def largeSeedWatershed(raw, pmap, seeds, membraneWidth = 7.0, visu=False): blockShape = (100, )*3 cOpts = vbw.convOpts pmap = numpy.require(pmap, dtype='float32') with vigra.Timer("add noise"): mx = pmap.max() sshape = pmap.squeeze().shape noise = numpy.random.rand(*sshape)*(0.05*mx) noise = vigra.taggedView(noise.astype('float32'),'xyz') opts = vbw.convOpts(blockShape=blockShape, sigma=4.0) noise = vbw.gaussianSmooth(noise, options=opts) pmap += noise with vigra.Timer("smoothed tie breaker"): # compute a smoothed map as tie breaker opts = vbw.convOpts(blockShape=blockShape, sigma=membraneWidth/2.0) gaussianSmoothedPmap = vbw.gaussianSmooth(pmap, options=opts) addEps = 0.3 growingMap = gaussianSmoothedPmap growingMap *= addEps # opts = vbw.convOpts(blockShape=blockShape, sigma=membraneWidth/7.50) notSoMuch = vbw.gaussianSmooth(pmap, options=opts) # get the actual growing mapz growingMap += notSoMuch growingMap /= 1.0 + addEps with vigra.Timer("watershedsNew"): # do the actual watershed growingMap = vigra.taggedView(growingMap, 'xyz') seeds = numpy.require(seeds, dtype='uint32') seeds = vigra.taggedView(seeds, 'xyz') seg,nSeg = vigra.analysis.watershedsNew(image=growingMap, seeds=seeds) if visu: grayData = [ (raw, "raw"), (pmap,"pmap"), (growingMap,"growingMap") ] segData = [ (seeds, "seeds"), (seg, "seg") ] skneuro.addHocViewer(grayData, segData) return seg,nSeg
def largeSeedWatershed(raw, pmap, seeds, membraneWidth=7.0, visu=False): blockShape = (100, ) * 3 cOpts = vbw.convOpts pmap = numpy.require(pmap, dtype='float32') with vigra.Timer("add noise"): mx = pmap.max() sshape = pmap.squeeze().shape noise = numpy.random.rand(*sshape) * (0.05 * mx) noise = vigra.taggedView(noise.astype('float32'), 'xyz') opts = vbw.convOpts(blockShape=blockShape, sigma=4.0) noise = vbw.gaussianSmooth(noise, options=opts) pmap += noise with vigra.Timer("smoothed tie breaker"): # compute a smoothed map as tie breaker opts = vbw.convOpts(blockShape=blockShape, sigma=membraneWidth / 2.0) gaussianSmoothedPmap = vbw.gaussianSmooth(pmap, options=opts) addEps = 0.3 growingMap = gaussianSmoothedPmap growingMap *= addEps # opts = vbw.convOpts(blockShape=blockShape, sigma=membraneWidth / 7.50) notSoMuch = vbw.gaussianSmooth(pmap, options=opts) # get the actual growing mapz growingMap += notSoMuch growingMap /= 1.0 + addEps with vigra.Timer("watershedsNew"): # do the actual watershed growingMap = vigra.taggedView(growingMap, 'xyz') seeds = numpy.require(seeds, dtype='uint32') seeds = vigra.taggedView(seeds, 'xyz') seg, nSeg = vigra.analysis.watershedsNew(image=growingMap, seeds=seeds) if visu: grayData = [(raw, "raw"), (pmap, "pmap"), (growingMap, "growingMap")] segData = [(seeds, "seeds"), (seg, "seg")] skneuro.addHocViewer(grayData, segData) return seg, nSeg
def prepareMinMap(raw, pmap, sPre=0.8, sInt=5.0, mapInterval=0.5, scaleEw=4.0, ewBeta=0.01, tvWeightSoft=None, isotropicTvSoft=True, tvWeightHard=None, isotropicTvHard=True, sPost=0.6, visu=False ): """ """ print "prepare stuff" if tvWeightSoft is None and isotropicTvSoft: tvWeightSoft=5.0 elif tvWeightSoft is None and isotropicTvSoft==False: tvWeightSoft=25.0 if tvWeightHard is None and isotropicTvHard: tvWeightHard=0.7 elif tvWeightHard is None and isotropicTvHard==False: tvWeightHard=15.0 grayData = [] labelsData = [] # do minimalistic raw map presmoothing to remove artifacts if sPre>0.0001: rawG = vigra.filters.gaussianSmoothing(numpy.require(raw ,dtype=numpy.float32), sigma=sPre) else : rawG = numpy.require(image,dtype=numpy.float32) print "pmap integral" # get pmap integral pmapIntegral = vigra.filters.gaussianSmoothing(numpy.require(pmap, dtype=numpy.float32), sigma=sInt ) pmapIntegral = numpy.array(pmapIntegral) grayData.append([rawG,'rawG']) grayData.append([pmapIntegral,'pmapIntegral']) if visu: addHocViewer(grayData, labelsData, visu=visu) # remap integral pmapIntegral[pmapIntegral>mapInterval]=mapInterval pmapIntegral*=1.0/mapInterval print "soft tv" # do soft TV