def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, EarlyTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Detecting last checkpoint. last_checkpoint = None # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S") os.makedirs(training_args.output_dir, exist_ok=True) fh = logging.FileHandler(os.path.join(training_args.output_dir, 'log.txt')) logging.getLogger("transformers").setLevel(logging.INFO) fh.setFormatter(formatter) logging.getLogger("transformers").addHandler(fh) logging.root.addHandler(fh) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. data_files = { "train": data_args.early_train_file, "validation": data_args.validation_file, } if data_args.early_scaling_file: data_files["scale"] = data_args.early_scaling_file if data_args.early_meta_file: data_files["meta"] = data_args.early_meta_file # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict or training_args.do_test: if data_args.test_file is not None: train_extension = data_args.early_train_file.split(".")[-1] test_extension = data_args.test_file.split(".")[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `early_train_file`." data_files["test"] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`.") for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}") if data_args.early_train_file.endswith(".csv"): # Loading a dataset from local csv files datasets = load_dataset("csv", data_files=data_files) else: # Loading a dataset from local json files datasets = load_dataset("json", data_files=data_files, field="data") # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels if data_args.task_name is not None: is_regression = data_args.task_name == "stsb" if not is_regression: label_list = datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 else: # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique label_list = datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) config.use_history_logits = model_args.use_history_logits config.use_early_poolers = model_args.use_early_poolers config.use_consistency_loss = model_args.use_consistency_loss config.use_meta_predictors = model_args.use_meta_predictors config.joint_meta = model_args.joint_meta config.shared_meta = model_args.shared_meta config.early_pooler_hidden_size = model_args.early_pooler_hidden_size config.regression_tolerance = model_args.regression_tolerance tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AlbertWithEarlyExits.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Preprocessing the datasets if data_args.task_name is not None: sentence1_key, sentence2_key = task_to_keys[data_args.task_name] else: # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. non_label_column_names = [name for name in datasets["train"].column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if ( model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id and data_args.task_name is not None and not is_regression ): # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)): label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} else: logger.warn( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." "\nIgnoring the model labels as a result.", ) elif data_args.task_name is None and not is_regression: label_to_id = {v: i for i, v in enumerate(label_list)} if data_args.max_seq_length > tokenizer.model_max_length: logger.warn( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_function(examples): # Tokenize the texts args = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) # Map labels to IDs (not necessary for GLUE tasks) if label_to_id is not None and "label" in examples: result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]] return result datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) if training_args.do_train: if "train" not in datasets: raise ValueError("--do_train requires a train dataset") train_dataset = datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in datasets and "validation_matched" not in datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"] if data_args.max_val_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_val_samples)) if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None: if "test" not in datasets and "test_matched" not in datasets: raise ValueError("--do_predict requires a test dataset") test_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"] if data_args.max_test_samples is not None: test_dataset = test_dataset.select(range(data_args.max_test_samples)) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # Get the metric function if data_args.task_name is not None: metric = load_metric("glue", data_args.task_name) else: metric = load_metric("accuracy") # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics_fn(p: EvalPrediction): meta_logits = None ece_measure = ECELoss() if type(p.predictions) is tuple: cls_logits = p.predictions[0] meta_logits = p.predictions[1] else: cls_logits = p.predictions top_preds = np.squeeze(cls_logits[:,-1,:]) if is_regression else np.argmax(cls_logits[:,-1,:], axis=1) ece = ece_measure(torch.Tensor(cls_logits[:,-1,:]), torch.Tensor(p.label_ids)) metrics = {"ece": ece.item()} result = metric.compute(predictions=top_preds, references=p.label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() for key, value in result.items(): metrics[key] = value for i in range(cls_logits.shape[1] - 1): preds = np.squeeze(cls_logits[:,i,:]) if is_regression else np.argmax(cls_logits[:,i,:], axis=1) result = metric.compute(predictions=preds, references=p.label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() for key, value in result.items(): metrics[f"{key}_{i}"] = value ece = ece_measure(torch.Tensor(cls_logits[:,i,:]), torch.Tensor(p.label_ids)) metrics[f"ece_{i}"] = ece.item() consistency = (preds == top_preds).mean() metrics[f"consistency_{i}"] = consistency if meta_logits is not None: meta_labels = np.equal(preds, top_preds).astype(int) meta_preds = np.argmax(meta_logits[:,i,:], axis=-1) meta_acc = (meta_preds == meta_labels).mean() metrics[f"meta_accuracy_{i}"] = meta_acc return metrics def compute_metrics(p: EvalPrediction): # TODO: copy metric (especially regression to other function) preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) if data_args.task_name is not None: result = metric.compute(predictions=preds, references=p.label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() return result elif is_regression: return {"mse": ((preds - p.label_ids) ** 2).mean().item()} else: return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: data_collator = default_data_collator elif training_args.fp16: data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) else: data_collator = None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=compute_metrics_fn, tokenizer=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: checkpoint = None train_result = trainer.train(resume_from_checkpoint=None) metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) if data_args.early_scaling_file: trainer.save_model(os.path.join(training_args.output_dir, "pre_scaling")) if trainer.is_world_process_zero(): tokenizer.save_pretrained(os.path.join(training_args.output_dir, "pre_scaling")) if training_args.do_eval: logger.info("*** Evaluate before scaling***") output_eval_file = os.path.join( training_args.output_dir, "pre_scaling", f"eval_results.txt" ) eval_result = trainer.evaluate(eval_dataset=eval_dataset) if trainer.is_world_process_zero(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results before scaling *****") for key, value in eval_result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) else: trainer.save_model() # Saves the tokenizer too for easy upload if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Temperature scaling if data_args.early_scaling_file: logger.info("*** Scaling temperatures ***") scaling_dataset = datasets["scale"] model.temp_scaling_mode = True optimizer = AdamW([model.early_temperatures], lr=0.001) scaling_args = deepcopy(training_args) if training_args.scaling_iterations is not None: scaling_args.max_steps = training_args.scaling_iterations scaling_args.save_steps = training_args.scaling_iterations scaling_args.fp16 = False trainer = Trainer( model=model, args=scaling_args, optimizers=(optimizer, None), train_dataset=scaling_dataset, compute_metrics=compute_metrics_fn ) train_results = trainer.train() metrics = train_results.metrics logger.info(metrics) trainer.save_model() if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) # Train the meta predictors if data_args.early_meta_file: logger.info("*** Training meta predictors ***") meta_dataset = datasets["meta"] assert model.use_meta_predictors model.temp_scaling_mode = False model.meta_training_mode = True meta_args = deepcopy(training_args) if training_args.scaling_iterations is not None: meta_args.max_steps = training_args.meta_iterations meta_args.save_steps = training_args.meta_iterations if training_args.meta_learning_rate is not None: meta_args.learning_rate = training_args.meta_learning_rate trainer = Trainer( model=model, args=meta_args, train_dataset=meta_dataset, compute_metrics=compute_metrics_fn ) train_results = trainer.train() metrics = train_results.metrics logger.info(metrics) trainer.save_model() if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) if model.use_meta_predictors: trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics_fn ) model.meta_eval_mode = True # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] eval_datasets = [eval_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") eval_datasets.append(datasets["validation_mismatched"]) for eval_dataset, task in zip(eval_datasets, tasks): metrics = trainer.evaluate(eval_dataset=eval_dataset) max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) if training_args.do_predict_eval: logger.info("Predicting for validation") predictions = trainer.predict(test_dataset=eval_dataset).predictions meta_logits = None if type(predictions) is tuple: cls_logits = predictions[0] meta_logits = predictions[1] else: cls_logits = predictions[0] output_pred_file = os.path.join( training_args.output_dir, f"eval_preds.jsonl" ) gold_labels = [ex["label"] for ex in eval_dataset] write_predictions(cls_logits, meta_logits, model.config.id2label, gold_labels, output_pred_file) if training_args.do_test or training_args.do_predict: logger.info("*** Test ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] test_datasets = [test_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") test_datasets.append(datasets["test_mismatched"]) for test_dataset, task in zip(test_datasets, tasks): # Removing the `label` columns because it contains -1 and Trainer won't like that. # Let's assume we have gold lablels for test for now. #test_dataset.remove_columns_("label") if training_args.do_predict: logger.info("Predicting for %s test", task) predictions = trainer.predict(test_dataset=test_dataset).predictions #predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1) meta_logits = None if type(predictions) is tuple: cls_logits = predictions[0] meta_logits = predictions[1] else: cls_logits = predictions[0] output_pred_file = os.path.join( training_args.output_dir, f"test_preds_{task}.jsonl" ) gold_labels = [ex["label"] for ex in test_dataset] write_predictions(cls_logits, meta_logits, model.config.id2label, gold_labels, output_pred_file) if training_args.do_test: # TODO: Use predictions from do_predict for evaluation. logger.info("Evaluating on %s", task) eval_result = trainer.evaluate(eval_dataset=test_dataset) output_eval_file = os.path.join( training_args.output_dir, f"test_results_{task}.txt" ) if trainer.is_world_process_zero(): if training_args.do_test: with open(output_eval_file, "w") as writer: logger.info("***** Test results {} *****".format(task)) for key, value in eval_result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value))
def main(): # See all possible arguments in src/transformers/advtraining_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir and training_args.local_rank in [-1, 0]): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging root_dir = training_args.output_dir if not os.path.exists(root_dir) and training_args.local_rank in [-1, 0]: os.mkdir(root_dir) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, handlers=[ logging.FileHandler( os.path.join(training_args.output_dir, "log.txt")), logging.StreamHandler() ] if training_args.local_rank in [-1, 0] else [logging.StreamHandler()]) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) try: num_labels = glue_tasks_num_labels[data_args.task_name] output_mode = glue_output_modes[data_args.task_name] except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, output_hidden_states=True, attention_probs_dropout_prob=training_args. attention_probs_dropout_prob, hidden_dropout_prob=training_args.hidden_dropout_prob) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # take the embedding of the whole sentence as varaible y if model_args.version >= 0: if model_args.version == 0: mi_upper_estimator = CLUB( config.hidden_size * data_args.max_seq_length, config.hidden_size, beta=model_args.beta).to(training_args.device) mi_upper_estimator.version = 0 mi_estimator = None elif model_args.version == 1: mi_upper_estimator = CLUB(config.hidden_size, config.hidden_size, beta=model_args.beta).to( training_args.device) # mi_estimator = CLUB(config.hidden_size, config.hidden_size, beta=model_args.beta) mi_upper_estimator.version = 1 mi_estimator = None elif model_args.version == 2 or model_args.version == 3: mi_upper_estimator = CLUBv2(config.hidden_size, config.hidden_size, beta=model_args.beta).to( training_args.device) mi_upper_estimator.version = model_args.version mi_estimator = None elif model_args.version == 4: mi_estimator = InfoNCE(config.hidden_size, config.hidden_size).to(training_args.device) mi_upper_estimator = None elif model_args.version == 5: mi_estimator = InfoNCE(config.hidden_size, config.hidden_size).to(training_args.device) mi_upper_estimator = CLUBv2(config.hidden_size, config.hidden_size, beta=model_args.beta).to( training_args.device) mi_upper_estimator.version = 2 elif model_args.version == 6: mi_estimator = InfoNCE(config.hidden_size, config.hidden_size).to(training_args.device) mi_upper_estimator = CLUBv2(config.hidden_size, config.hidden_size, beta=model_args.beta).to( training_args.device) mi_upper_estimator.version = 3 else: mi_estimator = None mi_upper_estimator = None # Get datasets train_dataset = (GlueDataset(data_args, tokenizer=tokenizer) if training_args.do_train else None) eval_dataset = (GlueDataset(data_args, tokenizer=tokenizer, mode="dev") if training_args.do_eval else None) test_dataset = (GlueDataset(data_args, tokenizer=tokenizer, mode="test") if training_args.do_predict else None) def build_compute_metrics_fn( task_name: str) -> Callable[[EvalPrediction], Dict]: def compute_metrics_fn(p: EvalPrediction): if output_mode == "classification": preds = np.argmax(p.predictions, axis=1) elif output_mode == "regression": preds = np.squeeze(p.predictions) return glue_compute_metrics(task_name, preds, p.label_ids) return compute_metrics_fn if model_args.load is not None: print(model_args.load) model.load_state_dict( torch.load(os.path.join(model_args.load, "pytorch_model.bin"))) if mi_estimator: mi_estimator.load_state_dict( torch.load(os.path.join(model_args.load, "mi_estimator.bin"))) logger.info(f"Load successful from {model_args.load}") if os.path.isdir(model_args.model_name_or_path): if mi_estimator: mi_estimator.load_state_dict( torch.load( os.path.join(model_args.model_name_or_path, "mi_estimator.bin"))) logger.info( f"Load mi estimator successful from {model_args.model_name_or_path}" ) # Initialize our Trainer trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=build_compute_metrics_fn( data_args.task_name), mi_estimator=mi_estimator, mi_upper_estimator=mi_upper_estimator) trainer.tokenizer = tokenizer # Training if training_args.do_train: trainer.train(model_path=model_args.model_name_or_path if os.path. isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) if mi_estimator: torch.save( mi_estimator.state_dict(), os.path.join(training_args.output_dir, "mi_estimator.bin")) torch.save(trainer.eval_hist, os.path.join(training_args.output_dir, 'eval_hist.bin')) # Evaluation eval_results = {} if training_args.do_eval: logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) eval_datasets = [eval_dataset] if data_args.task_name == "mnli": mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm") eval_datasets.append( GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="dev")) if 'anli' in data_args.task_name: eval_datasets.append( GlueDataset(data_args, tokenizer=tokenizer, mode="test")) if data_args.task_name == 'anli-full' or data_args.task_name == 'anli-part': eval_tasks = [ "anli-r1", "anli-r2", "anli-r3", "mnli", "mnli-mm", "snli", "mnli-bert-adv", "mnli-mm-bert-adv", "snli-bert-adv", "mnli-roberta-adv", "mnli-mm-roberta-adv", "snli-roberta-adv" ] for task in eval_tasks: if "mnli" in task and 'adv' not in task: task_data_dir = os.path.join(data_args.data_dir, "MNLI") elif "snli" == task and 'adv' not in task: task_data_dir = os.path.join(data_args.data_dir, "SNLI") else: task_data_dir = data_args.data_dir task_data_args = dataclasses.replace(data_args, task_name=task, data_dir=task_data_dir) eval_datasets.append( GlueDataset(task_data_args, tokenizer=tokenizer, mode="dev")) if 'anli' in task: eval_datasets.append( GlueDataset(task_data_args, tokenizer=tokenizer, mode="test")) for eval_dataset in eval_datasets: trainer.compute_metrics = build_compute_metrics_fn( eval_dataset.args.task_name) eval_result = trainer.evaluate(eval_dataset=eval_dataset) # eval_result = trainer.evaluate_mi(eval_dataset=eval_dataset) output_eval_file = os.path.join( training_args.output_dir, f"eval_results_{eval_dataset.args.task_name}-{eval_dataset.mode}.txt" ) if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info( f"***** Eval results {eval_dataset.args.task_name}-{eval_dataset.mode} *****" ) for key, value in eval_result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) eval_results.update(eval_result) if trainer.eval_hist: best_eval = trainer.eval_hist[0] for eval in trainer.eval_hist: if eval['eval_acc'] > best_eval['eval_acc']: best_eval = eval output_eval_file = os.path.join( training_args.output_dir, f"best_eval_results_{data_args.task_name}_.txt") with open(output_eval_file, "w") as writer: logger.info("***** Best Eval results {} *****".format( data_args.task_name)) for key, value in best_eval.