def _process_dir(self, dir_path, json_path, relabel):
        if osp.exists(json_path):
            print("=> {} generated before, awesome!".format(json_path))
            split = read_json(json_path)
            return split['tracklets'], split['num_tracklets'], split['num_pids'], split['num_imgs_per_tracklet']

        print("=> Automatically generating split (might take a while for the first time, have a coffe)")
        pdirs = glob.glob(osp.join(dir_path, '*')) # avoid .DS_Store
        print("Processing {} with {} person identities".format(dir_path, len(pdirs)))

        pid_container = set()
        for pdir in pdirs:
            pid = int(osp.basename(pdir))
            pid_container.add(pid)
        pid2label = {pid:label for label, pid in enumerate(pid_container)}

        tracklets = []
        num_imgs_per_tracklet = []
        for pdir in pdirs:
            pid = int(osp.basename(pdir))
            if relabel: pid = pid2label[pid]
            tdirs = glob.glob(osp.join(pdir, '*'))
            for tdir in tdirs:
                raw_img_paths = glob.glob(osp.join(tdir, '*.jpg'))
                num_imgs = len(raw_img_paths)

                if num_imgs < self.min_seq_len:
                    continue

                num_imgs_per_tracklet.append(num_imgs)
                img_paths = []
                for img_idx in range(num_imgs):
                    # some tracklet starts from 0002 instead of 0001
                    img_idx_name = 'F' + str(img_idx+1).zfill(4)
                    res = glob.glob(osp.join(tdir, '*' + img_idx_name + '*.jpg'))
                    if len(res) == 0:
                        print("Warn: index name {} in {} is missing, jump to next".format(img_idx_name, tdir))
                        continue
                    img_paths.append(res[0])
                img_name = osp.basename(img_paths[0])
                camid = int(img_name[5]) - 1 # index-0
                img_paths = tuple(img_paths)
                tracklets.append((img_paths, pid, camid))

        num_pids = len(pid_container)
        num_tracklets = len(tracklets)

        print("Saving split to {}".format(json_path))
        split_dict = {
            'tracklets': tracklets,
            'num_tracklets': num_tracklets,
            'num_pids': num_pids,
            'num_imgs_per_tracklet': num_imgs_per_tracklet,
        }
        write_json(split_dict, json_path)

        return tracklets, num_tracklets, num_pids, num_imgs_per_tracklet
    def __init__(self, root='data', split_id=0, **kwargs):
        self.dataset_dir = osp.join(root, self.dataset_dir)
        self.dataset_url = 'http://www.eecs.qmul.ac.uk/~xiatian/iLIDS-VID/iLIDS-VID.tar'
        self.data_dir = osp.join(self.dataset_dir, 'i-LIDS-VID')
        self.split_dir = osp.join(self.dataset_dir, 'train-test people splits')
        self.split_mat_path = osp.join(self.split_dir, 'train_test_splits_ilidsvid.mat')
        self.split_path = osp.join(self.dataset_dir, 'splits.json')
        self.cam_1_path = osp.join(self.dataset_dir, 'i-LIDS-VID/sequences/cam1')
        self.cam_2_path = osp.join(self.dataset_dir, 'i-LIDS-VID/sequences/cam2')

        self._download_data()
        self._check_before_run()

        self._prepare_split()
        splits = read_json(self.split_path)
        if split_id >= len(splits):
            raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1))
        split = splits[split_id]
        train_dirs, test_dirs = split['train'], split['test']
        print("# train identites: {}, # test identites {}".format(len(train_dirs), len(test_dirs)))

        train, num_train_tracklets, num_train_pids, num_imgs_train = \
          self._process_data(train_dirs, cam1=True, cam2=True)
        query, num_query_tracklets, num_query_pids, num_imgs_query = \
          self._process_data(test_dirs, cam1=True, cam2=False)
        gallery, num_gallery_tracklets, num_gallery_pids, num_imgs_gallery = \
          self._process_data(test_dirs, cam1=False, cam2=True)

