def run_vmaf_cv(train_dataset_filepath, test_dataset_filepath, param_filepath, output_model_filepath=None, **kwargs): logger = get_stdout_logger() result_store = FileSystemResultStore() train_dataset = import_python_file(train_dataset_filepath) test_dataset = import_python_file( test_dataset_filepath) if test_dataset_filepath is not None else None param = import_python_file(param_filepath) # === plot scatter === nrows = 1 ncols = 2 fig, axs = plt.subplots(figsize=(5 * ncols, 5 * nrows), nrows=nrows, ncols=ncols) train_test_vmaf_on_dataset(train_dataset, test_dataset, param, param, axs[0], axs[1], result_store, parallelize=True, logger=None, output_model_filepath=output_model_filepath, **kwargs) if 'xlim' in kwargs: axs[0].set_xlim(kwargs['xlim']) axs[1].set_xlim(kwargs['xlim']) if 'ylim' in kwargs: axs[0].set_ylim(kwargs['ylim']) axs[1].set_ylim(kwargs['ylim']) bbox = {'facecolor': 'white', 'alpha': 1, 'pad': 20} axs[0].annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox) axs[1].annotate('Testing Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox) plt.tight_layout() # === clean up === close_logger(logger)
def run_vmaf_cv(train_dataset_filepath, test_dataset_filepath, param_filepath, output_model_filepath=None, **kwargs): logger = get_stdout_logger() result_store = FileSystemResultStore() train_dataset = import_python_file(train_dataset_filepath) test_dataset = import_python_file(test_dataset_filepath) if test_dataset_filepath is not None else None param = import_python_file(param_filepath) # === plot scatter === nrows = 1 ncols = 2 fig, axs = plt.subplots(figsize=(5*ncols, 5*nrows), nrows=nrows, ncols=ncols) train_test_vmaf_on_dataset(train_dataset, test_dataset, param, param, axs[0], axs[1], result_store, parallelize=True, logger=None, output_model_filepath=output_model_filepath, **kwargs) if 'xlim' in kwargs: axs[0].set_xlim(kwargs['xlim']) axs[1].set_xlim(kwargs['xlim']) if 'ylim' in kwargs: axs[0].set_ylim(kwargs['ylim']) axs[1].set_ylim(kwargs['ylim']) bbox = {'facecolor':'white', 'alpha':1, 'pad':20} axs[0].annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox) axs[1].annotate('Testing Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox) plt.tight_layout() # === clean up === close_logger(logger)
def run_vmaf_kfold_cv(dataset_filepath, contentid_groups, param_filepath, aggregate_method, ): logger = get_stdout_logger() result_store = FileSystemResultStore() dataset = import_python_file(dataset_filepath) param = import_python_file(param_filepath) fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1) cv_on_dataset(dataset, param, param, ax, result_store, contentid_groups, logger, aggregate_method) ax.set_xlim([0, 120]) ax.set_ylim([0, 120]) plt.tight_layout() # === clean up === close_logger(logger)