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) del trainer.model torch.cuda.empty_cache() # re-evaluate the best parameters checkpoint = os.path.join(training_args.output_dir, f"checkpoint-{best_eval['step']}") # trainer.model.load_state_dict(torch.load(os.path.join(checkpoint, 'pytorch_model.bin'))) trainer.model = AutoModelForSequenceClassification.from_pretrained( checkpoint).to(training_args.device) logger.info(f"successfully load from {checkpoint}") for eval_dataset in eval_datasets: trainer.compute_metrics = build_compute_metrics_fn( eval_dataset.args.task_name) # eval_result = trainer.evaluate(eval_dataset=eval_dataset) eval_result = trainer.evaluate(eval_dataset=eval_dataset) output_eval_file = os.path.join( training_args.output_dir, f"best_eval_results_{eval_dataset.args.task_name}-{eval_dataset.mode}.txt" ) if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info( f"***** Best Eval results {eval_dataset.args.task_name}--{eval_dataset.mode} *****" ) for key, value in eval_result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) # # double eval to test whether there is stocahsticasty during evaluation # for eval_dataset in eval_datasets: # trainer.compute_metrics = build_compute_metrics_fn(eval_dataset.args.task_name) # # eval_result = trainer.evaluate(eval_dataset=eval_dataset) # eval_result = trainer.evaluate(eval_dataset=eval_dataset) # # output_eval_file = os.path.join( # training_args.output_dir, f"best_eval_results_{eval_dataset.args.task_name}.txt" # ) # if trainer.is_world_master(): # with open(output_eval_file, "w") as writer: # logger.info("***** Best Eval results {} *****".format(eval_dataset.args.task_name)) # for key, value in eval_result.items(): # logger.info(" %s = %s", key, value) # writer.write("%s = %s\n" % (key, value)) if training_args.do_predict: logging.info("*** Test ***") test_datasets = [test_dataset] if data_args.task_name == "mnli": mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm") test_datasets.append( GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="test", cache_dir=model_args.cache_dir)) for test_dataset in test_datasets: predictions = trainer.predict( test_dataset=test_dataset).predictions if output_mode == "classification": predictions = np.argmax(predictions, axis=1) output_test_file = os.path.join( training_args.output_dir, f"test_results_{test_dataset.args.task_name}.txt") if trainer.is_world_master(): with open(output_test_file, "w") as writer: logger.info("***** Test results {} *****".format( test_dataset.args.task_name)) writer.write("index\tprediction\n") for index, item in enumerate(predictions): if output_mode == "regression": writer.write("%d\t%3.3f\n" % (index, item)) else: item = test_dataset.get_labels()[item] writer.write("%d\t%s\n" % (index, item)) return eval_results
def main(): # region Argument parsing # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # endregion # region Logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO) datasets.utils.logging.set_verbosity(logging.INFO) transformers.utils.logging.set_verbosity(logging.INFO) # Log on each process the small summary: logger.info(f"Training/evaluation parameters {training_args}") # endregion # region T5 special-casing if data_args.source_prefix is None and model_args.model_name_or_path in [ "t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", ]: logger.warning( "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with " "`--source_prefix 'summarize: ' `" ) # endregion # region Detecting last checkpoint last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # endregion # Set seed before initializing model. set_seed(training_args.seed) # region Load datasets # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files this script will use the first column for the full texts and the second column for the # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # endregion # region Load model config and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) prefix = data_args.source_prefix if data_args.source_prefix is not None else "" # endregion # region Dataset preprocessing # We need to tokenize inputs and targets. if training_args.do_train: column_names = raw_datasets["train"].column_names elif training_args.do_eval: column_names = raw_datasets["validation"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, and/or `do_eval`.") return # Get the column names for input/target. dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None) if data_args.text_column is None: text_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: text_column = data_args.text_column if text_column not in column_names: raise ValueError( f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}" ) if data_args.summary_column is None: summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: summary_column = data_args.summary_column if summary_column not in column_names: raise ValueError( f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}" ) # Temporarily set max_target_length for training. max_target_length = data_args.max_target_length padding = "max_length" if data_args.pad_to_max_length else False def preprocess_function(examples): inputs = examples[text_column] targets = examples[summary_column] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and data_args.ignore_pad_token_for_loss: labels["input_ids"] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] ] model_inputs["labels"] = labels["input_ids"] return model_inputs if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) with training_args.main_process_first(desc="train dataset map pre-processing"): train_dataset = train_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on train dataset", ) else: train_dataset = None if training_args.do_eval: max_target_length = data_args.val_max_target_length if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = raw_datasets["validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) with training_args.main_process_first(desc="validation dataset map pre-processing"): eval_dataset = eval_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on validation dataset", ) else: eval_dataset = None # endregion # region Text preprocessing def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [label.strip() for label in labels] # rougeLSum expects newline after each sentence preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels] return preds, labels # endregion with training_args.strategy.scope(): # region Prepare model model = TFAutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model.resize_token_embeddings(len(tokenizer)) # endregion # region Prepare TF Dataset objects if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") num_replicas = training_args.strategy.num_replicas_in_sync total_train_batch_size = training_args.per_device_train_batch_size * num_replicas total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas tf_train_dataset = dataset_to_tf( train_dataset, model, tokenizer, total_batch_size=total_train_batch_size, num_epochs=training_args.num_train_epochs, shuffle=True, ) tf_eval_dataset = dataset_to_tf( eval_dataset, model, tokenizer, total_eval_batch_size, num_epochs=1, shuffle=False, ) # endregion # region Optimizer, loss and LR scheduling # Scheduler and math around the number of training steps. num_update_steps_per_epoch = len(train_dataset) // training_args.per_device_train_batch_size num_train_steps = training_args.num_train_epochs * num_update_steps_per_epoch optimizer, lr_schedule = create_optimizer( init_lr=training_args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=0 ) def masked_sparse_categorical_crossentropy(y_true, y_pred): # We clip the negative labels to 0 to avoid NaNs appearing in the output and # fouling up everything that comes afterwards. The loss values corresponding to clipped values # will be masked later anyway, but even masked NaNs seem to cause overflows for some reason. # 1e6 is chosen as a reasonable upper bound for the number of token indices - in the unlikely # event that you have more than 1 million tokens in your vocabulary, consider increasing this value. # More pragmatically, consider redesigning your tokenizer. losses = tf.keras.losses.sparse_categorical_crossentropy( tf.clip_by_value(y_true, 0, int(1e6)), y_pred, from_logits=True ) # Compute the per-sample loss only over the unmasked tokens losses = tf.ragged.boolean_mask(losses, y_true != -100) losses = tf.reduce_mean(losses, axis=-1) return losses # endregion # region Metric metric = load_metric("rouge") # endregion # region Training model.compile(loss={"logits": masked_sparse_categorical_crossentropy}, optimizer=optimizer) if training_args.do_train: logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {training_args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") logger.info(f" Total train batch size = {total_train_batch_size}") logger.info(f" Total optimization steps = {num_train_steps}") model.fit( tf_train_dataset, epochs=int(training_args.num_train_epochs), steps_per_epoch=num_update_steps_per_epoch, ) # endregion # region Validation if data_args.val_max_target_length is None: data_args.val_max_target_length = data_args.max_target_length gen_kwargs = { "max_length": data_args.val_max_target_length if data_args is not None else config.max_length, "num_beams": data_args.num_beams, } if training_args.do_eval: logger.info("Evaluation...") for batch, labels in tqdm( tf_eval_dataset, total=len(eval_dataset) // training_args.per_device_eval_batch_size ): batch.update(gen_kwargs) generated_tokens = model.generate(**batch) if isinstance(generated_tokens, tuple): generated_tokens = generated_tokens[0] decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) metric.add_batch(predictions=decoded_preds, references=decoded_labels) result = metric.compute(use_stemmer=True) # Extract a few results from ROUGE result = {key: value.mid.fmeasure * 100 for key, value in result.items()} result = {k: round(v, 4) for k, v in result.items()} logger.info(result) # endregion if training_args.output_dir is not None: model.save_pretrained(training_args.output_dir)
def main(): # 1. Parse input arguments # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # 2. Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # 3. Detecting last checkpoint and eventualy continue from last checkpoint last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # 4. Load dataset # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files this script will use the first column for the full image path and the second column for the # captions (unless you specify column names for this with the `image_column` and `caption_column` arguments). # if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False, data_dir=data_args.data_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] dataset = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # 5. Load pretrained model, tokenizer, and feature extractor if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) # Load feature_extractor, in this script we only use this to get the mean and std for normalization. feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModel.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) config = model.config def _freeze_params(module): for param in module.parameters(): param.requires_grad = False if model_args.freeze_vision_model: _freeze_params(model.vision_model) if model_args.freeze_text_model: _freeze_params(model.text_model) # set seed for torch dataloaders set_seed(training_args.seed) # Preprocessing the datasets. # We need to tokenize inputs and targets. if training_args.do_train: column_names = dataset["train"].column_names elif training_args.do_eval: column_names = dataset["validation"].column_names elif training_args.do_predict: column_names = dataset["test"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") return # 6. Get the column names for input/target. dataset_columns = dataset_name_mapping.get(data_args.dataset_name, None) if data_args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = data_args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}" ) if data_args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = data_args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # 7. Preprocessing the datasets. # Initialize torchvision transforms and jit it for faster processing. image_transformations = Transform( config.vision_config.image_size, feature_extractor.image_mean, feature_extractor.image_std ) image_transformations = torch.jit.script(image_transformations) # Preprocessing the datasets. # We need to tokenize input captions and transform the images. def tokenize_captions(examples): captions = [caption for caption in examples[caption_column]] text_inputs = tokenizer(captions, max_length=data_args.max_seq_length, padding="max_length", truncation=True) examples["input_ids"] = text_inputs.input_ids examples["attention_mask"] = text_inputs.attention_mask return examples def transform_images(examples): images = [read_image(image_file, mode=ImageReadMode.RGB) for image_file in examples[image_column]] examples["pixel_values"] = [image_transformations(image) for image in images] return examples def filter_corrupt_images(examples): """remove problematic images""" valid_images = [] for image_file in examples[image_column]: try: Image.open(image_file) valid_images.append(True) except Exception: valid_images.append(False) return valid_images if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") train_dataset = dataset["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) train_dataset = train_dataset.filter( filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers ) train_dataset = train_dataset.map( function=tokenize_captions, batched=True, remove_columns=[col for col in column_names if col != image_column], num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on train dataset", ) # Transform images on the fly as doing it on the whole dataset takes too much time. train_dataset.set_transform(transform_images) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a train validation") eval_dataset = dataset["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) eval_dataset = eval_dataset.filter( filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers ) eval_dataset = eval_dataset.map( function=tokenize_captions, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[col for col in column_names if col != image_column], load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on validation dataset", ) # Transform images on the fly as doing it on the whole dataset takes too much time. eval_dataset.set_transform(transform_images) if training_args.do_predict: if "test" not in dataset: raise ValueError("--do_predict requires a test dataset") test_dataset = dataset["test"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(test_dataset), data_args.max_eval_samples) test_dataset = test_dataset.select(range(max_eval_samples)) test_dataset = test_dataset.filter( filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers ) test_dataset = test_dataset.map( function=tokenize_captions, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[col for col in column_names if col != image_column], load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on test dataset", ) # Transform images on the fly as doing it on the whole dataset takes too much time. test_dataset.set_transform(transform_images) # 8. Initalize our trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, data_collator=collate_fn, ) # 9. Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() # 10. Evaluation if training_args.do_eval: metrics = trainer.evaluate() trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # 11. Write Training Stats and push to hub. kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "contrastive-image-text-modeling"} if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs)