smoothing pmapTVSoft = denoise.tvBregman(pmap, weight=tvWeightSoft, isotropic=isotropicTvSoft).astype(numpy.float32) print "hard tv" # do hard heavy TV smoothing pmapTVHard = denoise.tvBregman(pmap, weight=tvWeightHard, isotropic=isotropicTvHard).astype(numpy.float32) grayData.append([pmapTVSoft,'pmapTVSoft']) grayData.append([pmapTVHard,'pmapTVHard']) if visu: addHocViewer(grayData, labelsData, visu=visu) # mix hard and soft according to pmap probability mixedPmap = numpy.empty(raw.shape) mixedPmap = (1.0 - pmapIntegral)*pmapTVHard + pmapIntegral*pmapTVSoft print "le min le max",mixedPmap.min(), mixedPmap.max() #grayData.append([mixedPmap,'mixedPmap']) #addHocViewer(grayData, labelsData, visu=visu) # add a tiny portion of eigenvalues of hessian give flat wide boundaries the min at the right position # but we only add this at places where the boundary is strong (in a hard fashion) aew = vigra.filters.hessianOfGaussianEigenvalues(numpy.require(raw, dtype=numpy.float32), scale=scaleEw).squeeze() sew = numpy.sort(aew,axis=3) ew = sew[:, :, :, 2] ew *= pmap**2 ew -= ew.min() ew /= ew.max() ew *= ewBeta mixedPmap+=ew grayData.append([mixedPmap,'mixedPmapWITHEW']) if visu: addHocViewer(grayData, labelsData, visu=visu) # do minimalistic final smoothing to remove artefacts if sPre>0.0001: mixedPmapG = vigra.filters.gaussianSmoothing(numpy.require(mixedPmap,dtype=numpy.float32), sigma=sPost) else : mixedPmapG = numpy.require(mixedPmap,dtype=numpy.float32) grayData.append([mixedPmapG,'finalSeedingMap']) if visu: addHocViewer(grayData, labelsData, visu=visu) return mixedPmapG
def getLargeSeeds(raw, pmap, membraneWidth , threshold , rank, visu=False): with vigra.Timer("ballRankOrderFilter"): # make mebrane wider with ballRankOrderFilter r = int(membraneWidth*0.35 + 0.5) r = max(r, 1) widerPmap1 = denoise.ballRankOrderFilter(pmap, radius=r, rank=rank) widerPmap = denoise.ballRankOrderFilter(widerPmap1, radius=r, rank=rank) widerPmap1 = None with vigra.Timer("normalize"): # renormalize widerPmap -= widerPmap.min() widerPmap /= widerPmap.max() with vigra.Timer("binarize"): # binarize binaryPmap = numpy.zeros(widerPmap.shape, dtype='uint8') binaryPmap[pmap>threshold] = 1 #widerPmap = None # save mem if visu == False: widerPmap = None with vigra.Timer("multiBinaryDilation"): # morphology # 1) make membrane wider by r r = int(membraneWidth*1.2 + 0.5) r = max(r, 2) mBinaryPmapA = vigra.filters.multiBinaryDilation(binaryPmap,r) #binaryPmap = None # save mem if visu == False: binaryPmap = None #with vigra.Timer("multiBinaryErosion"): # # morphology # # 1) make membrane smaller by r # r = int(membraneWidth*0.1 + 0.5) # r = max(r, 1) # mBinaryPmapB = vigra.filters.multiBinaryErosion(mBinaryPmapA,r) # if visu == False: # mBinaryPmapA = None with vigra.Timer("labelVolumeWithBackground"): # get seeds invertedBinaryPmap = 1- mBinaryPmapA if visu == False: mBinaryPmapB = None invertedBinaryPmap = numpy.require(invertedBinaryPmap, dtype='uint32') ccImg = vigra.analysis.labelVolumeWithBackground(invertedBinaryPmap) if visu == False: invertedBinaryPmap = None if visu: grayData = [ (raw, "raw"), (pmap,"pmap"), (widerPmap,"widerPmap"), (binaryPmap,"binaryPmap"), (mBinaryPmapA,"mBinaryPmapA"), #(mBinaryPmapB,"mBinaryPmapB"), ] segData = [ (ccImg, "seeds"), #(seg, "seg") ] skneuro.addHocViewer(grayData, segData) return ccImg
def prepareMinMap(raw, pmap, sPre=0.8, sInt=5.0, mapInterval=0.5, scaleEw=4.0, ewBeta=0.01, tvWeightSoft=None, isotropicTvSoft=True, tvWeightHard=None, isotropicTvHard=True, sPost=0.6, visu=False): """ """ print "prepare stuff" if tvWeightSoft is None and isotropicTvSoft: tvWeightSoft = 5.0 elif tvWeightSoft is None and isotropicTvSoft == False: tvWeightSoft = 25.0 if tvWeightHard is None and isotropicTvHard: tvWeightHard = 0.7 elif tvWeightHard is None and isotropicTvHard == False: tvWeightHard = 15.0 grayData = [] labelsData = [] # do minimalistic raw map presmoothing to remove artifacts if sPre > 0.0001: rawG = vigra.filters.gaussianSmoothing(numpy.require( raw, dtype=numpy.float32), sigma=sPre) else: rawG = numpy.require(image, dtype=numpy.float32) print "pmap integral" # get pmap integral pmapIntegral = vigra.filters.gaussianSmoothing(numpy.require( pmap, dtype=numpy.float32), sigma=sInt) pmapIntegral = numpy.array(pmapIntegral) grayData.append([rawG, 'rawG']) grayData.append([pmapIntegral, 'pmapIntegral']) if visu: addHocViewer(grayData, labelsData, visu=visu) # remap integral pmapIntegral[pmapIntegral > mapInterval] = mapInterval pmapIntegral *= 1.0 / mapInterval print "soft tv" # do soft TV smoothing pmapTVSoft = denoise.tvBregman(pmap, weight=tvWeightSoft, isotropic=isotropicTvSoft).astype( numpy.float32) print "hard tv" # do hard heavy TV smoothing pmapTVHard = denoise.tvBregman(pmap, weight=tvWeightHard, isotropic=isotropicTvHard).astype( numpy.float32) grayData.append([pmapTVSoft, 'pmapTVSoft']) grayData.append([pmapTVHard, 'pmapTVHard']) if visu: addHocViewer(grayData, labelsData, visu=visu) # mix hard and soft according to pmap probability mixedPmap = numpy.empty(raw.shape) mixedPmap = (1.0 - pmapIntegral) * pmapTVHard + pmapIntegral * pmapTVSoft print "le min le max", mixedPmap.min(), mixedPmap.max() #grayData.append([mixedPmap,'mixedPmap']) #addHocViewer(grayData, labelsData, visu=visu) # add a tiny portion of eigenvalues of hessian give flat wide boundaries the min at the right position # but we only add this at places where the boundary is strong (in a hard fashion) aew = vigra.filters.hessianOfGaussianEigenvalues(numpy.require( raw, dtype=numpy.float32), scale=scaleEw).squeeze() sew = numpy.sort(aew, axis=3) ew = sew[:, :, :, 2] ew *= pmap**2 ew -= ew.min() ew /= ew.max() ew *= ewBeta mixedPmap += ew grayData.append([mixedPmap, 'mixedPmapWITHEW']) if visu: addHocViewer(grayData, labelsData, visu=visu) # do minimalistic final smoothing to remove artefacts if sPre > 0.0001: mixedPmapG = vigra.filters.gaussianSmoothing(numpy.require( mixedPmap, dtype=numpy.float32), sigma=sPost) else: mixedPmapG = numpy.require(mixedPmap, dtype=numpy.float32) grayData.append([mixedPmapG, 'finalSeedingMap']) if visu: addHocViewer(grayData, labelsData, visu=visu) return mixedPmapG
def getLargeSeeds(raw, pmap, membraneWidth, threshold, rank, visu=False): with vigra.Timer("ballRankOrderFilter"): # make mebrane wider with ballRankOrderFilter r = int(membraneWidth * 0.35 + 0.5) r = max(r, 1) widerPmap1 = denoise.ballRankOrderFilter(pmap, radius=r, rank=rank) widerPmap = denoise.ballRankOrderFilter(widerPmap1, radius=r, rank=rank) widerPmap1 = None with vigra.Timer("normalize"): # renormalize widerPmap -= widerPmap.min() widerPmap /= widerPmap.max() with vigra.Timer("binarize"): # binarize binaryPmap = numpy.zeros(widerPmap.shape, dtype='uint8') binaryPmap[pmap > threshold] = 1 #widerPmap = None # save mem if visu == False: widerPmap = None with vigra.Timer("multiBinaryDilation"): # morphology # 1) make membrane wider by r r = int(membraneWidth * 1.2 + 0.5) r = max(r, 2) mBinaryPmapA = vigra.filters.multiBinaryDilation(binaryPmap, r) #binaryPmap = None # save mem if visu == False: binaryPmap = None #with vigra.Timer("multiBinaryErosion"): # # morphology # # 1) make membrane smaller by r # r = int(membraneWidth*0.1 + 0.5) # r = max(r, 1) # mBinaryPmapB = vigra.filters.multiBinaryErosion(mBinaryPmapA,r) # if visu == False: # mBinaryPmapA = None with vigra.Timer("labelVolumeWithBackground"): # get seeds invertedBinaryPmap = 1 - mBinaryPmapA if visu == False: mBinaryPmapB = None invertedBinaryPmap = numpy.require(invertedBinaryPmap, dtype='uint32') ccImg = vigra.analysis.labelVolumeWithBackground(invertedBinaryPmap) if visu == False: invertedBinaryPmap = None if visu: grayData = [ (raw, "raw"), (pmap, "pmap"), (widerPmap, "widerPmap"), (binaryPmap, "binaryPmap"), (mBinaryPmapA, "mBinaryPmapA"), #(mBinaryPmapB,"mBinaryPmapB"), ] segData = [ (ccImg, "seeds"), #(seg, "seg") ] skneuro.addHocViewer(grayData, segData) return ccImg