Exemple #1
0
def test_parking(image):
    global STEP

    if not TURTLE.is_occupied():
        if STEP == 1:
            TURTLE.go_forward(0.5)
        elif STEP == 2:
            TURTLE.set_speed("normal")
            TURTLE.go_turn("right", 2)
        elif STEP == 3:
            TURTLE.go_forward(0.7)
            # for stopping for a while
            rospy.sleep(rospy.Duration(0.5))
        elif STEP == 4:
            TURTLE.go_backward(1)
        elif STEP == 5:
            TURTLE.go_turn_backward(1.2)
        elif STEP == 6:
            TURTLE.go_forward(2)
        elif STEP == 7:
            TURTLE.set_speed("fast")
            TURTLE.set_speed_smooth("normal")
            # TURTLE.set_speed("normal")
        else:
            return
        STEP += 1
Exemple #2
0
def process_eye(image):
    """ process the Eye System """
    global TRACKING
    global TURNING_TO

    # if TRACKING is not "front":
    #     return
    # rospy.loginfo('\n[PROC] frontcam image received')
    # rospy.loginfo(EYE.is_occupied())

    if not SCHEDULER.is_frontcam_occupied():
        info = EYE.see(image)
        # rospy.loginfo("\n[PROC] info: " + str(info))
        rospy.Timer(rospy.Duration(0.1), EYE.release_occupied, oneshot=True)

        if TRACKING is not "front":
            return
        if info is None:
            pass
        else:
            center = info["center"]
            TURTLE.set_speed('normal')

            if info["state"] is "straight":
                # TURTLE.set_speed('normal')
                pass
            elif info["state"] is "lost_track":
                rospy.loginfo("\n[PROC] state: lost_track")
                TURNING_TO = info["turning_to"]
                TURTLE.go_forward(1)
                rospy.Timer(rospy.Duration(1),
                            track_fish,
                            oneshot=True,
                            reset=True)
            # elif info["state"] is "turning":
            #     TURNING_TO = info["turning_to"]
            #     track_fish()
            # rospy.Timer(rospy.Duration(5.5), track_fish, oneshot=True, reset=True)

            if center > 500:
                TURTLE.set_angular(0.27)
                rospy.loginfo("\n[PROC] [!] turning to right at " +
                              str(center))
                return
            if center < -500:
                TURTLE.set_angular(-0.27)
                rospy.loginfo("\n[PROC] [!] turning to left at " + str(center))
                return
            if center > 60:
                TURTLE.set_angular(0.12)
                # TURTLE.set_angular(0.08)
                rospy.loginfo("\n[PROC] turning to right at " + str(center))
                return
            elif center < -60:
                TURTLE.set_angular(-0.12)
                # TURTLE.set_angular(-0.08)
                rospy.loginfo("\n[PROC] turning to left at " + str(center))
                return
        TURTLE.set_angular_smooth(0)
    return
Exemple #3
0
def initialize():
    """ initialize processing """
    EYE.calibrate()
    TURTLE.set_speed('normal')
    if CURRENT_STATE is "traffic_light":
        TURTLE.disable()
    else:
        TURTLE.enable()
Exemple #4
0
def test_frontcam(image):
    """ process the frontcam image """
    # print("image is subscribed")
    if not SCHEDULER.is_frontcam_enable():
        return

    if not EYE.is_front_occupied():

        STATE = SCHEDULER.get_state()

        if STATE == "traffic_light":
            signal = is_light_green(image)
            rospy.logdebug("[PROC] is_light_green: {}"
                           .format(signal))
            if signal:
                SCHEDULER.set_state("to_intersection")
                TURTLE.enable()
                TURTLE.set_speed("fast")
                TURTLE.set_speed_smooth("normal")

        elif STATE == "to_intersection":
            signal = check_left_right_sign(image)
            rospy.logdebug("[PROC] left or right: {}"
                           .format(signal))
            if signal == "right":
                SCHEDULER.set_state("intersection_right")
            elif signal == "left":
                SCHEDULER.set_state("intersection_left")
        if SCHEDULER.debug_option["show_center_slope"]:
            SCHEDULER.check_time("frontcam", min=0.5)
        info = EYE.see_front(image)
        if info is None:
            return