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) if data_args.source_prefix is None and model_args.model_name_or_path in [ "t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", ]: logger.warning( "You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with " "`--source_prefix 'translate English to German: ' `") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir( training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir( training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For translation, only JSON files are supported, with one field named "translation" containing two keys for the # source and target languages (unless you adapt what follows). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Set decoder_start_token_id if model.config.decoder_start_token_id is None and isinstance( tokenizer, (MBartTokenizer, MBartTokenizerFast)): if isinstance(tokenizer, MBartTokenizer): model.config.decoder_start_token_id = tokenizer.lang_code_to_id[ data_args.target_lang] else: model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids( data_args.target_lang) if model.config.decoder_start_token_id is None: raise ValueError( "Make sure that `config.decoder_start_token_id` is correctly defined" ) prefix = data_args.source_prefix if data_args.source_prefix is not None else "" # Preprocessing the datasets. # We need to tokenize inputs and targets. if training_args.do_train: column_names = datasets["train"].column_names elif training_args.do_eval: column_names = datasets["validation"].column_names elif training_args.do_predict: column_names = datasets["test"].column_names else: logger.info( "There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`." ) return # For translation we set the codes of our source and target languages (only useful for mBART, the others will # ignore those attributes). if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)): assert data_args.target_lang is not None and data_args.source_lang is not None, ( f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and " "--target_lang arguments.") tokenizer.src_lang = data_args.source_lang tokenizer.tgt_lang = data_args.target_lang # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument. forced_bos_token_id = ( tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None) model.config.foced_bos_token_id = forced_bos_token_id # Get the language codes for input/target. source_lang = data_args.source_lang.split("_")[0] target_lang = data_args.target_lang.split("_")[0] # Temporarily set max_target_length for training. max_target_length = data_args.max_target_length padding = "max_length" if data_args.pad_to_max_length else False if training_args.label_smoothing_factor > 0 and not hasattr( model, "prepare_decoder_input_ids_from_labels"): logger.warning( "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for" f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" ) def preprocess_function(examples): inputs = [ex[source_lang] for ex in examples["translation"]] targets = [ex[target_lang] for ex in examples["translation"]] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and data_args.ignore_pad_token_for_loss: labels["input_ids"] = [[ (l if l != tokenizer.pad_token_id else -100) for l in label ] for label in labels["input_ids"]] model_inputs["labels"] = labels["input_ids"] return model_inputs if training_args.do_train: train_dataset = datasets["train"] if "train" not in datasets: raise ValueError("--do_train requires a train dataset") if data_args.max_train_samples is not None: train_dataset = train_dataset.select( range(data_args.max_train_samples)) train_dataset = train_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: max_target_length = data_args.val_max_target_length if "validation" not in datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = datasets["validation"] if data_args.max_val_samples is not None: eval_dataset = eval_dataset.select(range( data_args.max_val_samples)) eval_dataset = eval_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_predict: max_target_length = data_args.val_max_target_length if "test" not in datasets: raise ValueError("--do_predict requires a test dataset") test_dataset = datasets["test"] if data_args.max_test_samples is not None: test_dataset = test_dataset.select( range(data_args.max_test_samples)) test_dataset = test_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id if data_args.pad_to_max_length: data_collator = default_data_collator else: data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if training_args.fp16 else None, ) # Metric metric = load_metric("sacrebleu") def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [[label.strip()] for label in labels] return preds, labels def compute_metrics(eval_preds): preds, labels = eval_preds if isinstance(preds, tuple): preds = preds[0] decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) if data_args.ignore_pad_token_for_loss: # Replace -100 in the labels as we can't decode them. labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds, decoded_labels = postprocess_text( decoded_preds, decoded_labels) result = metric.compute(predictions=decoded_preds, references=decoded_labels) result = {"bleu": result["score"]} prediction_lens = [ np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds ] result["gen_len"] = np.mean(prediction_lens) result = {k: round(v, 4) for k, v in result.items()} return result # Initialize our Trainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics if training_args.predict_with_generate else None, ) # Training if training_args.do_train: if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = (data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate(max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval") max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len( eval_dataset) metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) if training_args.do_predict: logger.info("*** Test ***") test_results = trainer.predict( test_dataset, metric_key_prefix="test", max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, ) metrics = test_results.metrics max_test_samples = data_args.max_test_samples if data_args.max_test_samples is not None else len( test_dataset) metrics["test_samples"] = min(max_test_samples, len(test_dataset)) trainer.log_metrics("test", metrics) trainer.save_metrics("test", metrics) if trainer.is_world_process_zero(): if training_args.predict_with_generate: test_preds = tokenizer.batch_decode( test_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True) test_preds = [pred.strip() for pred in test_preds] output_test_preds_file = os.path.join(training_args.output_dir, "test_generations.txt") with open(output_test_preds_file, "w") as writer: writer.write("\n".join(test_preds)) return results
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( stream=sys.stdout, format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) labels = ["0", "1"] label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)} num_labels = len(labels) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, id2label=label_map, label2id={label: i for i, label in enumerate(labels)}, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast, ) model = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) hf_dataset = create_hf_dataset( data_dir=data_args.data_dir, local_tokenizer=tokenizer, labels=labels, model_type=config.model_type, local_max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, ) if training_args.do_train: hf_dataset = create_hf_dataset( data_dir=data_args.data_dir, local_tokenizer=tokenizer, labels=labels, model_type=config.model_type, local_max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, ) if data_args.read_data: return # Get datasets train_dataset = hf_dataset['train'] if training_args.do_train else None # train_dataset = hf_dataset['validation'] if training_args.do_eval else None eval_dataset = hf_dataset['validation'] if training_args.do_eval else None # return def align_predictions( predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]: label2id = {label: i for i, label in enumerate(labels)} preds = np.argmax(predictions, axis=2) predictions = scipy.special.softmax(predictions, axis=2) batch_size, seq_len = preds.shape out_label_list = [[] for _ in range(batch_size)] preds_list = [[] for _ in range(batch_size)] preds_prob_list = [[] for _ in range(batch_size)] for i in range(batch_size): for j in range(seq_len): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) preds_prob_list[i].append(predictions[i][j][label2id['1']]) return preds_list, out_label_list, preds_prob_list def compute_metrics(p: EvalPrediction) -> Dict: preds_list, out_label_list, _ = align_predictions( p.predictions, p.label_ids) out_label_list = sum(out_label_list, []) preds_list = sum(preds_list, []) return { "precision": precision_score(out_label_list, preds_list, pos_label='1', average='binary'), "recall": recall_score(out_label_list, preds_list, pos_label='1', average='binary'), "f1": f1_score(out_label_list, preds_list, pos_label='1', average='binary'), } # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=None, # prediction_loss_only=data_args.prediction_loss_only if training_args.do_train else False, ) # Training if training_args.do_train: trainer.train(model_path=model_args.model_name_or_path if os.path. isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) results.update(result) # Predict if training_args.do_predict: # split = 'test' if data_args.eval_split == 'test' else 'valeval' split = data_args.eval_split hf_dataset = create_hf_dataset( data_dir=data_args.data_dir, local_tokenizer=tokenizer, labels=labels, model_type=config.model_type, local_max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, split=split, ) test_dataset = hf_dataset predictions, label_ids, metrics = trainer.predict(test_dataset) preds_list, _, preds_prob_list = align_predictions( predictions, label_ids) output_test_results_file = os.path.join( training_args.output_dir, f"{data_args.eval_split}_results.txt") if trainer.is_world_master(): with open(output_test_results_file, "w") as writer: for key, value in metrics.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) output_test_predictions_file = os.path.join( training_args.output_dir, f"{data_args.eval_split}_predictions.txt") if trainer.is_world_master(): # Save predictions # split = Split.test if data_args.eval_split == 'test' else Split.dev # test_examples = read_examples_from_file(data_args.data_dir, split) test_examples = load_dataset( 'json', data_files=os.path.join(data_args.data_dir, f'{split}.seqlabel.jsonl'), cache_dir=os.path.join(data_args.data_dir, 'hf_cache')) if 'train' in test_examples: test_examples = test_examples['train'] with open(output_test_predictions_file, "w") as writer: assert len(test_examples) == len(preds_prob_list) for line_s, line_t in zip(test_examples, preds_prob_list): # threshold = min(max(line_t), data_args.threshold) for tok_s, pred in zip(line_s['tokens'], line_t): writer.write('{}:{:.3f} '.format(tok_s, pred)) writer.write('\n') # example_id = 0 # for line in f: # if line.startswith("-DOCSTART-") or line == "" or line == "\n": # writer.write(line) # if not preds_list[example_id]: # example_id += 1 # elif preds_list[example_id]: # output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n" # writer.write(output_line) # else: # logger.warning( # "Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0] # ) return results
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN, ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) data_files = {} if data_args.train_dir is not None: data_files["train"] = [ os.path.join(data_args.train_dir, f) for f in os.listdir(data_args.train_dir) ] extension = "text" datasets = load_dataset(extension, data_files=data_files) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning( "You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) else: logger.info("Training new model from scratch") model = AutoModelForCausalLM.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. column_names = datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] def tokenize_function(examples): return tokenizer(examples[text_column_name]) tokenized_datasets = datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.block_size <= 0: block_size = tokenizer.model_max_length else: if data_args.block_size > tokenizer.model_max_length: logger.warn( f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model" f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(data_args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = { k: sum(examples[k], []) for k in examples.keys() } total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i:i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=lm_datasets["train"] if training_args.do_train else None, eval_dataset=None, tokenizer=tokenizer, # Data collator will default to DataCollatorWithPadding, so we change it. data_collator=default_data_collator, ) # Training if training_args.do_train: model_path = (model_args.model_name_or_path if (model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)) else None) trainer.train(model_path=model_path) trainer.save_model() # Saves the tokenizer too for easy upload # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") eval_output = trainer.evaluate() perplexity = math.exp(eval_output["eval_loss"]) results["perplexity"] = perplexity output_eval_file = os.path.join(training_args.output_dir, "eval_results_clm.txt") if trainer.is_world_process_zero(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in results.items(): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") return results
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, GlueDataTrainingArguments, TFTrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info( "n_replicas: %s, distributed training: %s, 16-bits training: %s", training_args.n_replicas, bool(training_args.n_replicas > 1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) try: num_labels = glue_tasks_num_labels["mnli" if data_args.task_name == "mnli-mm" else data_args.task_name] output_mode = glue_output_modes[data_args.task_name] except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): model = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool(".bin" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # Get datasets train_dataset = (get_tfds( task_name=data_args.task_name, tokenizer=tokenizer, max_seq_length=data_args.max_seq_length, data_dir=data_args.data_dir, ) if training_args.do_train else None) eval_dataset = (get_tfds( task_name=data_args.task_name, tokenizer=tokenizer, max_seq_length=data_args.max_seq_length, mode=Split.dev, data_dir=data_args.data_dir, ) if training_args.do_eval else None) def compute_metrics(p: EvalPrediction) -> Dict: if output_mode == "classification": preds = np.argmax(p.predictions, axis=1) elif output_mode == "regression": preds = np.squeeze(p.predictions) return glue_compute_metrics(data_args.task_name, preds, p.label_ids) # Initialize our Trainer trainer = TFTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) results.update(result) return results
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TFTrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.warning( f"device: {training_args.device}, n_replicas: {training_args.n_replicas}, " f"16-bits training: {training_args.fp16}") logger.info(f"Training/evaluation parameters {training_args}") # Set seed set_seed(training_args.seed) try: processor = processors[data_args.task_name]() label_list = processor.get_labels() num_labels = len(label_list) except KeyError: raise ValueError(f"Task not found: {data_args.task_name}") # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): model = TFAutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_pt=bool(".bin" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # Get datasets train_dataset = (TFMultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=tokenizer, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None) eval_dataset = (TFMultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=tokenizer, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None) def compute_metrics(p: EvalPrediction) -> Dict: preds = np.argmax(p.predictions, axis=1) return {"acc": simple_accuracy(preds, p.label_ids)} # Initialize our Trainer trainer = TFTrainer( model=model, args=training_args, train_dataset=train_dataset.get_dataset() if train_dataset else None, eval_dataset=eval_dataset.get_dataset() if eval_dataset else None, compute_metrics=compute_metrics, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") results.update(result) return results
