def _process_dir(self, dir_path, json_path, relabel): if osp.exists(json_path): print("=> {} generated before, awesome!".format(json_path)) split = read_json(json_path) return split['tracklets'], split['num_tracklets'], split['num_pids'], split['num_imgs_per_tracklet'] print("=> Automatically generating split (might take a while for the first time, have a coffe)") pdirs = glob.glob(osp.join(dir_path, '*')) # avoid .DS_Store print("Processing {} with {} person identities".format(dir_path, len(pdirs))) pid_container = set() for pdir in pdirs: pid = int(osp.basename(pdir)) pid_container.add(pid) pid2label = {pid:label for label, pid in enumerate(pid_container)} tracklets = [] num_imgs_per_tracklet = [] for pdir in pdirs: pid = int(osp.basename(pdir)) if relabel: pid = pid2label[pid] tdirs = glob.glob(osp.join(pdir, '*')) for tdir in tdirs: raw_img_paths = glob.glob(osp.join(tdir, '*.jpg')) num_imgs = len(raw_img_paths) if num_imgs < self.min_seq_len: continue num_imgs_per_tracklet.append(num_imgs) img_paths = [] for img_idx in range(num_imgs): # some tracklet starts from 0002 instead of 0001 img_idx_name = 'F' + str(img_idx+1).zfill(4) res = glob.glob(osp.join(tdir, '*' + img_idx_name + '*.jpg')) if len(res) == 0: print("Warn: index name {} in {} is missing, jump to next".format(img_idx_name, tdir)) continue img_paths.append(res[0]) img_name = osp.basename(img_paths[0]) camid = int(img_name[5]) - 1 # index-0 img_paths = tuple(img_paths) tracklets.append((img_paths, pid, camid)) num_pids = len(pid_container) num_tracklets = len(tracklets) print("Saving split to {}".format(json_path)) split_dict = { 'tracklets': tracklets, 'num_tracklets': num_tracklets, 'num_pids': num_pids, 'num_imgs_per_tracklet': num_imgs_per_tracklet, } write_json(split_dict, json_path) return tracklets, num_tracklets, num_pids, num_imgs_per_tracklet
def __init__(self, root='data', split_id=0, **kwargs): self.dataset_dir = osp.join(root, self.dataset_dir) self.dataset_url = 'http://www.eecs.qmul.ac.uk/~xiatian/iLIDS-VID/iLIDS-VID.tar' self.data_dir = osp.join(self.dataset_dir, 'i-LIDS-VID') self.split_dir = osp.join(self.dataset_dir, 'train-test people splits') self.split_mat_path = osp.join(self.split_dir, 'train_test_splits_ilidsvid.mat') self.split_path = osp.join(self.dataset_dir, 'splits.json') self.cam_1_path = osp.join(self.dataset_dir, 'i-LIDS-VID/sequences/cam1') self.cam_2_path = osp.join(self.dataset_dir, 'i-LIDS-VID/sequences/cam2') self._download_data() self._check_before_run() self._prepare_split() splits = read_json(self.split_path) if split_id >= len(splits): raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1)) split = splits[split_id] train_dirs, test_dirs = split['train'], split['test'] print("# train identites: {}, # test identites {}".format(len(train_dirs), len(test_dirs))) train, num_train_tracklets, num_train_pids, num_imgs_train = \ self._process_data(train_dirs, cam1=True, cam2=True) query, num_query_tracklets, num_query_pids, num_imgs_query = \ self._process_data(test_dirs, cam1=True, cam2=False) gallery, num_gallery_tracklets, num_gallery_pids, num_imgs_gallery = \ self._process_data(test_dirs, cam1=False, cam2=True) num_imgs_per_tracklet = num_imgs_train + num_imgs_query + num_imgs_gallery min_num = np.min(num_imgs_per_tracklet) max_num = np.max(num_imgs_per_tracklet) avg_num = np.mean(num_imgs_per_tracklet) num_total_pids = num_train_pids + num_query_pids num_total_tracklets = num_train_tracklets + num_query_tracklets + num_gallery_tracklets print("=> iLIDS-VID loaded") print("Dataset statistics:") print(" ------------------------------") print(" subset | # ids | # tracklets") print(" ------------------------------") print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_tracklets)) print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_tracklets)) print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_tracklets)) print(" ------------------------------") print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_tracklets)) print(" number of images per tracklet: {} ~ {}, average {:.1f}".format(min_num, max_num, avg_num)) print(" ------------------------------") self.train = train self.query = query self.gallery = gallery self.num_train_pids = num_train_pids self.num_query_pids = num_query_pids self.num_gallery_pids = num_gallery_pids