        # rospy.logdebug("[PROC] test_frontcam: state {}  {}".format(
        #     info["state"], info["horizon_position"]))
        # if (info["horizon_position"] < 150):
        #     TURTLE.set_speed("fast")
        #     TURTLE.set_speed_smooth("normal")

        if (info["state"] == "turning") and (info["turning_to"] is not "None"):
            rospy.logdebug(
                "[PROC] turn off for 1.5s")
            rospy.Timer(rospy.Duration(1.5),
                        EYE.release_front_occupied, oneshot=True)
        else:
            rospy.Timer(rospy.Duration(0.1),
                        EYE.release_front_occupied, oneshot=True)
Exemple #5
0
def process_acceleration(info):
    if not info:
        return

    horizon = info['horizon_position']
    center = abs(info['center'])

    if EYE.get_front_state() == "straight":
        if horizon < 200 and center < 50:
            TURTLE.boost()
            if SCHEDULER.debug_option["show_front_info"]:
                rospy.logwarn("[PROC] Boosting")
        elif horizon < 260 and center < 50:
            TURTLE.set_speed_smooth('little')
    if horizon > 320 or info['state'] == 'turning':
        TURTLE.set_speed('normal')
    elif horizon > 260:
        TURTLE.set_speed_smooth('normal')
Exemple #6
0
def process_lidar(lidar_data):
    """ process the lidar image """
    if not SCHEDULER.is_lidar_enable():
        return
    if SCHEDULER.is_lidar_occupied() or TURTLE.is_occupied():
        return

    state = SCHEDULER.get_state()
    if SCHEDULER.debug_option["show_timer"] and (state != "construction"):
        SCHEDULER.check_time("lidar", min=0.4, stop_when_delay=False)

    set_lidar_values(lidar_data)
    state = SCHEDULER.get_state()

    front = get_object_distance("front")
    if (front < 0.15) and (front > 0):
        TURTLE.stop()
        return

    # if STEP >= 10:
    #     process_parking()
    # else:
    #     process_construction()
    # return

    if state is "intersection_left":
        left = get_object_distance("left")
        if (left > 0) and (left < 0.50):
            TURTLE.set_speed("slow")
            SCHEDULER.set_state("to_construction")
    elif state is "to_construction":
        rospy.Timer(rospy.Duration(0.15),
                    SCHEDULER.release_lidar_occupied,
                    oneshot=True)
        process_construction_new()
    elif state is "construction":
        process_construction_new()
    elif state is "parking":
        process_parking()
    elif state is "tunnel":
        process_tunnel()
Exemple #7
0
def test_block_escaping(lidar_data):
    global STEP

    set_lidar_values(lidar_data)

    if not TURTLE.is_occupied():
        if STEP == 1:
            TURTLE.set_speed("normal")
            # TURTLE.go_turn("right", 1, angular=2, speed=0.15)
            front = get_object_distance("front")
            rospy.logdebug("front: {}".format(front))
            if front == 0 or front > 0.40:
                return
            else:
                TURTLE.turn(0.15, -6)
        elif STEP == 2:
            TURTLE.set_speed("normal")
            frontleft = get_object_distance("frontleft")
            rospy.logdebug("frontleft: {}".format(frontleft))
            if frontleft == 0 or frontleft < 0.40:
                return
            else:
                rospy.sleep(rospy.Duration(1.8))
                TURTLE.turn(0.13, 6)
        elif STEP == 3:
            TURTLE.set_speed("slow")
        else:
            return
        STEP += 1
    else:
        print("IS OCCUPIED!")
Exemple #8
0
def initialize():
    EYE.calibrate()
    TURTLE.set_speed('normal')
Exemple #9
0
def process_parking():
    """ process parking state """
    global STEP

    # if TURTLE.is_occupied():
    #     return

    if STEP == 10:
        frontleft = get_object_distance("frontleft")
        frontright = get_object_distance("frontright")
        left = get_object_distance("left")
        right = get_object_distance("right")

        if SCHEDULER.debug_option["show_parking_lidar"]:
            rospy.logdebug("frontright: {:.2f}  frontleft: {:.2f}".format(
                frontright, frontleft))

        if (frontleft > 0) and (frontleft < 1.0):
            STEP = 11
            rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
        elif (frontright > 0) and (frontright < 1.0):
            STEP = 12
            rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
        if (left > 0) and (left < 0.5):
            STEP = 13
            rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
        elif (right > 0) and (right < 0.5):
            STEP = 14
            rospy.logdebug("[PROC] STEP changed to {}".format(STEP))