        num_imgs_per_tracklet = num_imgs_train + num_imgs_query + num_imgs_gallery
        min_num = np.min(num_imgs_per_tracklet)
        max_num = np.max(num_imgs_per_tracklet)
        avg_num = np.mean(num_imgs_per_tracklet)

        num_total_pids = num_train_pids + num_query_pids
        num_total_tracklets = num_train_tracklets + num_query_tracklets + num_gallery_tracklets

        print("=> iLIDS-VID loaded")
        print("Dataset statistics:")
        print("  ------------------------------")
        print("  subset   | # ids | # tracklets")
        print("  ------------------------------")
        print("  train    | {:5d} | {:8d}".format(num_train_pids, num_train_tracklets))
        print("  query    | {:5d} | {:8d}".format(num_query_pids, num_query_tracklets))
        print("  gallery  | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_tracklets))
        print("  ------------------------------")
        print("  total    | {:5d} | {:8d}".format(num_total_pids, num_total_tracklets))
        print("  number of images per tracklet: {} ~ {}, average {:.1f}".format(min_num, max_num, avg_num))
        print("  ------------------------------")

        self.train = train
        self.query = query
        self.gallery = gallery

        self.num_train_pids = num_train_pids
        self.num_query_pids = num_query_pids
        self.num_gallery_pids = num_gallery_pids
    def __init__(self, root='data', split_id=0, min_seq_len=0, **kwargs):
        self.dataset_dir = osp.join(root, self.dataset_dir)
        self.dataset_url = 'https://files.icg.tugraz.at/f/6ab7e8ce8f/?raw=1'
        self.split_path = osp.join(self.dataset_dir, 'splits_prid2011.json')
        self.cam_a_path = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot', 'cam_a')
        self.cam_b_path = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot', 'cam_b')

        self._check_before_run()
        splits = read_json(self.split_path)
        if split_id >=  len(splits):
            raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1))
        split = splits[split_id]
        train_dirs, test_dirs = split['train'], split['test']
        print("# train identites: {}, # test identites {}".format(len(train_dirs), len(test_dirs)))

        train, num_train_tracklets, num_train_pids, num_imgs_train = \
          self._process_data(train_dirs, cam1=True, cam2=True)
        query, num_query_tracklets, num_query_pids, num_imgs_query = \
          self._process_data(test_dirs, cam1=True, cam2=False)
        gallery, num_gallery_tracklets, num_gallery_pids, num_imgs_gallery = \
          self._process_data(test_dirs, cam1=False, cam2=True)

        num_imgs_per_tracklet = num_imgs_train + num_imgs_query + num_imgs_gallery
        min_num = np.min(num_imgs_per_tracklet)
        max_num = np.max(num_imgs_per_tracklet)
        avg_num = np.mean(num_imgs_per_tracklet)

        num_total_pids = num_train_pids + num_query_pids
        num_total_tracklets = num_train_tracklets + num_query_tracklets + num_gallery_tracklets

        print("=> PRID-2011 loaded")
        print("Dataset statistics:")
        print("  ------------------------------")
        print("  subset   | # ids | # tracklets")
        print("  ------------------------------")
        print("  train    | {:5d} | {:8d}".format(num_train_pids, num_train_tracklets))
        print("  query    | {:5d} | {:8d}".format(num_query_pids, num_query_tracklets))
        print("  gallery  | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_tracklets))
        print("  ------------------------------")
        print("  total    | {:5d} | {:8d}".format(num_total_pids, num_total_tracklets))
        print("  number of images per tracklet: {} ~ {}, average {:.1f}".format(min_num, max_num, avg_num))
        print("  ------------------------------")

