Exemple #1
0
def predict_nn(trndata,
               epochs=300,
               test_error=0.0147,
               weight_decay=0.0001,
               momentum=0.15):
    """
    FF neural net
    """

    fnn = buildNetwork(trndata.indim,
                       trndata.indim / 4,
                       trndata.outdim,
                       outclass=SoftmaxLayer)

    trainer = BackpropTrainer(fnn,
                              trndata,
                              momentum=momentum,
                              weightdecay=weight_decay)

    epoch_delta = 1
    stop = False

    totEpochs = np.array([])
    trnResults = np.array([])
    trnLogLoss = np.array([])

    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 8))

    while not stop:
        trainer.trainEpochs(epoch_delta)

        trnresult = percentError(trainer.testOnClassData(), trndata['class'])

        trnLogLoss = append_to_arr(trnLogLoss, nn_log_loss(fnn, trndata))

        print("epoch: %4d" % trainer.totalepochs, \
          "  train error: %5.2f%%" % trnresult, \
          " train logloss: %2.4f" % trnLogLoss[-1])

        trnResults = append_to_arr(trnResults, trnresult)
        totEpochs = append_to_arr(totEpochs, trainer.totalepochs)

        plt.sca(ax1)
        plt.cla()
        ax1.plot(totEpochs, trnResults, label='Train')

        plt.sca(ax2)
        plt.cla()
        ax2.plot(totEpochs, trnLogLoss, label='Train')

        ax1.legend()
        ax2.legend()

        plt.draw()
        time.sleep(0.1)
        plt.pause(0.0001)

        stop = (trnLogLoss[-1] <= test_error or trainer.totalepochs >= epochs)
    return fnn
def get_1dlbp_features(neighborhood):
    tf = TrainFiles(inp_path, floor = neighborhood * 2 + 1)
    inputs = tf.get_training_inputs()

    start = timer()
    hist = np.array([])
    outs = np.array([])

    i = 0
    writeBatch = 2000
    prep_out_path(out_path)

    p = 1 << np.array(range(0, 2 * neighborhood), dtype='int32')
    d_powers = cuda.to_device(p)

    for inp in inputs:

        data_file = path.join(inp_path, inp)

        out_file = path.join(out_path, path.splitext(inp)[0] + ext)
        arr = np.fromfile(data_file, dtype = 'uint8')

        ##GPU##
        file_hist = extract_1dlbp_gpu(arr, neighborhood, d_powers)

        ##CPU##
        #file_hist = extract_1dlbp_cpu(arr, neighborhood, p)
        #file_hist = file_histogram(file_hist, neighborhood)

        i += 1
        hist = append_to_arr(hist, file_hist)
        outs = append_to_arr(outs, out_file)

        if i == writeBatch:
            i = 0
            first = True
            print "Writing....."
            for j in range(0, outs.shape[0]):
                hist[j].tofile(outs[j])
            hist = np.array([])
            outs = np.array([])



    print "==============Done==================="
    print "Elapsed: ", timer() - start

    print "Writing......."

    for i in range(0, outs.shape[0]):
        hist[i].tofile(outs[i])

    print "==============Done==================="
def predict_nn(trndata, epochs = 300, test_error = 0.0147, weight_decay = 0.0001, momentum = 0.15):
    """
    FF neural net
    """

    fnn = buildNetwork(trndata.indim, trndata.indim / 4, trndata.outdim, outclass = SoftmaxLayer)

    trainer = BackpropTrainer(fnn, trndata, momentum = momentum, weightdecay = weight_decay)

    epoch_delta = 1
    stop = False

    totEpochs = np.array([])
    trnResults = np.array([])
    trnLogLoss = np.array([])

    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(15,8))

    while not stop:
        trainer.trainEpochs(epoch_delta)

        trnresult = percentError( trainer.testOnClassData(),
                              trndata['class'] )

        trnLogLoss = append_to_arr(trnLogLoss, nn_log_loss(fnn, trndata))

        print "epoch: %4d" % trainer.totalepochs, \
          "  train error: %5.2f%%" % trnresult, \
          " train logloss: %2.4f" % trnLogLoss[-1]

        
        trnResults = append_to_arr(trnResults, trnresult)
        totEpochs = append_to_arr(totEpochs, trainer.totalepochs)

        plt.sca(ax1)
        plt.cla()
        ax1.plot(totEpochs, trnResults, label = 'Train')

        plt.sca(ax2)
        plt.cla()
        ax2.plot(totEpochs, trnLogLoss, label = 'Train')

        ax1.legend()
        ax2.legend()

        plt.draw()
        time.sleep(0.1)
        plt.pause(0.0001)

        stop = (trnLogLoss[-1] <= test_error or trainer.totalepochs >= epochs)
    return fnn
Exemple #4
0
    def _connect_labeled_data(self, inp_path, inputs, training):
        if self.labels == None:
            self.labels = self.get_labels_csv()