def main(): cmd_parser = argparse.ArgumentParser() cmd_parser.add_argument("experiments", nargs="+", choices=list(CONFIGS.keys()), help="Available experiments") cmd_parser.add_argument("--local_rank", default=None, help="added by torch.distributed.launch") cmd_args = cmd_parser.parse_args() for experiment in cmd_args.experiments: config_dict = CONFIGS[experiment] local_rank = int(cmd_args.local_rank or -1) config_dict["local_rank"] = local_rank # See all possible arguments in transformers/training_args.py and ./run_args.py exp_parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, CustomTrainingArguments)) model_args, data_args, training_args = exp_parser.parse_dict( config_dict) # Overrides default behavior of TrainingArguments of setting run name # equal to output_dir when not available if training_args.run_name == training_args.output_dir: training_args.run_name = experiment # Run name (or experiment name) is added to the output_dir training_args.output_dir = os.path.join(training_args.output_dir, training_args.run_name) # Initialize wandb now to include the logs that follow. # For now, only support early wandb logging when running one experiment. distributed_initialized = torch.distributed.is_initialized() if is_wandb_available() and len(cmd_args.experiments) == 1: rank = -1 if not distributed_initialized else torch.distributed.get_rank( ) CustomWandbCallback.early_init(training_args, rank) # Detecting last checkpoint. last_checkpoint = None if (os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): last_checkpoint = get_last_checkpoint(training_args.output_dir) logging.warning(f"Loading from checkpoint: {last_checkpoint} ") if (last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and " "is not empty. Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logging.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To " "avoid this behavior, change the `--output_dir` or add " "`--overwrite_output_dir` to train from scratch.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], level=(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)) # Log config. logging.info( bold("\n\nRunning with experiment config:\n") + pdict(config_dict)) # Log on each process the small summary: logging.warning( f"Process rank: {training_args.local_rank}, " f"device: {training_args.device}, n_gpu: {training_args.n_gpu} " f"distributed training: {bool(training_args.local_rank != -1)}, " f"16-bits training: {training_args.fp16}") # Set the verbosity to info of the Transformers logging (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logging.info( bold("\n\nTraining parameters:\n") + pdict(training_args.__dict__)) logging.info( bold("\n\nModel parameters:\n") + pdict(model_args.__dict__)) logging.info( bold("\n\nData parameters:\n") + pdict(data_args.__dict__)) # Set seed before initializing model. set_seed(training_args.seed) logging.info(f"Seed to reproduce: {training_args.seed}") # Issue warnings if rm_checkpoints is not in the usual configuration check_rm_checkpoints(training_args, model_args) if model_args.finetuning: run_finetuning_multiple_tasks(model_args, data_args, training_args, last_checkpoint=last_checkpoint) else: run_pretraining(model_args, data_args, training_args, last_checkpoint=last_checkpoint) # destroy process group before launching another experiment if cmd_args.local_rank: torch.distributed.destroy_process_group()
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN, ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.train_file.split(".")[-1] datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. if training_args.do_train: column_names = datasets["train"].column_names features = datasets["train"].features else: column_names = datasets["validation"].column_names features = datasets["validation"].features text_column_name = "tokens" if "tokens" in column_names else column_names[0] label_column_name = (f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1]) # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the # unique labels. def get_label_list(labels): unique_labels = set() for label in labels: unique_labels = unique_labels | set(label) label_list = list(unique_labels) label_list.sort() return label_list if isinstance(features[label_column_name].feature, ClassLabel): label_list = features[label_column_name].feature.names # No need to convert the labels since they are already ints. label_to_id = {i: i for i in range(len(label_list))} else: label_list = get_label_list(datasets["train"][label_column_name]) label_to_id = {l: i for i, l in enumerate(label_list)} num_labels = len(label_list) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=True, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Tokenizer check: this script requires a fast tokenizer. if not isinstance(tokenizer, PreTrainedTokenizerFast): raise ValueError( "This example script only works for models that have a fast tokenizer. Checkout the big table of models " "at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this " "requirement") # Preprocessing the dataset # Padding strategy padding = "max_length" if data_args.pad_to_max_length else False # Tokenize all texts and align the labels with them. def tokenize_and_align_labels(examples): tokenized_inputs = tokenizer( examples[text_column_name], padding=padding, truncation=True, # We use this argument because the texts in our dataset are lists of words (with a label for each word). is_split_into_words=True, ) labels = [] for i, label in enumerate(examples[label_column_name]): word_ids = tokenized_inputs.word_ids(batch_index=i) previous_word_idx = None label_ids = [] for word_idx in word_ids: # Special tokens have a word id that is None. We set the label to -100 so they are automatically # ignored in the loss function. if word_idx is None: label_ids.append(-100) # We set the label for the first token of each word. elif word_idx != previous_word_idx: label_ids.append(label_to_id[label[word_idx]]) # For the other tokens in a word, we set the label to either the current label or -100, depending on # the label_all_tokens flag. else: label_ids.append(label_to_id[label[word_idx]] if data_args. label_all_tokens else -100) previous_word_idx = word_idx labels.append(label_ids) tokenized_inputs["labels"] = labels return tokenized_inputs tokenized_datasets = datasets.map( tokenize_and_align_labels, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator data_collator = DataCollatorForTokenClassification(tokenizer) # Metrics def compute_metrics(p): predictions, labels = p predictions = np.argmax(predictions, axis=2) # Remove ignored index (special tokens) true_predictions = [[ label_list[p] for (p, l) in zip(prediction, label) if l != -100 ] for prediction, label in zip(predictions, labels)] true_labels = [[ label_list[l] for (p, l) in zip(prediction, label) if l != -100 ] for prediction, label in zip(predictions, labels)] return { "accuracy_score": accuracy_score(true_labels, true_predictions), "precision": precision_score(true_labels, true_predictions), "recall": recall_score(true_labels, true_predictions), "f1": f1_score(true_labels, true_predictions), } # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"] if training_args.do_train else None, eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) # Training if training_args.do_train: train_result = trainer.train( model_path=model_args.model_name_or_path if os.path. isdir(model_args.model_name_or_path) else None) trainer.save_model() # Saves the tokenizer too for easy upload output_train_file = os.path.join(training_args.output_dir, "train_results.txt") if trainer.is_world_process_zero(): with open(output_train_file, "w") as writer: logger.info("***** Train results *****") for key, value in sorted(train_result.metrics.items()): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json( os.path.join(training_args.output_dir, "trainer_state.json")) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") results = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results_ner.txt") if trainer.is_world_process_zero(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in results.items(): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") # Predict if training_args.do_predict: logger.info("*** Predict ***") test_dataset = tokenized_datasets["test"] predictions, labels, metrics = trainer.predict(test_dataset) predictions = np.argmax(predictions, axis=2) # Remove ignored index (special tokens) true_predictions = [[ label_list[p] for (p, l) in zip(prediction, label) if l != -100 ] for prediction, label in zip(predictions, labels)] output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt") if trainer.is_world_process_zero(): with open(output_test_results_file, "w") as writer: for key, value in sorted(metrics.items()): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") # Save predictions output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt") if trainer.is_world_process_zero(): with open(output_test_predictions_file, "w") as writer: for prediction in true_predictions: writer.write(" ".join(prediction) + "\n") return results
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) # Detecting last checkpoint. last_checkpoint = None if os.path.isdir( training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir( training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: train_dataset = datasets.load_dataset("egy_speech_corpus", split='train', cache_dir=model_args.cache_dir) eval_dataset = datasets.load_dataset("egy_speech_corpus", split="dev", cache_dir=model_args.cache_dir) # Create and save tokenizer chars_to_ignore_regex = f'[{"".join(data_args.chars_to_ignore)}]' def remove_special_characters(batch): batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " " return batch train_dataset = train_dataset.map(remove_special_characters, remove_columns=["sentence"]) eval_dataset = eval_dataset.map(remove_special_characters, remove_columns=["sentence"]) def extract_all_chars(batch): all_text = " ".join(batch["text"]) vocab = list(set(all_text)) return {"vocab": [vocab], "all_text": [all_text]} vocab_train = train_dataset.map( extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=train_dataset.column_names, ) vocab_test = train_dataset.map( extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=eval_dataset.column_names, ) vocab_list = list( set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0])) vocab_dict = {v: k for k, v in enumerate(vocab_list)} vocab_dict["|"] = vocab_dict[" "] del vocab_dict[" "] vocab_dict["[UNK]"] = len(vocab_dict) vocab_dict["[PAD]"] = len(vocab_dict) with open("vocab.json", "w") as vocab_file: json.dump(vocab_dict, vocab_file) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. tokenizer = Wav2Vec2CTCTokenizer( "vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|", ) feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16_000, padding_value=0.0, do_normalize=True, return_attention_mask=True) processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) model = Wav2Vec2ForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=model_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction="mean", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer), ) if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range( data_args.max_train_samples)) if data_args.max_val_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_val_samples)) resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() batch["sampling_rate"] = 16_000 batch["target_text"] = batch["text"] return batch train_dataset = train_dataset.map( speech_file_to_array_fn, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) eval_dataset = eval_dataset.map( speech_file_to_array_fn, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(batch): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"])) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." batch["input_values"] = processor( batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values # Setup the processor for targets with processor.as_target_processor(): batch["labels"] = processor(batch["target_text"]).input_ids return batch train_dataset = train_dataset.map( prepare_dataset, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=True, num_proc=data_args.preprocessing_num_workers, ) eval_dataset = eval_dataset.map( prepare_dataset, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=True, num_proc=data_args.preprocessing_num_workers, ) # Metric wer_metric = datasets.load_metric("wer") def compute_metrics(pred): pred_logits = pred.predictions pred_ids = np.argmax(pred_logits, axis=-1) pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id pred_str = processor.batch_decode(pred_ids) # we do not want to group tokens when computing the metrics label_str = processor.batch_decode(pred.label_ids, group_tokens=False) wer = wer_metric.compute(predictions=pred_str, references=label_str) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) # Initialize our Trainer trainer = CTCTrainer( model=model, data_collator=data_collator, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank): processor.save_pretrained(training_args.output_dir) metrics = train_result.metrics max_train_samples = (data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len( eval_dataset) metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) return results
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, MultiLingAdapterArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args, adapter_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args, adapter_args = parser.parse_args_into_dataclasses( ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir( training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir( training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir) if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, ) raw_datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, ) else: data_files = {} dataset_args = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = (data_args.train_file.split(".")[-1] if data_args.train_file is not None else data_args.validation_file.split(".")[-1]) if extension == "txt": extension = "text" dataset_args["keep_linebreaks"] = data_args.keep_linebreaks raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir, **dataset_args) # If no validation data is there, validation_split_percentage will be used to divide the dataset. if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, **dataset_args, ) raw_datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, **dataset_args, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config_kwargs = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning( "You are instantiating a new config instance from scratch.") if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}") config.update_from_string(model_args.config_overrides) tokenizer_kwargs = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, **tokenizer_kwargs) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: model = AutoModelForCausalLM.from_config(config) n_params = sum( dict((p.data_ptr(), p.numel()) for p in model.parameters()).values()) logger.info( f"Training new model from scratch - Total size={n_params/2**20:.2f}M params" ) model.resize_token_embeddings(len(tokenizer)) # Setup adapters if adapter_args.train_adapter: task_name = data_args.dataset_name or "clm" # check if adapter already exists, otherwise add it if task_name not in model.config.adapters: # resolve the adapter config adapter_config = AdapterConfig.load( adapter_args.adapter_config, non_linearity=adapter_args.adapter_non_linearity, reduction_factor=adapter_args.adapter_reduction_factor, ) # load a pre-trained from Hub if specified if adapter_args.load_adapter: model.load_adapter( adapter_args.load_adapter, config=adapter_config, load_as=task_name, ) # otherwise, add a fresh adapter else: model.add_adapter(task_name, config=adapter_config) # optionally load a pre-trained language adapter if adapter_args.load_lang_adapter: # resolve the language adapter config lang_adapter_config = AdapterConfig.load( adapter_args.lang_adapter_config, non_linearity=adapter_args.lang_adapter_non_linearity, reduction_factor=adapter_args.lang_adapter_reduction_factor, ) # load the language adapter from Hub lang_adapter_name = model.load_adapter( adapter_args.load_lang_adapter, config=lang_adapter_config, load_as=adapter_args.language, ) else: lang_adapter_name = None # Freeze all model weights except of those of this adapter model.train_adapter([task_name]) # Set the adapters to be used in every forward pass if lang_adapter_name: model.set_active_adapters(ac.Stack(lang_adapter_name, task_name)) else: model.set_active_adapters(task_name) else: if adapter_args.load_adapter or adapter_args.load_lang_adapter: raise ValueError( "Adapters can only be loaded in adapters training mode." "Use --train_adapter to enable adapter training") # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = raw_datasets["train"].column_names else: column_names = raw_datasets["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function tok_logger = transformers.utils.logging.get_logger( "transformers.tokenization_utils_base") def tokenize_function(examples): with CaptureLogger(tok_logger) as cl: output = tokenizer(examples[text_column_name]) # clm input could be much much longer than block_size if "Token indices sequence length is longer than the" in cl.out: tok_logger.warning( "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model." ) return output with training_args.main_process_first(desc="dataset map tokenization"): tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset", ) if data_args.block_size is None: block_size = tokenizer.model_max_length if block_size > 1024: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " "Picking 1024 instead. You can change that default value by passing --block_size xxx." ) block_size = 1024 else: if data_args.