        # NOTE: return is needed to prevent executing STEP += 1
        return

    elif STEP == 11:
        SCHEDULER.disable_cams()
        TURTLE.set_speed("normal")
        TURTLE.go_forward(2.5)
        TURTLE.go_turn("right", 2)
        STEP = 15
        rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
        return

    elif STEP == 12:
        # Edit HERE
        return

    elif STEP == 13:
        # Edit HERE
        return

    elif STEP == 14:
        SCHEDULER.disable_cams()
        TURTLE.set_speed("normal")
        TURTLE.go_turn("left", angular=1.8, duration=1.2)
        STEP = 15
        rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
        return

    elif STEP == 15:
        # Edit HERE
        return

    elif STEP == 16:
        # Edit HERE
        return

    elif STEP == 17:
        # Edit HERE
        return

    elif STEP == 18:
        # Edit HERE
        return

    elif STEP == 19:
        TURTLE.set_speed("fast")
        SCHEDULER.set_state("zigzag")
    else:
        return
    STEP += 1
Exemple #10
0
def process_subcam(image):
    """ process the subcam image """
    start = timeit.default_timer()

    global LINE_BASE
    global TRACKING
    global TURNING_TO
    global TEST_ANGULAR

    if TRACKING is not "fish":
        return

    if not SCHEDULER.is_subcam_occupied():
        # if True:
        rospy.Timer(rospy.Duration(0.04),
                    SCHEDULER.release_subcam_occupied,
                    oneshot=True)
        info = EYE.see_sub(image)
        # rospy.Timer(rospy.Duration(0.04), SCHEDULER.release_subcam_occupied, oneshot=True, reset=True)

        if info is None:
            print("NO INFO!")
            # TURTLE.set_angular_smooth(0.12)
            # pass
        else:
            # TURTLE.set_speed('slow')
            # if info["slope"]:
            #     TURTLE.set_speed_by_percentage(-abs(info["slope"] / 6))
            # else:
            TURTLE.set_speed('normal')

            center_x, center_y, point_x, point_y = (
                value for value in info["line_center"])
            gap_x = abs(point_x - center_x)
            rospy.loginfo("\n[PROC] info: \n" + str(info))
            rospy.loginfo("\nGAP: " + str(gap_x))

            if info["slope"] > 0:
                slope = math.sqrt(0.5 * info["slope"])
            else:
                slope = -math.sqrt(-0.5 * info["slope"])

            if not info["has_line"]:
                if gap_x > 100:
                    if TEST_ONCE:
                        TURTLE.set_angular(-1.75)
                        TURTLE.set_angular_smooth(-0.1)
                    else:
                        TURTLE.set_angular_smooth(-0.1)
                elif gap_x < 0:
                    if TEST_ONCE:
                        TURTLE.set_angular(1.75)
                        TURTLE.set_angular_smooth(0.2)
                    else:
                        TURTLE.set_angular_smooth(0.2)
                TEST_ONCE = False
            # elif gap_x > 100:
            #     TURTLE.set_angular(-0.15 * info["slope"] * 4)
            #     TURTLE.set_angular_smooth(-0.1)
            else:
                TEST_ONCE = True
                if gap_x > 100:
                    TURTLE.set_angular(-0.15 + slope)
                    TURTLE.set_angular_smooth(-0.1)
                elif gap_x > 30:
                    TURTLE.set_angular(0)
                else:
                    # if slope < 0:
                    #     TURTLE.set_angular(-0.25 + slope * 1.5)
                    #     TURTLE.set_angular_smooth(-0.1)
                    # else:
                    rospy.loginfo("LOST")
                    TURTLE.set_angular(0.45 + slope)
                    TURTLE.set_angular_smooth(0.1)