        X = np.array([])
        Y = np.array([])
        zip = False
        if self.isZip:
            zip = ZipFile(inp_path)

        for inp in inputs:
            inp_file = path.join(inp_path, inp) if not zip else inp
            x = np.fromfile(inp_file,
                            dtype='int') if not zip else np.frombuffer(
                                zip.read(inp_file), dtype='int')
            x = x.astype('float')
            X = append_to_arr(X, x)

            if training or self.validate:
                label_name = path.splitext(path.split(inp_file)[1])[0]
                label = filter(lambda x: x[0] == label_name, self.labels)[0][1]
                Y = np.append(Y, label)

            if self.debug:
                print "Processed: " + inp_file
        return X, Y
Exemple #5
0
    def connect_labeled_data(self, training, load_from_file):
        inputs, inp_path = self._get_inp_input_path(training)

        self.labels = self.get_labels_csv()

        X = np.array([])

        # TODO: this is probably not the best way of doing it
        zip = False
        if self.isZip:
            zip = ZipFile(inp_path)

        for inp in inputs:
            inp_file = path.join(inp_path, inp) if not zip else inp
            x = load_from_file(inp_file)
            x = np.r_[[path.splitext(inp)[0]], x]
            X = append_to_arr(X, x)

            if self.debug:
                print "Processed: " + inp_file
        
        id = self.labels.columns[0]
        dfX = pd.DataFrame(X)
        dfX.columns=np.r_[[id], range(X.shape[1] - 1)]
        dfX = dfX.merge(self.labels, how='inner', on=id)
        
        return np.array(dfX[range(1, X.shape[1])]).astype(float), np.array(dfX[self.labels.columns[1]]).astype(int)
Exemple #6
0
    def connect_labeled_data(self, training, load_from_file):
        inputs, inp_path = self._get_inp_input_path(training)

        self.labels = self.get_labels_csv()

        X = np.array([])

        # TODO: this is probably not the best way of doing it
        zip = False
        if self.isZip:
            zip = ZipFile(inp_path)

        for inp in inputs:
            inp_file = path.join(inp_path, inp) if not zip else inp
            x = load_from_file(inp_file)
            x = np.r_[[path.splitext(inp)[0]], x]
            X = append_to_arr(X, x)

            if self.debug:
                print "Processed: " + inp_file

        id = self.labels.columns[0]
        dfX = pd.DataFrame(X)
        dfX.columns = np.r_[[id], range(X.shape[1] - 1)]
        dfX = dfX.merge(self.labels, how='inner', on=id)

        return np.array(dfX[range(1, X.shape[1])]).astype(float), np.array(
            dfX[self.labels.columns[1]]).astype(int)
Exemple #7
0
    def _connect_labeled_data_csv(self, inp_path, inputs, training):
        if self.labels == None:
            self.labels = self.get_labels_csv()

        X = np.array([])
        Y = np.array([])
        for inp in inputs:
            inp_file = path.join(inp_path, inp)
            x = np.loadtxt(inp_file)
            X = append_to_arr(X, x)

            if training or self.validate:
                label_name = path.splitext(inp)[0]
                label = filter(lambda x: x[0] == label_name, self.labels)[0][1]
                Y = np.append(Y, label)

            if self.debug:
                print "Processed: " + inp_file
        return X, Y
    def _connect_labeled_data_csv(self, inp_path, inputs, training):
        if self.labels == None:
            self.labels = self.get_labels_csv()

        X = np.array([])
        Y = np.array([])
        for inp in inputs:
            inp_file = path.join(inp_path, inp)
            x = np.loadtxt(inp_file)
            X = append_to_arr(X, x)

            if training or self.validate:
                label_name = path.splitext(inp)[0]
                label = filter(lambda x: x[0] == label_name, self.labels)[0][1]
                Y = np.append(Y, label)

            if self.debug:
                print "Processed: " + inp_file
        return X, Y
    def _connect_labeled_data(self, inp_path, inputs, training):
        if self.labels == None:
            self.labels = self.get_labels_csv()

        X = np.array([])
        Y = np.array([])
        zip = False
        if self.isZip:
            zip = ZipFile(inp_path)

        for inp in inputs:
            inp_file = path.join(inp_path, inp) if not zip else inp
            x = np.fromfile(inp_file, dtype='int') if not zip else np.frombuffer(zip.read(inp_file), dtype='int')
            x = x.astype('float')
            X = append_to_arr(X, x)

            if training or self.validate:
                label_name = path.splitext(path.split(inp_file)[1])[0]
                label = filter(lambda x: x[0] == label_name, self.labels)[0][1]
                Y = np.append(Y, label)

            if self.debug:
                print "Processed: " + inp_file
        return X, Y