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model" f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(data_args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = { k: sum(examples[k], []) for k in examples.keys() } total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i:i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map with training_args.main_process_first(desc="grouping texts together"): lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc=f"Grouping texts in chunks of {block_size}", ) if training_args.do_train: if "train" not in tokenized_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = lm_datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select( range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in tokenized_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = lm_datasets["validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select( range(data_args.max_eval_samples)) # Initialize our Trainer trainer_class = AdapterTrainer if adapter_args.train_adapter else Trainer trainer = trainer_class( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=tokenizer, # Data collator will default to DataCollatorWithPadding, so we change it. data_collator=default_data_collator, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = (data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len( eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) try: perplexity = math.exp(metrics["eval_loss"]) except OverflowError: perplexity = float("inf") metrics["perplexity"] = perplexity trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) kwargs = { "finetuned_from": model_args.model_name_or_path, "tasks": "text-generation" } if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs[ "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs)
default=16, metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." }, ) @dataclass class IndexHnswArguments: d: int = field( default=768, metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."}, ) m: int = field( default=128, metadata={ "help": "The number of bi-directional links created for every new element during the HNSW index construction." }, ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) parser = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) rag_example_args, processing_args, index_hnsw_args = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: rag_example_args.output_dir = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, AdapterArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args, adapter_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args, adapter_args = parser.parse_args_into_dataclasses( ) if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) try: num_labels = glue_tasks_num_labels[data_args.task_name] output_mode = glue_output_modes[data_args.task_name] except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. # config = AutoConfig.from_pretrained( # model_args.config_name if model_args.config_name else model_args.model_name_or_path, # num_labels=num_labels, # finetuning_task=data_args.task_name, # cache_dir=model_args.cache_dir, # ) tokenizer = BertTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) model = BertForSequenceClassification.from_pretrained( "bert-base-uncased", cache_dir=model_args.cache_dir, num_labels=num_labels) # model = AutoModelWithHeads.from_pretrained( # model_args.model_name_or_path, # from_tf=bool(".ckpt" in model_args.model_name_or_path), # config=config, # cache_dir=model_args.cache_dir, # ) # model.add_classification_head(data_args.task_name, num_labels=num_labels) config = AdapterConfig.load("pfeiffer") model.load_adapter("nli/multinli@ukp", "text_task", config=config) # Setup adapters # setup_task_adapter_training(model, "mnli", adapter_args) # model.train_adapter(["mnli"]) # model.set_active_adapters(["mnli"]) # Get datasets train_dataset = GlueDataset( data_args, tokenizer=tokenizer) if training_args.do_train else None eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev") if training_args.do_eval else None test_dataset = GlueDataset( data_args, tokenizer=tokenizer, mode="test") if training_args.do_predict else None def compute_metrics(p: EvalPrediction) -> Dict: if output_mode == "classification": preds = np.argmax(p.predictions, axis=1) elif output_mode == "regression": preds = np.squeeze(p.predictions) return glue_compute_metrics(data_args.task_name, preds, p.label_ids) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, do_save_full_model=not adapter_args.train_adapter, do_save_adapters=adapter_args.train_adapter, ) # Training if training_args.do_train: trainer.train(model_path=model_args.model_name_or_path if os.path. isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation eval_results = {} if training_args.do_eval: logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) eval_datasets = [eval_dataset] if data_args.task_name == "mnli": mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm") eval_datasets.append( GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="dev")) for eval_dataset in eval_datasets: eval_result = trainer.evaluate(eval_dataset=eval_dataset) output_eval_file = os.path.join( training_args.output_dir, f"eval_results_{eval_dataset.args.task_name}.txt") if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format( eval_dataset.args.task_name)) for key, value in eval_result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) eval_results.update(eval_result) if training_args.do_predict: logging.info("*** Test ***") test_datasets = [test_dataset] if data_args.task_name == "mnli": mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm") test_datasets.append( GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="test")) for test_dataset in test_datasets: predictions = trainer.predict( test_dataset=test_dataset).predictions if output_mode == "classification": predictions = np.argmax(predictions, axis=1) output_test_file = os.path.join( training_args.output_dir, f"test_results_{test_dataset.args.task_name}.txt") if trainer.is_world_master(): with open(output_test_file, "w") as writer: logger.info("***** Test results {} *****".format( test_dataset.args.task_name)) writer.write("index\tprediction\n") for index, item in enumerate(predictions): if output_mode == "regression": writer.write("%d\t%3.3f\n" % (index, item)) else: item = test_dataset.get_labels()[item] writer.write("%d\t%s\n" % (index, item)) return eval_results
def main(): # region Argument parsing # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) output_dir = Path(training_args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) # endregion # region Checkpoints # Detecting last checkpoint. checkpoint = None if len(os.listdir(training_args.output_dir) ) > 0 and not training_args.overwrite_output_dir: if (output_dir / CONFIG_NAME).is_file() and ( output_dir / TF2_WEIGHTS_NAME).is_file(): checkpoint = output_dir logger.info( f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this" " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) else: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to continue regardless.") # endregion # region Logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO) logger.info(f"Training/evaluation parameters {training_args}") # endregion # region Loading data # For CSV/JSON files, this script will use the 'label' field as the label and the 'sentence1' and optionally # 'sentence2' fields as inputs if they exist. If not, the first two fields not named label are used if at least two # columns are provided. Note that the term 'sentence' can be slightly misleading, as they often contain more than # a single grammatical sentence, when the task requires it. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. data_files = { "train": data_args.train_file, "validation": data_args.validation_file, "test": data_args.test_file } data_files = { key: file for key, file in data_files.items() if file is not None } for key in data_files.keys(): logger.info(f"Loading a local file for {key}: {data_files[key]}") if data_args.input_file_extension == "csv": # Loading a dataset from local csv files datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir) else: # Loading a dataset from local json files datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # endregion # region Label preprocessing # If you've passed us a training set, we try to infer your labels from it if "train" in datasets: # By default we assume that if your label column looks like a float then you're doing regression, # and if not then you're doing classification. This is something you may want to change! is_regression = datasets["train"].features["label"].dtype in [ "float32", "float64" ] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique label_list = datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # If you haven't passed a training set, we read label info from the saved model (this happens later) else: num_labels = None label_list = None is_regression = None # endregion # region Load pretrained model and tokenizer # Set seed before initializing model set_seed(training_args.seed) # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if checkpoint is not None: config_path = training_args.output_dir elif model_args.config_name: config_path = model_args.config_name else: config_path = model_args.model_name_or_path if num_labels is not None: config = AutoConfig.from_pretrained( config_path, num_labels=num_labels, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: config = AutoConfig.from_pretrained( config_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) if checkpoint is None: model_path = model_args.model_name_or_path else: model_path = checkpoint model = TFAutoModelForSequenceClassification.from_pretrained( model_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # endregion # region Optimizer, loss and compilation optimizer = tf.keras.optimizers.Adam( learning_rate=training_args.learning_rate, beta_1=training_args.adam_beta1, beta_2=training_args.adam_beta2, epsilon=training_args.adam_epsilon, clipnorm=training_args.max_grad_norm, ) if is_regression: loss = tf.keras.losses.MeanSquaredError() metrics = [] else: loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metrics = ["accuracy"] model.compile(optimizer=optimizer, loss=loss, metrics=metrics) # endregion # region Dataset preprocessing # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. column_names = { col for cols in datasets.column_names.values() for col in cols } non_label_column_names = [name for name in column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" elif "sentence1" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", None else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Ensure that our labels match the model's, if it has some pre-specified if "train" in datasets: if not is_regression and model.config.label2id != PretrainedConfig( num_labels=num_labels).label2id: label_name_to_id = model.config.label2id if list(sorted(label_name_to_id.keys())) == list( sorted(label_list)): label_to_id = label_name_to_id # Use the model's labels else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." "\nIgnoring the model labels as a result.", ) label_to_id = {v: i for i, v in enumerate(label_list)} elif not is_regression: label_to_id = {v: i for i, v in enumerate(label_list)} else: label_to_id = None # Now we've established our label2id, let's overwrite the model config with it. model.config.label2id = label_to_id if model.config.label2id is not None: model.config.id2label = { id: label for label, id in label_to_id.items() } else: model.config.id2label = None else: label_to_id = model.config.label2id # Just load the data from the model if "validation" in datasets and model.config.label2id is not None: validation_label_list = datasets["validation"].unique("label") for val_label in validation_label_list: assert val_label in label_to_id, f"Label {val_label} is in the validation set but not the training set!" def preprocess_function(examples): # Tokenize the texts args = ((examples[sentence1_key], ) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])) result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) # Map labels to IDs if model.config.label2id is not None and "label" in examples: result["label"] = [(model.config.label2id[l] if l != -1 else -1) for l in examples["label"]] return result datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) if "train" in datasets: train_dataset = datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select( range(data_args.max_train_samples)) # Log a few random samples from the training set so we can see that it's working as expected: for index in random.sample(range(len(train_dataset)), 3): logger.info( f"Sample {index} of the training set: {train_dataset[index]}.") if "validation" in datasets: eval_dataset = datasets["validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select( range(data_args.max_eval_samples)) if "test" in datasets: predict_dataset = datasets["test"] if data_args.max_predict_samples is not None: predict_dataset = predict_dataset.select( range(data_args.max_predict_samples)) # endregion # region Training if "train" in datasets: training_dataset = DataSequence( train_dataset, non_label_column_names, batch_size=training_args.per_device_train_batch_size, labels=True) if "validation" in datasets: eval_dataset = DataSequence( eval_dataset, non_label_column_names, batch_size=training_args.per_device_eval_batch_size, labels=True) else: eval_dataset = None callbacks = [ SavePretrainedCallback(output_dir=training_args.output_dir) ] model.fit( training_dataset, validation_data=eval_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks, ) elif "validation" in datasets: # If there's a validation dataset but no training set, just evaluate the metrics eval_dataset = DataSequence( eval_dataset, non_label_column_names, batch_size=training_args.per_device_eval_batch_size, labels=True) logger.info("Computing metrics on validation data...") if is_regression: loss = model.evaluate(eval_dataset) logger.info(f"Loss: {loss:.5f}") else: loss, accuracy = model.evaluate(eval_dataset) logger.info(f"Loss: {loss:.5f}, Accuracy: {accuracy * 100:.4f}%") # endregion # region Prediction if "test" in datasets: logger.info("Doing predictions on Predict dataset...") predict_dataset = DataSequence( predict_dataset, non_label_column_names, batch_size=training_args.per_device_eval_batch_size, labels=False) predictions = model.predict(predict_dataset)["logits"] predictions = np.squeeze(predictions) if is_regression else np.argmax( predictions, axis=1) output_predict_file = os.path.join(training_args.output_dir, "predict_results.txt") with open(output_predict_file, "w") as writer: writer.write("index\tprediction\n") for index, item in enumerate(predictions): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = model.config.id2label[item] writer.write(f"{index}\t{item}\n") logger.info(f"Wrote predictions to {output_predict_file}!")