        # SCHEDULER.release_subcam_occupied()
        end = timeit.default_timer()
        # print("sub l: {:d}".format(info["left"]) + "   s: {:.01f}".format(slope)
        #     + "  time: {:.02f}".format(end - start))
        print("\nTIME: {:.02f}".format(end - start))
Exemple #11
0
def process_lidar(lidar_data):
    """ process the lidar data """
    global CURRENT_STATE
    global IS_TURNING
    global STATE_CONSTRUCTION
    global DIRECTION
    global TURN_COUNT
    global ENABLE_LIDAR
    global ENABLE_FRONT

    if not ENABLE_LIDAR:
        return

    set_lidar_values(lidar_data)

    if CURRENT_STATE is "construction":
        if not TURTLE.is_settable():
            return

        rospy.loginfo(
            str(STATE_CONSTRUCTION) + "    " +
            str(get_object_distance('left')) + "   " +
            str(get_object_distance('front')))

        if STATE_CONSTRUCTION == "searching":
            distance = get_object_distance("left")
            if distance == 0:
                return
            elif distance < 0.35:
                STATE_CONSTRUCTION = "ready"
            elif distance > 0.35 and distance < 1:
                STATE_CONSTRUCTION = "start"
                DIRECTION = "right"
                TURTLE.enable_fish = False
                TURTLE.turn("left", 2.03, True)
            return

        elif STATE_CONSTRUCTION == "ready":
            distance = get_object_distance("front")
            if distance == 0:
                return
            elif distance < 0.5:
                # TURTLE.change_line("left", 0.5)
                DIRECTION = "left"
                TURTLE.enable_fish = False
                TURTLE.change_line("left", 1)
                # TODO: FIX change_line()
                STATE_CONSTRUCTION = "start"
            return

        elif STATE_CONSTRUCTION == "start":
            if not IS_TURNING:
                if DIRECTION == 'right':
                    distance = get_object_distance('leftside')
                else:
                    distance = get_object_distance('rightside')

                rospy.loginfo('\n[PROC] distance on ' + DIRECTION + ' : ' +
                              str(distance))

                if distance == 0:
                    return
                elif distance < 0.35:
                    TURTLE.turn(DIRECTION, 1.2)
                    IS_TURNING = True
                    # TURTLE.change_line(DIRECTION, 1)
                    reverse_direction()
                    TURN_COUNT = TURN_COUNT + 1
                else:
                    TURTLE.set_speed('normal')
            else:
                if DIRECTION == 'right':
                    distance = get_object_distance('frontleft')
                else:
                    distance = get_object_distance('frontright')

                # rospy.loginfo('\n[PROC] turning distance on ' +
                # DIRECTION + ' : ' + str(distance))
                if distance > 0.34 or distance == 0:
                    reverse_direction()
                    TURN_COUNT = TURN_COUNT + 1
                    TURTLE.turn(DIRECTION, 1.2)
                    IS_TURNING = False

            if TURN_COUNT == 3:
                TURTLE.turn("left", 1.5, True)
                STATE_CONSTRUCTION = "ending"

        elif STATE_CONSTRUCTION == "ending":
            TURTLE.go_forward(1.0)
            CURRENT_STATE = "before_parking"
            print_state()
            # rospy.signal_shutdown("\n[PROC] Shutting down...")

    if CURRENT_STATE is "blocking":
        ENABLE_FRONT = False
        process_blocking()
    if CURRENT_STATE is "tunnel":
        process_tunnel2()
Exemple #12
0
#!/usr/bin/env python3

import rospy
# from std_msgs.msg import String
from sensor_msgs.msg import CompressedImage, LaserScan
import processor
from constants import PATH_RASPICAM, PATH_USBCAM, PATH_LIDAR, PATH_GALAPAGOS_STATE
from turtlebot import TURTLE
from scheduler import SCHEDULER  # ! not used in contest

TURTLE.set_speed("normal")
# TURTLE.disable()
# TURTLE.set_speed("fast")
# TURTLE.set_speed_smooth("normal")

