def test_passthrough(): node = Pipeline(steps=dummy_classifier, passthrough=True) streamer = DummyData() node.i_training.data = streamer.next() node.i_training_0.data = streamer.next() node.i_events.data = make_event('foobar') node.i.data = streamer.next() node.i_0.data = streamer.next() node.i_1.data = streamer.next() node.i.meta = {'foobar': 42} node.update() assert len(list(node.iterate('o*'))) == 3 assert node.o.data.equals(node.i.data) assert node.o_0.data.equals(node.i_0.data) assert node.o_0.data.equals(node.i_0.data) assert node.o.meta == node.i.meta
def test_transform_3D_output(random): pipeline = [ {'module': 'test_ml', 'class': 'Vectorizer'}, {'module': 'test_ml', 'class': 'DummyTransformer'}, {'module': 'test_ml', 'class': 'Shaper', 'args': { 'shape': (2, -1, 5) }} ] node = Pipeline(steps=pipeline, mode='fit_transform', meta_label=None) columns = ['A', 'B', 'C', 'D', 'E'] stream = DummyData(start_date=now()) node.i_0.data = stream.next() node.i_1.data = stream.next() node.i_0.data.columns = columns node.i_1.data.columns = columns node.i_0.meta = {'index': 0} node.i_1.meta = {'index': 1} node.update() assert len(list(node.iterate('o_*'))) == 2 assert np.array_equal(node.i_0.data.index.values, node.o_0.data.index.values) assert list(node.i_0.data.columns) == columns assert list(node.i_1.data.columns) == columns assert node.o_0.meta == node.i_0.meta assert node.o_1.meta == node.i_1.meta