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. print('===') parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) print(model_args) print(data_args) print(training_args) if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN, ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub # # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this # behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] if extension == "txt": extension = "text" datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning( "You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: print('1============-') tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer) elif model_args.model_name_or_path: print('2============-') tokenizer = DistilBertTokenizerFast.from_pretrained('./dist_tok', lowercase=True, max_len=512) # tokenizer = AutoTokenizer.from_pretrained( # model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer # ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) else: logger.info("Training new model from scratch") model = AutoModelForMaskedLM.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = datasets["train"].column_names else: column_names = datasets["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] if data_args.line_by_line: # When using line_by_line, we just tokenize each nonempty line. padding = "max_length" if data_args.pad_to_max_length else False def tokenize_function(examples): # Remove empty lines examples["text"] = [ line for line in examples["text"] if len(line) > 0 and not line.isspace() ] return tokenizer( examples["text"], padding=padding, truncation=True, max_length=data_args.max_seq_length, # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it # receives the `special_tokens_mask`. return_special_tokens_mask=True, ) tokenized_datasets = datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) else: # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more # efficient when it receives the `special_tokens_mask`. def tokenize_function(examples): return tokenizer(examples[text_column_name], return_special_tokens_mask=True) tokenized_datasets = datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.max_seq_length is None: max_seq_length = tokenizer.model_max_length else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warn( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of # max_seq_length. def group_texts(examples): # Concatenate all texts. concatenated_examples = { k: sum(examples[k], []) for k in examples.keys() } total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. total_length = (total_length // max_seq_length) * max_seq_length # Split by chunks of max_len. result = { k: [ t[i:i + max_seq_length] for i in range(0, total_length, max_seq_length) ] for k, t in concatenated_examples.items() } return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value # might be slower to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map tokenized_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator # This one will take care of randomly masking the tokens. data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm_probability=data_args.mlm_probability) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"] if training_args.do_train else None, eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: model_path = (model_args.model_name_or_path if (model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)) else None) trainer.train(model_path=model_path) trainer.save_model() # Saves the tokenizer too for easy upload # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") eval_output = trainer.evaluate() perplexity = math.exp(eval_output["eval_loss"]) results["perplexity"] = perplexity output_eval_file = os.path.join(training_args.output_dir, "eval_results_mlm.txt") if trainer.is_world_process_zero(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in results.items(): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") return results
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) # Detecting last checkpoint. last_checkpoint = None if os.path.isdir( training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir( training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: train_dataset = datasets.load_dataset("corpora/com_voice_age_corpus", split="train", cache_dir=model_args.cache_dir) eval_dataset = datasets.load_dataset("corpora/com_voice_age_corpus", split="test", cache_dir=model_args.cache_dir) feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16_000, padding_value=0.0, do_normalize=True, return_attention_mask=True) processor = CustomWav2Vec2Processor(feature_extractor=feature_extractor) model = Wav2Vec2CommVoiceAgeModel.from_pretrained( "facebook/wav2vec2-large-xlsr-53", attention_dropout=0.01, hidden_dropout=0.01, feat_proj_dropout=0.0, mask_time_prob=0.05, layerdrop=0.01, gradient_checkpointing=True, ) if model_args.freeze_feature_extractor: model.freeze_feature_extractor() if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range( data_args.max_train_samples)) if data_args.max_val_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_val_samples)) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(batch): start = 0 stop = 10 srate = 16_000 speech_array, sampling_rate = torchaudio.load(batch["file"]) speech_array = speech_array[0].numpy()[:stop * sampling_rate] batch["speech"] = librosa.resample(np.asarray(speech_array), sampling_rate, srate) batch["sampling_rate"] = srate batch["parent"] = batch["label"] return batch train_dataset = train_dataset.map( speech_file_to_array_fn, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) eval_dataset = eval_dataset.map( speech_file_to_array_fn, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(batch): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"])) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." batch["input_values"] = processor( batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values batch["labels"] = batch["parent"] return batch train_dataset = train_dataset.map( prepare_dataset, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=True, num_proc=data_args.preprocessing_num_workers, ) eval_dataset = eval_dataset.map( prepare_dataset, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=True, num_proc=data_args.preprocessing_num_workers, ) from sklearn.metrics import classification_report, confusion_matrix def compute_metrics(pred): label_idx = [0, 1, 2, 3, 4, 5] label_names = [ 'teens', 'twenties', 'thirties', 'fourties', 'fifties', 'sixties-nineties' ] labels = pred.label_ids.argmax(-1) preds = pred.predictions.argmax(-1) acc = accuracy_score(labels, preds) f1 = f1_score(labels, preds, average='macro') report = classification_report(y_true=labels, y_pred=preds, labels=label_idx, target_names=label_names) matrix = confusion_matrix(y_true=labels, y_pred=preds) print(report) print(matrix) wandb.log({ "conf_mat": wandb.plot.confusion_matrix(probs=None, y_true=labels, preds=preds, class_names=label_names) }) wandb.log({ "precision_recall": wandb.plot.pr_curve(y_true=labels, y_probas=pred.predictions, labels=label_names) }) return {"accuracy": acc, "f1_score": f1} wandb.init(name=training_args.output_dir, config=training_args) # Data collator data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) # Initialize our Trainer trainer = CTCTrainer( model=model, data_collator=data_collator, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank): processor.save_pretrained(training_args.output_dir) metrics = train_result.metrics max_train_samples = (data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len( eval_dataset) metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) return results
def predict(): parser = HfArgumentParser(TrainingArguments) args: TrainingArguments = parser.parse_args_into_dataclasses()[0] logger = init_logger("souhu-text-match-2021", "output/logs/") logger.info(f"!!!!!!Test arguments: {args}") # Prepare devices device = torch.device( "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() # args.n_gpu = 1 logger.info(f"device: {device}, n_gpu: {args.n_gpu}") set_seed(args) test_dataloader = create_batch_iter(args, "test", logger) args.output_dir = args.output_dir + sorted(os.listdir( args.output_dir))[-1] # 最新一次训练结果 logger.info(f"model {args.output_dir} predict useed") tokenizer = RoFormerTokenizer.from_pretrained( "/home/zhuminghao/work/model/pt/chinese_roformer_base") # 没保存,所以用原始一样 model = RoFormerForSequenceClassification.from_pretrained(args.output_dir) model.to(device) if args.n_gpu > 1: model = torch.nn.DataParallel(model) model.eval() with torch.no_grad(): test_logits = [] ids = [] for step, batch in enumerate( tqdm(test_dataloader, desc="test", ascii=True)): sources, targets, bt_ids = batch inputs = list(zip(sources, targets)) ids.append(bt_ids) pt_batch = tokenizer(inputs, padding=True, truncation="longest_first", max_length=args.max_seq_length, return_tensors="pt") pt_batch = pt_batch.to(device) outputs = model(**pt_batch, return_dict=True) logits = torch.max(outputs.logits, dim=1)[1] if device.type == "cuda": logits = logits.cpu().numpy().astype(int) else: logits = logits.numpy() test_logits.extend(logits.tolist()) output_path = args.output_dir + "/test.csv" with open(output_path, "w", encoding="utf-8") as fw: for id, label in zip(ids, test_logits): fw.write(",".join([id, str(label)]) + "\n") logger.info(f"output path: {output_path}")
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] datasets = load_dataset(extension, data_files=data_files, field="data") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=True, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForQuestionAnswering.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Tokenizer check: this script requires a fast tokenizer. if not isinstance(tokenizer, PreTrainedTokenizerFast): raise ValueError( "This example script only works for models that have a fast tokenizer. Checkout the big table of models " "at https://huggingface.co/transformers/index.html#bigtable to find the model types that meet this " "requirement" ) # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. if training_args.do_train: column_names = datasets["train"].column_names elif training_args.do_eval: column_names = datasets["validation"].column_names else: column_names = datasets["test"].column_names question_column_name = "question" if "question" in column_names else column_names[0] context_column_name = "context" if "context" in column_names else column_names[1] answer_column_name = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). pad_on_right = tokenizer.padding_side == "right" if data_args.max_seq_length > tokenizer.model_max_length: logger.warn( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Training preprocessing def prepare_train_features(examples): # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length" if data_args.pad_to_max_length else False, ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The offset mappings will give us a map from token to character position in the original context. This will # help us compute the start_positions and end_positions. offset_mapping = tokenized_examples.pop("offset_mapping") # Let's label those examples! tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] for i, offsets in enumerate(offset_mapping): # We will label impossible answers with the index of the CLS token. input_ids = tokenized_examples["input_ids"][i] cls_index = input_ids.index(tokenizer.cls_token_id) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] answers = examples[answer_column_name][sample_index] # If no answers are given, set the cls_index as answer. if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Start/end character index of the answer in the text. start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != (1 if pad_on_right else 0): token_start_index += 1 # End token index of the current span in the text. token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != (1 if pad_on_right else 0): token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Otherwise move the token_start_index and token_end_index to the two ends of the answer. # Note: we could go after the last offset if the answer is the last word (edge case). while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: token_start_index += 1 tokenized_examples["start_positions"].append(token_start_index - 1) while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples["end_positions"].append(token_end_index + 1) return tokenized_examples if training_args.do_train: if "train" not in datasets: raise ValueError("--do_train requires a train dataset") train_dataset = datasets["train"] if data_args.max_train_samples is not None: # We will select sample from whole data if agument is specified train_dataset = train_dataset.select(range(data_args.max_train_samples)) # Create train feature from dataset train_dataset = train_dataset.map( prepare_train_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.max_train_samples is not None: # Number of samples might increase during Feature Creation, We select only specified max samples train_dataset = train_dataset.select(range(data_args.max_train_samples)) # Validation preprocessing def prepare_validation_features(examples): # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length" if data_args.pad_to_max_length else False, ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. tokenized_examples["example_id"] = [] for i in range(len(tokenized_examples["input_ids"])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) context_index = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. tokenized_examples["offset_mapping"][i] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples if training_args.do_eval: if "validation" not in datasets: raise ValueError("--do_eval requires a validation dataset") eval_examples = datasets["validation"] if data_args.max_val_samples is not None: # We will select sample from whole data eval_examples = eval_examples.select(range(data_args.max_val_samples)) # Validation Feature Creation eval_dataset = eval_examples.map( prepare_validation_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.max_val_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again eval_dataset = eval_dataset.select(range(data_args.max_val_samples)) if training_args.do_predict: if "test" not in datasets: raise ValueError("--do_predict requires a test dataset") test_examples = datasets["test"] if data_args.max_test_samples is not None: # We will select sample from whole data test_examples = test_examples.select(range(data_args.max_test_samples)) # Test Feature Creation test_dataset = test_examples.map( prepare_validation_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.max_test_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again test_dataset = test_dataset.select(range(data_args.max_test_samples)) # Data collator # We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data # collator. data_collator = ( default_data_collator if data_args.pad_to_max_length else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None) ) # Post-processing: def post_processing_function(examples, features, predictions, stage="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. predictions = postprocess_qa_predictions( examples=examples, features=features, predictions=predictions, version_2_with_negative=data_args.version_2_with_negative, n_best_size=data_args.n_best_size, max_answer_length=data_args.max_answer_length, null_score_diff_threshold=data_args.null_score_diff_threshold, output_dir=training_args.output_dir, is_world_process_zero=trainer.is_world_process_zero(), prefix=stage, ) # Format the result to the format the metric expects. if data_args.version_2_with_negative: formatted_predictions = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=formatted_predictions, label_ids=references) metric = load_metric("squad_v2" if data_args.version_2_with_negative else "squad") def compute_metrics(p: EvalPrediction): return metric.compute(predictions=p.predictions, references=p.label_ids) # Initialize our Trainer trainer = QuestionAnsweringTrainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, eval_examples=eval_examples if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, post_process_function=post_processing_function, compute_metrics=compute_metrics, ) # Training if training_args.do_train: if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Prediction if training_args.do_predict: logger.info("*** Predict ***") results = trainer.predict(test_dataset, test_examples) metrics = results.metrics max_test_samples = data_args.max_test_samples if data_args.max_test_samples is not None else len(test_dataset) metrics["test_samples"] = min(max_test_samples, len(test_dataset)) trainer.log_metrics("test", metrics) trainer.save_metrics("test", metrics)
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() configure_logger(model_args, training_args) # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" datasets = DatasetDict() datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split= f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split= f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, ) else: # make sure only "validation" and "train" keys remain" datasets = DatasetDict() datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split="validation", cache_dir=model_args.cache_dir, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"{data_args.train_split_name}", cache_dir=model_args.cache_dir, ) # only normalized-inputs-training is supported feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, do_normalize=True) def prepare_dataset(batch): # check that all files have the correct sampling rate batch["speech"], _ = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate) return batch # load audio files into numpy arrays vectorized_datasets = datasets.map( prepare_dataset, num_proc=data_args.preprocessing_num_workers, remove_columns=datasets["train"].column_names) # filter audio files that are too long vectorized_datasets = vectorized_datasets.filter(lambda data: len(data[ "speech"]) < int(data_args.max_duration_in_seconds * feature_extractor. sampling_rate)) def normalize(batch): return feature_extractor(batch["speech"], sampling_rate=feature_extractor.sampling_rate) # normalize and transform to `BatchFeatures` vectorized_datasets = vectorized_datasets.map( normalize, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, remove_columns=vectorized_datasets["train"].column_names, ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 config = Wav2Vec2Config.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, gradient_checkpointing=model_args.gradient_checkpointing, ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and ``config.feat_extract_norm='layer'" ) model = Wav2Vec2ForPreTraining(config) data_collator = DataCollatorForWav2Vec2Pretraining( model=model, feature_extractor=feature_extractor) trainer = Wav2Vec2PreTrainer( model=model, data_collator=data_collator, args=training_args, train_dataset=vectorized_datasets["train"], eval_dataset=vectorized_datasets["validation"], tokenizer=feature_extractor, max_gumbel_temp=model_args.max_gumbel_temperature, min_gumbel_temp=model_args.min_gumbel_temperature, gumbel_temp_decay=model_args.gumbel_temperature_decay, ) trainer.train()
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) if (os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN, ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named # label if at least two columns are provided. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.task_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset("glue", data_args.task_name) elif data_args.train_file.endswith(".csv"): # Loading a dataset from local csv files datasets = load_dataset("csv", data_files={ "train": data_args.train_file, "validation": data_args.validation_file }) else: # Loading a dataset from local json files datasets = load_dataset("json", data_files={ "train": data_args.train_file, "validation": data_args.validation_file }) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels if data_args.task_name is not None: is_regression = data_args.task_name == "stsb" if not is_regression: label_list = datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 else: # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = datasets["train"].features["label"].dtype in [ "float32", "float64" ] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique label_list = datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # Preprocessing the datasets if data_args.task_name is not None: sentence1_key, sentence2_key = task_to_keys[data_args.task_name] else: # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. non_label_column_names = [ name for name in datasets["train"].column_names if name != "label" ] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Padding strategy if data_args.pad_to_max_length: padding = "max_length" max_length = data_args.max_seq_length else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False max_length = None # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if (model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id and data_args.task_name is not None and is_regression): # Some have all caps in their config, some don't. label_name_to_id = { k.lower(): v for k, v in model.config.label2id.items() } if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)): label_to_id = { i: label_name_to_id[label_list[i]] for i in range(num_labels) } else: logger.warn( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." "\nIgnoring the model labels as a result.", ) elif data_args.task_name is None: label_to_id = {v: i for i, v in enumerate(label_list)} def preprocess_function(examples): # Tokenize the texts args = ((examples[sentence1_key], ) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])) result = tokenizer(*args, padding=padding, max_length=max_length, truncation=True) # Map labels to IDs (not necessary for GLUE tasks) if label_to_id is not None and "label" in examples: result["label"] = [label_to_id[l] for l in examples["label"]] return result datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) train_dataset = datasets["train"] eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"] if data_args.task_name is not None: test_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info( f"Sample {index} of the training set: {train_dataset[index]}.") # Get the metric function if data_args.task_name is not None: metric = load_metric("glue", data_args.task_name) # TODO: When datasets metrics include regular accuracy, make an else here and remove special branch from # compute_metrics # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(p: EvalPrediction): preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) if data_args.task_name is not None: result = metric.compute(predictions=preds, references=p.label_ids) if len(result) > 1: result["combined_score"] = np.mean(list( result.values())).item() return result elif is_regression: return {"mse": ((preds - p.label_ids)**2).mean().item()} else: return { "accuracy": (preds == p.label_ids).astype(np.float32).mean().item() } # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=tokenizer, # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. data_collator=default_data_collator if data_args.pad_to_max_length else None, ) # Training if training_args.do_train: trainer.train(model_path=model_args.model_name_or_path if os.path. isdir(model_args.model_name_or_path) else None) trainer.save_model() # Saves the tokenizer too for easy upload # Evaluation eval_results = {} if training_args.do_eval: logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] eval_datasets = [eval_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") eval_datasets.append(datasets["validation_mismatched"]) for eval_dataset, task in zip(eval_datasets, tasks): eval_result = trainer.evaluate(eval_dataset=eval_dataset) output_eval_file = os.path.join(training_args.output_dir, f"eval_results_{task}.txt") if trainer.is_world_process_zero(): with open(output_eval_file, "w") as writer: logger.info(f"***** Eval results {task} *****") for key, value in eval_result.items(): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") print("") eval_results.update(eval_result) # Output prediction if data_args.write_predictions: # eval_dataset.remove_columns_("label") output_eval_file_1 = os.path.join(training_args.output_dir, f"eval_outputs_{task}.txt") logger.info( "Writing predictions to {}.".format(output_eval_file_1)) predictions = trainer.predict( test_dataset=eval_dataset).predictions predictions = np.squeeze( predictions) if is_regression else np.argmax(predictions, axis=1) if trainer.is_world_process_zero(): with open(output_eval_file_1, "w") as writer: logger.info(f"***** Eval results {task} *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = label_list[item] writer.write(f"{index}\t{item}\n") # Compute P/R/F1 scores import json from sklearn.metrics import precision_recall_fscore_support all_labels = [] with open(data_args.validation_file) as f_label: for line in f_label: item = json.loads(line.strip()) label = item["label"] all_labels.append(label) # import pdb; pdb.set_trace() n_results = precision_recall_fscore_support(all_labels, predictions, average=None, labels=[0, 1]) print("") logger.info("P/R/F1 Scores: {}".format(n_results)) if training_args.do_predict: logger.info("*** Test ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] test_datasets = [test_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") test_datasets.append(datasets["test_mismatched"]) for test_dataset, task in zip(test_datasets, tasks): # Removing the `label` columns because it contains -1 and Trainer won't like that. test_dataset.remove_columns_("label") predictions = trainer.predict( test_dataset=test_dataset).predictions predictions = np.squeeze( predictions) if is_regression else np.argmax(predictions, axis=1) output_test_file = os.path.join(training_args.output_dir, f"test_results_{task}.txt") if trainer.is_world_process_zero(): with open(output_test_file, "w") as writer: logger.info(f"***** Test results {task} *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = label_list[item] writer.write(f"{index}\t{item}\n") return eval_results
