def init_logger(args, model): # set loggers exp_name = args.name exp_logger = logger.Experiment(exp_name, args.__dict__) exp_logger.add_meters('train', metrics.make_meters(args.num_classes)) exp_logger.add_meters('val', metrics.make_meters(args.num_classes)) exp_logger.add_meters('hyperparams', {'learning_rate': metrics.ValueMeter()}) return exp_logger
def init_logger(name, _config, _run): # set loggers exp_logger = logger.Experiment(name, _config, run=_run) exp_logger.add_meters("train", metrics.make_meter_matching()) exp_logger.add_meters("val", metrics.make_meter_matching()) # exp_logger.add_meters('test', metrics.make_meter_matching()) exp_logger.add_meters("hyperparams", {"learning_rate": metrics.ValueMeter()}) return exp_logger
def init_logger(name, _config, _run): # set loggers exp_logger = logger.Experiment(name, _config, run=_run) exp_logger.add_meters('train', metrics.make_meter_matching()) exp_logger.add_meters('val', metrics.make_meter_matching()) #exp_logger.add_meters('test', metrics.make_meter_matching()) exp_logger.add_meters('hyperparams', {'learning_rate': metrics.ValueMeter()}) return exp_logger
def init_logger(args): # set loggers exp_name = args['--name'] exp_logger = logger.Experiment(exp_name, args) exp_logger.add_meters('train', metrics.make_meter_matching()) exp_logger.add_meters('val', metrics.make_meter_matching()) exp_logger.add_meters('hyperparams', {'learning_rate': metrics.ValueMeter()}) return exp_logger