        self.train = train
        self.query = query
        self.gallery = gallery

        self.num_train_pids = num_train_pids
        self.num_query_pids = num_query_pids
        self.num_gallery_pids = num_gallery_pids
Exemple #4
0
    def __init__(self, root='./data/kitti'):
        super(Kitti, self).__init__()
        self.root = root
        self.raw_split = 'velodyne_raw'
        self.gt_split = 'groundtruth'
        self.train_split = 'train'
        self.val_split = 'val'
        self.val_selected_split = 'depth_selection/val_selection_cropped'
        self.test_dir = 'depth_selection/test_depth_completion_anonymous/velodyne_raw'

        self.splits = osp.join(self.root, 'splits.json')
        if not osp.isfile(self.splits):
            self._split_dataset()
        imgset = read_json(self.splits)
        self.trainset = {'raw': imgset['train_raw'], 'gt': imgset['train_gt']}
        self.valset = {'raw': imgset['val_raw'], 'gt': imgset['val_gt']}
        self.valset_select = {
            'raw': imgset['val_selected_raw'],
            'gt': imgset['val_selected_gt']
        }
        self.testset = {'raw': imgset['test_raw']}
    def __init__(self, root='data', split_id=0, cuhk03_labeled=False, cuhk03_classic_split=False, **kwargs):
        self.dataset_dir = osp.join(root, self.dataset_dir)
        self.data_dir = osp.join(self.dataset_dir, 'cuhk03_release')
        self.raw_mat_path = osp.join(self.data_dir, 'cuhk-03.mat')
        
        self.imgs_detected_dir = osp.join(self.dataset_dir, 'images_detected')
        self.imgs_labeled_dir = osp.join(self.dataset_dir, 'images_labeled')
        
        self.split_classic_det_json_path = osp.join(self.dataset_dir, 'splits_classic_detected.json')
        self.split_classic_lab_json_path = osp.join(self.dataset_dir, 'splits_classic_labeled.json')
        
        self.split_new_det_json_path = osp.join(self.dataset_dir, 'splits_new_detected.json')
        self.split_new_lab_json_path = osp.join(self.dataset_dir, 'splits_new_labeled.json')
        
        self.split_new_det_mat_path = osp.join(self.dataset_dir, 'cuhk03_new_protocol_config_detected.mat')
        self.split_new_lab_mat_path = osp.join(self.dataset_dir, 'cuhk03_new_protocol_config_labeled.mat')

        self._check_before_run()
        self._preprocess()

        if cuhk03_labeled:
            image_type = 'labeled'
            split_path = self.split_classic_lab_json_path if cuhk03_classic_split else self.split_new_lab_json_path
        else:
            image_type = 'detected'
            split_path = self.split_classic_det_json_path if cuhk03_classic_split else self.split_new_det_json_path

        splits = read_json(split_path)
        assert split_id < len(splits), "Condition split_id ({}) < len(splits) ({}) is false".format(split_id, len(splits))
        split = splits[split_id]
        print("Split index = {}".format(split_id))

        train = split['train']
        query = split['query']
        gallery = split['gallery']

        num_train_pids = split['num_train_pids']
        num_query_pids = split['num_query_pids']
        num_gallery_pids = split['num_gallery_pids']
        num_total_pids = num_train_pids + num_query_pids

        num_train_imgs = split['num_train_imgs']
        num_query_imgs = split['num_query_imgs']
        num_gallery_imgs = split['num_gallery_imgs']
        num_total_imgs = num_train_imgs + num_query_imgs

        print("=> CUHK03 ({}) loaded".format(image_type))
        print("Dataset statistics:")
        print("  ------------------------------")
        print("  subset   | # ids | # images")
        print("  ------------------------------")
        print("  train    | {:5d} | {:8d}".format(num_train_pids, num_train_imgs))
        print("  query    | {:5d} | {:8d}".format(num_query_pids, num_query_imgs))
        print("  gallery  | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs))
        print("  ------------------------------")
        print("  total    | {:5d} | {:8d}".format(num_total_pids, num_total_imgs))
        print("  ------------------------------")

        self.train = train
        self.query = query
        self.gallery = gallery

        self.num_train_pids = num_train_pids
        self.num_query_pids = num_query_pids
        self.num_gallery_pids = num_gallery_pids