# SCHEDULER.set_state("traffic_light")
SCHEDULER.set_state("default")
# SCHEDULER.set_state("to_intersection")
# SCHEDULER.set_state("construction")
# SCHEDULER.set_state("parking")

rospy.Subscriber(PATH_USBCAM,
                 CompressedImage,
                 processor.process_subcam,
                 queue_size=1)
# rospy.Subscriber(PATH_LIDAR, LaserScan,
#  processor.test_block_escaping, queue_size=1)
# rospy.Subscriber(PATH_LIDAR, LaserScan,
#  processor.process_lidar, queue_size=1)
# rospy.Subscriber(PATH_RASPICAM, CompressedImage,
#                  processor.process_frontcam, queue_size=1)
Exemple #13
0
#!/usr/bin/env python3

import rospy
from sensor_msgs.msg import CompressedImage, LaserScan

import processor
from constants import PATH_RASPICAM, PATH_USBCAM, PATH_LIDAR
from turtlebot import TURTLE
from scheduler import SCHEDULER

TURTLE.set_speed("fast")
TURTLE.set_speed_smooth("normal")

SCHEDULER.set_state("default")
# SCHEDULER.set_state("parking")
# SCHEDULER.set_state("construction")

rospy.Subscriber(PATH_USBCAM,
                 CompressedImage,
                 processor.process_subcam,
                 queue_size=1)
rospy.Subscriber(PATH_LIDAR, LaserScan, processor.process_lidar, queue_size=1)
rospy.Subscriber(PATH_RASPICAM,
                 CompressedImage,
                 processor.process_frontcam,
                 queue_size=1)
Exemple #14
0
def process_lidar(lidar_data):
    global CURRENT_STATE
    if CURRENT_STATE is not "construction":
        return
    """ process the lidar data """
    # global IS_IN_TUNNEL
    # global DISTANCE_FRONT
    # global HAS_OBJECT_IN_20
    global IS_TURNING
    # global SEEN_PARKING_SIGN
    # global SEEN_LEFT_SIGN
    global STATE_CONSTRUCTION
    global DIRECTION
    global TURN_COUNT

    if TURN_COUNT == 3:
        CURRENT_STATE = "parking"
        rospy.signal_shutdown("\n[PROC] Shutting down...")
    set_lidar_values(lidar_data)

    if not TURTLE.is_settable():
        return

    rospy.loginfo(
        str(STATE_CONSTRUCTION) + "    " + str(get_object_distance('left')) +
        "   " + str(get_object_distance('rightside')))

    if STATE_CONSTRUCTION == "searching":
        distance = get_object_distance("left")
        if distance == 0:
            return
        elif distance < 0.35:
            STATE_CONSTRUCTION = "ready"
        elif distance > 0.5 and distance < 0.9:
            STATE_CONSTRUCTION = "start"
            DIRECTION = "right"
            TURTLE.enable_fish = False
            TURTLE.turn("left", 2.03, True)
        return

    elif STATE_CONSTRUCTION == "ready":
        distance = get_object_distance("front")
        if distance == 0:
            return
        elif distance < 1:
            STATE_CONSTRUCTION = "fitting"
            DIRECTION = "left"
            TURTLE.enable_fish = False
            # TURTLE.set_angular(0)
            TURTLE.turn("right", 0.5, True)
        return

    elif STATE_CONSTRUCTION == "fitting":
        TURTLE.turn("right", 0.5, True)
        STATE_CONSTRUCTION = "start"

    elif STATE_CONSTRUCTION == "start":
        if not IS_TURNING:
            if DIRECTION == 'right':
                distance = get_object_distance('leftside')
            else:
                distance = get_object_distance('rightside')

            rospy.loginfo('\n[PROC] distance on ' + DIRECTION + ' : ' +
                          str(distance))
            if distance == 0:
                return
            elif distance < 0.35:
                TURTLE.turn(DIRECTION, 1.2)
                IS_TURNING = True
            else:
                TURTLE.set_speed('normal')
        else:
            if DIRECTION == 'right':
                distance = get_object_distance('frontleft')
            else:
                distance = get_object_distance('frontright')

            # rospy.loginfo('\n[PROC] turning distance on ' +
            # DIRECTION + ' : ' + str(distance))
            if distance > 0.34 or distance == 0:
                reverse_direction()
                TURTLE.turn(DIRECTION, 1.2)
                TURN_COUNT = TURN_COUNT + 1
                IS_TURNING = False
Exemple #15
0
def process_construction():
    """ process construction state """
    global STEP
    global NUM_OBSTRUCTION
    global LANE_TO

    if TURTLE.is_occupied():
        return

    if STEP == 0:
        leftside = get_object_distance("leftside")
        left = get_object_distance("left")
        if leftside > 0:
            rospy.logdebug("[PROC] LIDAR LEFTSIDE: {}".format(
                leftside))
        if (leftside > 0) and (leftside < 0.40):
            STEP = 1
            rospy.logdebug("[PROC] STEP changed to {}".format(STEP))

