pool_option=PoolOptions.max),
                    dtype=np.float32)
     predicted = tw.fit_transform(docs)
     self.assertEqual(predicted.dtype, np.float32)
     with warnings.catch_warnings():
         warnings.simplefilter("ignore")
         tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec,
                                       pretrained='en-turian'),
                        dtype=torch.float32)
         predicted = tw.fit_transform(docs)
         self.assertEqual(predicted[0].dtype, torch.float32)
         tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec,
                                       pretrained='en-turian'),
                        dtype=np.float32)
         predicted = tw.fit_transform(docs)
         self.assertEqual(predicted[0].dtype, np.float32)
Exemplo n.º 3
0
 def _test_index(self, pool_option):
     index = 0 if pool_option == PoolOptions.first else -1
     with warnings.catch_warnings():
         warnings.simplefilter("ignore")
         tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'),
                        dtype=torch.float32)
         expected = tw.fit_transform(docs[0])[0][index].view(1, -1)
     tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'),
                    Transformation.Pool(pool_option=pool_option), dtype=torch.float32)
     pooled = tw.fit_transform(docs[0])
     self.assertTrue(torch.allclose(expected.to(device), pooled.to(device)))
Exemplo n.º 4
0
 def test_fit_transform(self):
     tw = TextWiser(Embedding.Word(word_option=WordOptions.word2vec, pretrained='en-turian'), Transformation.Pool(pool_option=PoolOptions.max), dtype=torch.float32)
     expected = torch.from_numpy(np.genfromtxt(
         self._get_test_path('data', 'pooled_embeddings.csv'),
         dtype=np.float32))
     self._test_fit_transform(tw, expected)
     self._test_fit_before_transform(tw, expected)