def test_reindex_resample_infer_exception(): node = Pipeline(steps=dummy_classifier) node.resample = True node.resample_rate = None times = np.array([ '2018-01-01T00:00:00.000000000', '2018-01-01T00:00:02.250000000' ], dtype=np.datetime64) data = np.arange(15).reshape(3, 5) with pytest.raises(ValueError): node._reindex(data, times, None)
def test_reindex_upsample_both_infer(): node = Pipeline(steps=dummy_classifier) node.resample = True node.resample_direction = 'both' node.resample_rate = None times = pd.date_range(start='2018-01-01', periods=3, freq='1s').values data = np.arange(25).reshape(5, 5) df = node._reindex(data, times, None) expected = np.array([ '2017-12-31T23:59:59', '2018-01-01T00:00:00', '2018-01-01T00:00:01', '2018-01-01T00:00:02', '2018-01-01T00:00:03' ], dtype=np.datetime64) assert np.array_equal(df.index.values, expected)
def test_reindex_resample_right_given(): node = Pipeline(steps=dummy_classifier) node.resample = True node.resample_direction = 'right' node.resample_rate = 0.5 times = pd.date_range(start='2018-01-01', periods=10, freq='1s').values data = np.arange(25).reshape(5, 5) df = node._reindex(data, times, None) expected = np.array([ '2018-01-01T00:00:00', '2018-01-01T00:00:02', '2018-01-01T00:00:04', '2018-01-01T00:00:06', '2018-01-01T00:00:08' ], dtype=np.datetime64) assert np.array_equal(df.index.values, expected)