            SCHEDULER.disable_cams()
            rospy.loginfo("[PROC] construction state started.")
            TURTLE.go_forward(3.5)
            rospy.sleep(rospy.Duration(0.5))
            return
        else:
            return
        # elif (left > 0) and (left < 1.5):
        #     STEP = 2
        #     rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
        #     return

        # rospy.sleep(rospy.Duration(2))
    elif STEP == 1:
        TURTLE.set_speed("normal")
        TURTLE.set_speed_smooth("slow")
        left = get_object_distance("left")
        if left > 0:
            rospy.logdebug("[PROC] LIDAR LEFT: {}".format(
                left))
        if (left < 0.50) or (left > 1.5):
            return
        else:
            STEP = 3
            rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
            return
    elif STEP == 2:
        # TODO: write code for first left lane
        pass
    elif STEP == 3:
        TURTLE.go_turn("left", speed=0.11)
        LANE_TO = "left"
    elif STEP == 4:
        TURTLE.set_speed("normal")
        reverse_lane()
        biased = get_object_distance(LANE_TO + "_biased")
        if biased > 0:
            rospy.logdebug("[PROC] LIDAR {:s}_BIASED: {}"
                           .format(LANE_TO, biased))
        reverse_lane()

        if (biased == 0) or (biased > 0.30):
            return

        TURTLE.go_turn(LANE_TO, duration=0.5, angular=4.2)
        TURTLE.set_speed("normal")
        # TURTLE.set_speed("fast")
        # if LANE_TO is "left":
        #     TURTLE.turn(0.13, 1.3, consuming_time=1.5)
        # else:
        #     TURTLE.turn(0.13, -1.3, consuming_time=1.5)
        rospy.sleep(rospy.Duration(2.2))
        reverse_lane()

    elif STEP == 5:
        TURTLE.go_turn(LANE_TO, duration=0.7, angular=4.2)
        TURTLE.set_speed("normal")
        # TURTLE.set_speed("fast")
        # if LANE_TO is "left":
        #     TURTLE.turn(0.13, 1.3, consuming_time=1.5)
        # else:
        #     TURTLE.turn(0.13, -1.3, consuming_time=1.5)

        NUM_OBSTRUCTION += 1
        if NUM_OBSTRUCTION < 2:
            STEP = 4
            return

    elif STEP == 6:
        TURTLE.go_forward(1)
        rospy.sleep(rospy.Duration(0.6))
    elif STEP == 7:
        TURTLE.go_turn("left", duration=0.8, angular=3)
    elif STEP == 8:
        TURTLE.set_speed("fast")
        TURTLE.set_speed_smooth("normal")
        TURTLE.go_forward(5)
        rospy.sleep(rospy.Duration(0.5))
    elif STEP == 9:
        # NOTE: turn to parking step
        STEP = 10
        SCHEDULER.set_state("parking")
    else:
        return
    STEP += 1
    rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
Exemple #16
0
def process_parking():
    """ process parking state """
    global STEP

    # if TURTLE.is_occupied():
    #     return

    if STEP == 10:
        frontleft = get_object_distance("frontleft")
        frontright = get_object_distance("frontright")

        if SCHEDULER.debug_option["show_parking_lidar"]:
            rospy.logdebug("front: {:.2f}  frontleft: {:.2f}".format(
                get_object_distance("front"), get_object_distance("frontleft")
            ))

        if (frontleft > 0) and (frontleft < 0.5):
            STEP = 11
            rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
        elif (frontright > 0) and (frontright < 0.5):
            STEP = 12
            rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
        # NOTE: return is needed to prevent executing STEP += 1
        return

    elif STEP == 11:
        SCHEDULER.disable_cams()
        TURTLE.set_speed("normal")
        TURTLE.go_turn("right", 2)
        STEP = 13
        rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
        return