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) # Detecting last checkpoint. last_checkpoint = None if os.path.isdir( training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir( training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # 1. First, let's load the dataset raw_datasets = DatasetDict() task_name = data_args.task lang_id = data_args.language if task_name is None: raise ValueError( "Set --task should be set to '<xtreme_s_task>' (e.g. 'fleurs-asr', 'mls', 'covost2', 'minds14') " ) if lang_id is None: raise ValueError( "Set --language should be set to the language id of the sub dataset " "config to be used (e.g. 'pl', 'en.tr', 'fr-FR') or 'all'" " for multi-lingual fine-tuning.") if data_args.language_group is not None: if data_args.task != "fleurs-asr": raise ValueError( "--language_group should only be used with --task=fleurs-asr") if data_args.language != "all": raise ValueError( "--language_group should only be used with --language=all") if data_args.target_column_name is None: target_column_name = TASK_TO_TARGET_COLUMN_NAME[task_name] else: target_column_name = data_args.target_column_name # here we differentiate between tasks with text as the target and classification tasks is_text_target = target_column_name in ("transcription", "translation") config_name = ".".join([task_name.split("-")[0], lang_id]) if training_args.do_train: raw_datasets["train"] = load_dataset( data_args.dataset_name, config_name, split=data_args.train_split_name, use_auth_token=data_args.use_auth_token, cache_dir=model_args.cache_dir, ) if data_args.audio_column_name not in raw_datasets[ "train"].column_names: raise ValueError( f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'." " Make sure to set `--audio_column_name` to the correct audio column - one of" f" {', '.join(raw_datasets['train'].column_names)}.") if target_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--target_column_name {target_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--target_column_name` to the correct text column - one of " f"{', '.join(raw_datasets['train'].column_names)}.") if data_args.max_train_samples is not None: raw_datasets["train"] = raw_datasets["train"].select( range(data_args.max_train_samples)) if training_args.do_eval: raw_datasets["eval"] = load_dataset( data_args.dataset_name, config_name, split=data_args.eval_split_name, use_auth_token=data_args.use_auth_token, cache_dir=model_args.cache_dir, ) if data_args.max_eval_samples is not None: raw_datasets["eval"] = raw_datasets["eval"].select( range(data_args.max_eval_samples)) if training_args.do_predict: raw_datasets["predict"] = load_dataset( data_args.dataset_name, config_name, split=data_args.predict_split_name, use_auth_token=data_args.use_auth_token, cache_dir=model_args.cache_dir, ) if data_args.max_predict_samples is not None: raw_datasets["predict"] = raw_datasets["predict"].select( range(data_args.max_predict_samples)) lang_list = next(iter(raw_datasets.values())).features["lang_id"].names if not is_text_target: label_list = next(iter( raw_datasets.values())).features[target_column_name].names num_labels = len(label_list) num_workers = data_args.preprocessing_num_workers lang_group = data_args.language_group if lang_group is not None: with training_args.main_process_first(desc="language group filter"): lang_group_id = next(iter( raw_datasets.values())).features["lang_group_id"].str2int( lang_group) raw_datasets = raw_datasets.filter( lambda lang_group: lang_group == lang_group_id, num_proc=num_workers, input_columns=["lang_group_id"], ) # 2. We remove some special characters from the datasets # that make training complicated and do not help in transcribing the speech # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic # that could be easily picked up by the model chars_to_ignore_regex = (f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None) def remove_special_characters(batch): if chars_to_ignore_regex is not None: batch["target_text"] = re.sub( chars_to_ignore_regex, "", batch[target_column_name]).lower() + " " else: batch["target_text"] = batch[target_column_name].lower() + " " return batch if is_text_target: with training_args.main_process_first( desc="dataset map special characters removal"): raw_datasets = raw_datasets.map( remove_special_characters, remove_columns=[target_column_name], desc="remove special characters from datasets", ) # save special tokens for tokenizer word_delimiter_token = data_args.word_delimiter_token unk_token = data_args.unk_token pad_token = data_args.pad_token # 3. Next, let's load the config as we might need it to create # the tokenizer config = AutoConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token) if is_text_target: # 4. (Optional, for ASR and translation) If no tokenizer file is defined, # we create the vocabulary of the model by extracting all unique characters from # the training and evaluation datasets # We need to make sure that only first rank saves vocabulary # make sure all processes wait until vocab is created tokenizer_name_or_path = model_args.tokenizer_name_or_path tokenizer_kwargs = {} if tokenizer_name_or_path is None: # save vocab in training output dir tokenizer_name_or_path = training_args.output_dir vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json") with training_args.main_process_first(): if training_args.overwrite_output_dir and os.path.isfile( vocab_file): os.remove(vocab_file) with training_args.main_process_first( desc="dataset map vocabulary creation"): if not os.path.isfile(vocab_file): os.makedirs(tokenizer_name_or_path, exist_ok=True) vocab_dict = create_vocabulary_from_data( raw_datasets, word_delimiter_token=word_delimiter_token, unk_token=unk_token, pad_token=pad_token, ) # save vocab dict to be loaded into tokenizer with open(vocab_file, "w") as file: json.dump(vocab_dict, file) # if tokenizer has just been created # it is defined by `tokenizer_class` if present in config else by `model_type` if not config.is_encoder_decoder: tokenizer_kwargs = { "config": config if config.tokenizer_class is not None else None, "tokenizer_type": config.model_type if config.tokenizer_class is None else None, "unk_token": unk_token, "pad_token": pad_token, "word_delimiter_token": word_delimiter_token, } else: tokenizer_kwargs = {} # 5. Now we can instantiate the feature extractor, tokenizer and model # Note for distributed training, the .from_pretrained methods guarantee that only # one local process can concurrently download model & vocab. # load feature_extractor and tokenizer if is_text_target: tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path, use_auth_token=data_args.use_auth_token, **tokenizer_kwargs, ) feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token) # adapt config # (speech translation requires pre-configured seq2seq models) if task_name != "covost2": config.update({ "feat_proj_dropout": model_args.feat_proj_dropout, "attention_dropout": model_args.attention_dropout, "hidden_dropout": model_args.hidden_dropout, "final_dropout": model_args.final_dropout, "mask_time_prob": model_args.mask_time_prob, "mask_time_length": model_args.mask_time_length, "mask_feature_prob": model_args.mask_feature_prob, "mask_feature_length": model_args.mask_feature_length, "gradient_checkpointing": training_args.gradient_checkpointing, "layerdrop": model_args.layerdrop, "ctc_zero_infinity": model_args.ctc_zero_infinity, "ctc_loss_reduction": model_args.ctc_loss_reduction, "activation_dropout": model_args.activation_dropout, }) if training_args.do_train: if is_text_target: config.pad_token_id = tokenizer.pad_token_id config.vocab_size = len(tokenizer) else: label_to_id = {v: i for i, v in enumerate(label_list)} config.label2id = label_to_id config.id2label = { id: label for label, id in label_to_id.items() } config.num_labels = num_labels # create model if target_column_name == "transcription": model = AutoModelForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, config=config, use_auth_token=data_args.use_auth_token, ) elif config.is_encoder_decoder: model = AutoModelForSpeechSeq2Seq.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, config=config, use_auth_token=data_args.use_auth_token, ) if model.config.decoder_start_token_id is None: raise ValueError( "Make sure that `config.decoder_start_token_id` is correctly defined" ) else: model = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, config=config, use_auth_token=data_args.use_auth_token, ) # freeze encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() # 6. Now we preprocess the datasets including loading the audio, resampling and normalization # Thankfully, `datasets` takes care of automatically loading and resampling the audio, # so that we just need to set the correct target sampling rate and normalize the input # via the `feature_extractor` # make sure that dataset decodes audio with correct sampling rate dataset_sampling_rate = next(iter(raw_datasets.values())).features[ data_args.audio_column_name].sampling_rate if dataset_sampling_rate != feature_extractor.sampling_rate: raw_datasets = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio( sampling_rate=feature_extractor.sampling_rate)) # derive max & min input length for sample rate & max duration max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate audio_column_name = data_args.audio_column_name # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification phoneme_language = data_args.phoneme_language # Preprocessing the datasets. # We need to read the audio files as arrays and tokenize the targets. def prepare_dataset(batch): # load audio sample = batch[audio_column_name] inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) batch["input_values"] = inputs.input_values[0] batch["length"] = len(batch["input_values"]) # encode targets additional_kwargs = {} if phoneme_language is not None: additional_kwargs["phonemizer_lang"] = phoneme_language if is_text_target: batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids else: batch["labels"] = batch[target_column_name] batch["lang"] = batch["lang_id"] return batch with training_args.main_process_first(desc="dataset map preprocessing"): vectorized_datasets = raw_datasets.map( prepare_dataset, remove_columns=next(iter(raw_datasets.values())).column_names, num_proc=num_workers, desc="preprocess datasets", ) if training_args.do_train: def is_audio_in_length_range(length): return length > min_input_length and length < max_input_length # filter data that is shorter than min_input_length vectorized_datasets["train"] = vectorized_datasets["train"].filter( is_audio_in_length_range, num_proc=num_workers, input_columns=["length"], ) # 7. Next, we can prepare for the training step. # Let's use the appropriate XTREME-S evaluation metric, # instantiate a data collator and the trainer # Define evaluation metrics during training, *i.e.* word error rate, character error rate eval_metric = load_metric("xtreme_s", task_name) # for large datasets it is advised to run the preprocessing on a # single machine first with ``args.preprocessing_only`` since there will mostly likely # be a timeout when running the script in distributed mode. # In a second step ``args.preprocessing_only`` can then be set to `False` to load the # cached dataset if data_args.preprocessing_only: logger.info( f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}" ) return def asr_logits_argmax(logits, labels): return logits.argmax(dim=-1) def compute_asr_metric(pred): pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id pred_str = tokenizer.batch_decode(pred.predictions) # we do not want to group tokens when computing the metrics label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False) metric = eval_metric.compute(predictions=pred_str, references=label_str) return metric def compute_classification_metric(pred): pred_ids = np.argmax(pred.predictions, axis=1) metric = eval_metric.compute(predictions=pred_ids, references=pred.label_ids) return metric # Now save everything to be able to create a single processor later if is_main_process(training_args.local_rank): # save feature extractor, tokenizer and config feature_extractor.save_pretrained(training_args.output_dir) if is_text_target: tokenizer.save_pretrained(training_args.output_dir) config.save_pretrained(training_args.output_dir) # wait until configs are saved in the main process before loading the processor if training_args.local_rank != -1: torch.distributed.barrier() if is_text_target: processor = AutoProcessor.from_pretrained(training_args.output_dir) else: processor = AutoFeatureExtractor.from_pretrained( training_args.output_dir) # Instantiate custom data collator data_collator = SpeechDataCollatorWithPadding(processor=processor, pad_labels=is_text_target) # Initialize Trainer if target_column_name == "translation": trainer = Seq2SeqTrainer( model=model, data_collator=data_collator, args=training_args, preprocess_logits_for_metrics=asr_logits_argmax if training_args.predict_with_generate else None, compute_metrics=compute_asr_metric if training_args.predict_with_generate else None, train_dataset=vectorized_datasets["train"] if training_args.do_train else None, eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, tokenizer=feature_extractor, ) else: trainer = Trainer( model=model, data_collator=data_collator, args=training_args, preprocess_logits_for_metrics=asr_logits_argmax if is_text_target else None, compute_metrics=compute_asr_metric if is_text_target else compute_classification_metric, train_dataset=vectorized_datasets["train"] if training_args.do_train else None, eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, tokenizer=feature_extractor, ) # 8. Finally, we can start training # Training if training_args.do_train: # use last checkpoint if exist if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() metrics = train_result.metrics max_train_samples = (data_args.max_train_samples if data_args.max_train_samples is not None else len(vectorized_datasets["train"])) metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation on the test set results = {} if training_args.do_predict: logger.info( f"*** Evaluating on the `{data_args.predict_split_name}` set ***") if data_args.per_lang_metrics: # separate the `test` dataset into language-specific subsets and compute metrics for each of them metrics = {} average_metrics = defaultdict(list) for lang_id in range(len(lang_list)): lang_name = lang_list[lang_id] with training_args.main_process_first( desc="per-language dataset filter"): lang_dataset = vectorized_datasets["predict"].filter( lambda lang: lang == lang_id, num_proc=num_workers, input_columns=["lang"], ) lang_metrics = trainer.evaluate(lang_dataset) redundant_metrics = [ "eval_runtime", "eval_samples_per_second", "eval_steps_per_second", "eval_epoch" ] for metric_name, value in lang_metrics.items(): average_metrics[metric_name].append(value) if metric_name not in redundant_metrics: metrics[f"{metric_name}_{lang_name}"] = value for metric_name, value in average_metrics.items(): metrics[metric_name] = np.mean(value) else: metrics = trainer.evaluate(vectorized_datasets["predict"]) max_predict_samples = (data_args.max_predict_samples if data_args.max_predict_samples is not None else len(vectorized_datasets["predict"])) metrics["predict_samples"] = min(max_predict_samples, len(vectorized_datasets["predict"])) # make sure that the `predict` metrics end up in the log history for the model card trainer.log(OrderedDict(sorted(metrics.items()))) trainer.log_metrics("predict", metrics) trainer.save_metrics("predict", metrics) # Write model card and (optionally) push to hub kwargs = { "finetuned_from": model_args.model_name_or_path, "tasks": task_name, "tags": [task_name, data_args.dataset_name], "dataset_args": (f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:" f" {data_args.eval_split_name}, Predict split: {data_args.predict_split_name}" ), "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}", "language": data_args.language, } if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) return results