def build(self): self.create_results_table() states = utils.get_states() election_years = utils.get_election_years(base_dir=BASE_DIR) house_files = utils.get_election_files(BASE_DIR, election_years, 'house', states) for hfile in house_files: self.parse_results_data(hfile)
def build(self): self.base_dir = BASE_DIR + 'divisions/' self.create_electorates_table() states = utils.get_states() election_years = utils.get_election_years(base_dir=BASE_DIR) election_files = utils.get_election_files(BASE_DIR, election_years, 'house', states) for efile in election_files: self.parse_electorate_file(efile)
def state(): if request.method == 'POST': jobs = df[df.state == request.form['state']].groupby( 'soc_id').first().reset_index() jobs = [job[1] for job in jobs.iterrows()] return render_template('state_list.html', jobs=jobs, no_jobs=len(jobs), state=request.form['state']) else: return render_template('state_search.html', states=utils.get_states())
def build(self): self.create_parties_table() states = utils.get_states() election_years = utils.get_election_years(base_dir=BASE_DIR) house_files = utils.get_election_files(BASE_DIR, election_years, "house", states) senate_files = utils.get_election_files(BASE_DIR, election_years, "senate", states) party_dictionary = {} for fdata in house_files: self.parse_party_data(fdata, party_dictionary) for sdata in senate_files: self.parse_party_data(sdata, party_dictionary) self.insert_party_data(party_dictionary)
def _get_us_jobs(): with open('jobs_250.json', 'r') as f: product = utils.tag_job_product(json.loads(''.join(f.readlines()))) df = pd.DataFrame(product, columns=[ 'soc_id', 'title', 'company', 'location', 'remote', 'relocation', 'tag' ]) tmp_columns = df.location.str.split(',', expand=True) df['city'] = tmp_columns[0].str.strip() df['state'] = tmp_columns[1].str.strip() df = df.drop('location', axis=1) return df[df.state.apply(lambda state: state in utils.get_states())]
def __init__(self): self.states = get_states() self.reports_file = 'reports.json' self.reports_dir = 'reports/' self.image_dir = 'static/images/' self.api_endpoint = 'https://covid-api.com/api/' self.dates_file = 'dates.json' self.first_date = '2020-04-16' self.dates = get_dates(self.first_date) self.reports = [] self.reports_parsed = [] dump_json(self.dates_file, self.dates)
def __init__(self): self.states = get_states() self.dates_file = 'dates.json' self.reports_file = 'reports.json' self.reports = load_json(self.reports_file) self.dates = load_json(self.dates_file) self.danger = [] self.deaths = [] self.confirmed = [] self.fatality = [] self.deaths_growth = [] self.confirmed_growth = [] self.fatality_growth = [] self.scoreboard_items = 10
def get_geoid_list(params): logging.info("enter get_geoid_list") if params['queryGeoMode'] == 'states': # process included states states = params['queryLocation'] state_mode = params['queryLocationMode'] state_year = params['queryCensusYear'] if state_year not in census_years: # only certain years are included raise ValueError( 'Selected census year is {}, but only {} are supported'.format( state_year, census_years)) if state_mode == 'include': if len(states) > 0: include_states = states else: # no query states are defined, return error raise ValueError( 'Query mode is "include" but no state is included in query' ) elif state_mode == 'exclude': include_states = set(get_states()) - set(states) if len(include_states) == 0: raise ValueError( 'Query mode is "exclude" but all states are included in query' ) else: raise ValueError('Query state mode is incorrect') # query census tracts query = {} query = query_mapping_states(params, include_states, query) results = db_map['census_tracts_{}'.format(state_year)].find(query) logging.info('query census tracts data: {}\n{}\n\n'.format( str(query), str(results.count()))) GEOID_list = [r['GEOID'] for r in results] elif params['queryGeoMode'] == 'geo': GEOID_list = geo_find_census_tracts(params) else: raise ValueError('Query mode is incorrect') return GEOID_list
obs = data_in["channel" + str(action)][time + pretrain_length] # Observe next_state = utils.state_gen(state_in, action, obs) # Go to next state reward = obs # Reward total_rewards += reward # Total Reward exp_memory.add( (state_in, action, reward, next_state)) # Add in exp memory state_in = next_state history_input = next_state if (time > state_size or episode != 0): # If sufficient minibatch is available batch = exp_memory.sample(batch_size) # Sample without replacement states = utils.get_states( batch) # Get state,action,reward and next state from memory actions = utils.get_actions(batch) rewards = utils.get_rewards(batch) next_state = utils.get_next_states(batch) feed_dict = {q_network.input_in: next_state} actuals_Q = sess.run( q_network.out_layer, feed_dict=feed_dict) # Get the Q values for next state actuals = rewards + gamma * np.max( actuals_Q, axis=1) # Make it actuals with discount factor actuals = actuals.reshape(batch_size) # Feed in here to get loss and optimise it loss, _ = sess.run(
import datetime import streamlit as st import yaml import utils with open("params.yaml", "r") as f: params = yaml.load(f, yaml.Loader) st.title("Progressão Temporal COVID-19 Brasil") data = utils.load_data(os.path.join(params['data_dir'], params['fname'])) rolling = st.sidebar.number_input("Rolling", min_value=1, step=1, max_value=14) estados = st.sidebar.multiselect("Estados", options=utils.get_states(data)) per_millon = st.sidebar.checkbox("Por milhão") starting_date = st.sidebar.date_input("A partir da data:", min_value=utils.get_min_date(data), value=utils.get_min_date(data)) cum_sum = st.sidebar.checkbox("Acumulado") brazil = st.sidebar.checkbox("Nacional") utils.show_graph_by_states(data, estados=estados, rolling=rolling, per_millon=per_millon, cum_sum=cum_sum, brazil=brazil, starting_date=starting_date)
sshmm.model = StateSplitingHMM.fit( sshmm.model, data['train']['xs'], args.max_iterations, args.n_jobs, ) sshmm.plot( args, image_path=os.path.join(image_dir, f'sshmm_{sshmm.num_states:02}'), model=sshmm.model, cluster2utt=sshmm.cluster2utt, ) for iteration in range(args.num_split): print(f'*'*20, f'iteration {iteration+1}', '*'*20, flush=True) model_json = json.loads(sshmm.model.to_json()) state2emissionprob, _, _ = get_states(model_json) max_entropy_state = max(state2emissionprob.items(), key=lambda x: entropy(list(x[1].values())))[0] print(" Try temperal split") t_model, t_logprob, t_new = sshmm.fit_split(data['train']['xs'], max_entropy_state, sshmm.temperal_split) print() print(" Try vertical split") v_model, v_logprob, v_new = sshmm.fit_split(data['train']['xs'], max_entropy_state, sshmm.vertical_split) print() print(f" LogProb: temperal = {t_logprob:.3f}; vertical = {v_logprob:.3f}") if t_logprob > v_logprob: print(" Choose temperal split") sshmm.model = t_model