    elif STEP == 12:
        SCHEDULER.disable_cams()
        TURTLE.set_speed("normal")
        TURTLE.go_turn("left", 2)
        STEP = 13
        rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
        return

    elif STEP == 13:
        TURTLE.go_forward(0.7)
        # for stopping for a while
        rospy.sleep(rospy.Duration(0.5))

    elif STEP == 14:
        TURTLE.go_backward(1.0)
    elif STEP == 15:
        TURTLE.go_turn_backward(1.1)
    elif STEP == 16:
        TURTLE.set_speed("normal")
        TURTLE.go_forward(1)
    elif STEP == 17:
        # TURTLE.set_speed("fast")
        # TURTLE.set_speed_smooth("normal")
        TURTLE.set_speed("normal")
        SCHEDULER.set_state("zigzag")
    else:
        return
    STEP += 1
Exemple #17
0
def process_tunnel():
    """ process tunnel state """

    if TURTLE.is_occupied():
        return

    if STEP == 30:
        # TODO: turn to 45 degrees
        pass
    elif STEP == 31:
        TURTLE.set_speed("normal")
        # TURTLE.go_turn("right", 1, angular=2, speed=0.15)
        front = get_object_distance("front")
        left = get_object_distance("left")
        right = get_object_distance("right")
        rospy.logdebug(
            "front: {}  left: {}  right: {}".format(front, left, right))
        if left < 0.20:
            # TODO: turn to variable degrees
            TURTLE.turn(0.15, -6)
            STEP = 34
            return
        elif right < 0.20:
            # TODO: turn to variable degrees
            TURTLE.turn(-0.15, -6)
            STEP = 35
            return
        elif front == 0 or front > 0.40:
            return
        else:
            TURTLE.turn(0.15, -6)
            TURTLE.turn(0.15, -6)
    elif STEP == 32:
        TURTLE.set_speed("normal")
        frontleft = get_object_distance("frontleft")
        rospy.logdebug("frontleft: {}".format(frontleft))
        if frontleft == 0 or frontleft < 0.40:
            return
        else:
            rospy.sleep(rospy.Duration(1.8))
            TURTLE.turn(0.13, 6)
    elif STEP == 33:
        TURTLE.set_speed("normal")
        frontleft = get_object_distance("frontleft")
        rospy.logdebug("frontleft: {}".format(frontleft))
        if frontleft == 0 or frontleft < 0.40:
            return
        else:
            STEP = 31
            return
    elif STEP == 34:
        front = get_object_distance("front")
        if front == 0 or front > 0.20:
            return
        # TODO : turn to left
        TURTLE.turn(-0.3, -6)
    elif STEP == 35:
        # NOTE: ending step
        TURTLE.set_speed("normal")
    else:
        return
    STEP += 1
Exemple #18
0
def process_construction_new():
    """ process construction state """
    global STEP
    global NUM_OBSTRUCTION
    global LANE_TO
    global BUF_ANGULAR
    global BUF_SIZE

    if TURTLE.is_occupied():
        return

    if STEP == 0:
        # TURTLE.set_speed("normal")
        leftside = get_object_distance("leftside")
        left = get_object_distance("left")

        if leftside > 0:
            rospy.logdebug("[PROC] LIDAR LEFTSIDE: {}".format(leftside))

        if (leftside > 0) and (leftside < 0.50) and (left > 1.00):
            EYE.check_yellow = False
            SCHEDULER.set_state("construction")
            rospy.loginfo("[PROC] construction state started.")

            STEP = 1
            rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
            TURTLE.go_forward(3.5)
            return
        else:
            return

    elif STEP == 1:
        TURTLE.set_speed("normal")
        TURTLE.set_speed_smooth("slow")
        TURTLE.turn(0.13, 0)

        left = get_object_distance("left")
        leftback = get_object_distance("leftback")
        rospy.logdebug("[PROC] LIDAR LEFT: {:.2f} LEFTBACK: {:.2f}}".format(
            left, leftback))
        if (left > 0) and (left < 0.50):
            return
        else:
            TURTLE.set_speed("slow")
            if (leftback > 0.5):
                # TURTLE.go_forward(2.5)
                STEP = 3
                rospy.logdebug("[PROC] STEP changed to {}".format(STEP))
            return