def __init__(self, root='data', split_id=0, min_seq_len=0, **kwargs): self.dataset_dir = osp.join(root, self.dataset_dir) self.dataset_url = 'https://files.icg.tugraz.at/f/6ab7e8ce8f/?raw=1' self.split_path = osp.join(self.dataset_dir, 'splits_prid2011.json') self.cam_a_path = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot', 'cam_a') self.cam_b_path = osp.join(self.dataset_dir, 'prid_2011', 'multi_shot', 'cam_b') self._check_before_run() splits = read_json(self.split_path) if split_id >= len(splits): raise ValueError("split_id exceeds range, received {}, but expected between 0 and {}".format(split_id, len(splits)-1)) split = splits[split_id] train_dirs, test_dirs = split['train'], split['test'] print("# train identites: {}, # test identites {}".format(len(train_dirs), len(test_dirs))) train, num_train_tracklets, num_train_pids, num_imgs_train = \ self._process_data(train_dirs, cam1=True, cam2=True) query, num_query_tracklets, num_query_pids, num_imgs_query = \ self._process_data(test_dirs, cam1=True, cam2=False) gallery, num_gallery_tracklets, num_gallery_pids, num_imgs_gallery = \ self._process_data(test_dirs, cam1=False, cam2=True) num_imgs_per_tracklet = num_imgs_train + num_imgs_query + num_imgs_gallery min_num = np.min(num_imgs_per_tracklet) max_num = np.max(num_imgs_per_tracklet) avg_num = np.mean(num_imgs_per_tracklet) num_total_pids = num_train_pids + num_query_pids num_total_tracklets = num_train_tracklets + num_query_tracklets + num_gallery_tracklets print("=> PRID-2011 loaded") print("Dataset statistics:") print(" ------------------------------") print(" subset | # ids | # tracklets") print(" ------------------------------") print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_tracklets)) print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_tracklets)) print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_tracklets)) print(" ------------------------------") print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_tracklets)) print(" number of images per tracklet: {} ~ {}, average {:.1f}".format(min_num, max_num, avg_num)) print(" ------------------------------") self.train = train self.query = query self.gallery = gallery self.num_train_pids = num_train_pids self.num_query_pids = num_query_pids self.num_gallery_pids = num_gallery_pids
def __init__(self, root='./data/kitti'): super(Kitti, self).__init__() self.root = root self.raw_split = 'velodyne_raw' self.gt_split = 'groundtruth' self.train_split = 'train' self.val_split = 'val' self.val_selected_split = 'depth_selection/val_selection_cropped' self.test_dir = 'depth_selection/test_depth_completion_anonymous/velodyne_raw' self.splits = osp.join(self.root, 'splits.json') if not osp.isfile(self.splits): self._split_dataset() imgset = read_json(self.splits) self.trainset = {'raw': imgset['train_raw'], 'gt': imgset['train_gt']} self.valset = {'raw': imgset['val_raw'], 'gt': imgset['val_gt']} self.valset_select = { 'raw': imgset['val_selected_raw'], 'gt': imgset['val_selected_gt'] } self.testset = {'raw': imgset['test_raw']}
def __init__(self, root='data', split_id=0, cuhk03_labeled=False, cuhk03_classic_split=False, **kwargs): self.dataset_dir = osp.join(root, self.dataset_dir) self.data_dir = osp.join(self.dataset_dir, 'cuhk03_release') self.raw_mat_path = osp.join(self.data_dir, 'cuhk-03.mat') self.imgs_detected_dir = osp.join(self.dataset_dir, 'images_detected') self.imgs_labeled_dir = osp.join(self.dataset_dir, 'images_labeled') self.split_classic_det_json_path = osp.join(self.dataset_dir, 'splits_classic_detected.json') self.split_classic_lab_json_path = osp.join(self.dataset_dir, 'splits_classic_labeled.json') self.split_new_det_json_path = osp.join(self.dataset_dir, 'splits_new_detected.json') self.split_new_lab_json_path = osp.join(self.dataset_dir, 'splits_new_labeled.json') self.split_new_det_mat_path = osp.join(self.dataset_dir, 'cuhk03_new_protocol_config_detected.mat') self.split_new_lab_mat_path = osp.join(self.dataset_dir, 'cuhk03_new_protocol_config_labeled.mat') self._check_before_run() self._preprocess() if cuhk03_labeled: image_type = 'labeled' split_path = self.split_classic_lab_json_path if cuhk03_classic_split else self.split_new_lab_json_path else: image_type = 'detected' split_path = self.split_classic_det_json_path if cuhk03_classic_split else self.split_new_det_json_path splits = read_json(split_path) assert split_id < len(splits), "Condition split_id ({}) < len(splits) ({}) is false".format(split_id, len(splits)) split = splits[split_id] print("Split index = {}".format(split_id)) train = split['train'] query = split['query'] gallery = split['gallery'] num_train_pids = split['num_train_pids'] num_query_pids = split['num_query_pids'] num_gallery_pids = split['num_gallery_pids'] num_total_pids = num_train_pids + num_query_pids num_train_imgs = split['num_train_imgs'] num_query_imgs = split['num_query_imgs'] num_gallery_imgs = split['num_gallery_imgs'] num_total_imgs = num_train_imgs + num_query_imgs print("=> CUHK03 ({}) loaded".format(image_type)) print("Dataset statistics:") print(" ------------------------------") print(" subset | # ids | # images") print(" ------------------------------") print(" train | {:5d} | {:8d}".format(num_train_pids, num_train_imgs)) print(" query | {:5d} | {:8d}".format(num_query_pids, num_query_imgs)) print(" gallery | {:5d} | {:8d}".format(num_gallery_pids, num_gallery_imgs)) print(" ------------------------------") print(" total | {:5d} | {:8d}".format(num_total_pids, num_total_imgs)) print(" ------------------------------") self.train = train self.query = query self.gallery = gallery self.num_train_pids = num_train_pids self.num_query_pids = num_query_pids self.num_gallery_pids = num_gallery_pids