    elif STEP == 2:
        # TODO: write code for first left lane
        pass

    elif STEP == 3:
        TURTLE.set_speed("normal")
        TURTLE.set_speed_smooth("stop")
        front = get_object_distance("front")
        right_biased = get_object_distance("right_biased")

        if (front > 1.0) and (right_biased < 1.0) and (right_biased > 0.0):
            print("passed", front, right_biased)
            print("BUF_SIZE: ", BUF_SIZE)
            BUF_SIZE = 15
            reset_buffer()
            TURTLE.set_speed_smooth("slow")
            pass
        elif front * right_biased == 0:
            return
        else:
            TURTLE.set_speed("stop")
            print("turning...", front, right_biased)
            TURTLE.turn(0.13, 1.0)
            # rospy.sleep(rospy.Duration(5.0))
            return
        # TURTLE.go_turn("left")

    elif STEP == 4:
        right_biased = get_object_distance("right_biased")
        left_biased = get_object_distance("left_biased")
        front = get_object_distance("front")

        if right_biased == 0.0:
            right_biased = 3.0
        if left_biased == 0.0:
            left_biased = 3.0
        if front == 0.0:
            front = 3.0
        elif front < 0.2:
            TURTLE.set_speed_smooth("stop")
        else:
            TURTLE.set_speed_smooth("slow")

        min_distance = min(right_biased, left_biased)

        degree = 0
        if (front < 1.0):
            degree += max(pow(1.0 - front, 2), 0)
        else:
            degree += max(0.5 - min_distance, 0) * 3
        # if min_distance < 0.5:
        # degree += max((0.5 - min_distance), 0) * 1.5
        # elif (min_distance > 1.0) and (min_distance < 3.0):
        # degree = 0.2

        if (left_biased == min_distance) and (min_distance < 0.5):
            degree *= -1

        # max_distance = max(right_biased, left_biased)
        # if (left_biased == max_distance):
        #     degree *= -1

        # degree = 0
        # if min_distance > 0 and min_distance < 0.5:
        #     if right_biased > left_biased:
        #         degree = (0.5 - min_distance) * (-7)
        #         LANE_TO = "right"
        #     elif right_biased < left_biased:
        #         degree = (0.5 - min_distance) * (7)
        #         LANE_TO = "left"

        # if is_left_crashable():
        #     degree = -1.7
        # elif is_right_crashable():
        #     degree = 1.7

        degree *= 3
        degree = max(min(degree, 2.0), -2.0)
        BUF_ANGULAR.append(degree)
        degree -= BUF_ANGULAR.pop(0)
        print("BUF_ANGULAR:", BUF_ANGULAR)
        # if degree != 0:
        #     BUF_ANGULAR.append(degree)

        # elif len(BUF_ANGULAR) > 9:
        #     STEP = 5

        if SCHEDULER.debug_option["show_construction_lidar"]:
            rospy.logdebug(
                "[PROC] r_based: {:.2f}  l_based: {:.2f}  min: {:.2f}  front: {:.2f}  deg: {:.2f}"
                .format(right_biased, left_biased, min_distance, front,
                        degree))

        TURTLE.turn(0.13, degree)
        return

    elif STEP == 5:
        print("[StEP 5]")
        if len(BUF_ANGULAR) > 0:
            TURTLE.turn(0.13, -BUF_ANGULAR.pop(0))
            return
        else:
            front = get_object_distance("front")
            print(front)
            # if (front > 0) and (front < 1.0):
            #     if LANE_TO == "right":
            #         TURTLE.turn(0.13, 0.8)
            #     else:
            #         TURTLE.turn(0.13, -0.8)
            #     return
            # else:
            if NUM_OBSTRUCTION < 1:
                NUM_OBSTRUCTION += 1
                STEP = 4
                return

    elif STEP == 6:
        TURTLE.go_forward(1)
        TURTLE.set_speed("normal")
        TURTLE.go_turn("left")
        TURTLE.set_speed("normal")
        TURTLE.set_speed("fast")
        TURTLE.set_speed_smooth("normal")
        TURTLE.go_forward(5)

        STEP = 10
        SCHEDULER.set_state("parking")
        BUF_SIZE = 3
        reset_buffer()
        return

    STEP += 1
    rospy.logdebug("[PROC] STEP changed to {}".format(STEP))