Пример #1
0
def run_vmaf_cv(train_dataset_filepath,
                test_dataset_filepath,
                param_filepath,
                output_model_filepath=None,
                **kwargs):

    logger = get_stdout_logger()
    result_store = FileSystemResultStore()

    train_dataset = import_python_file(train_dataset_filepath)
    test_dataset = import_python_file(
        test_dataset_filepath) if test_dataset_filepath is not None else None

    param = import_python_file(param_filepath)

    # === plot scatter ===

    nrows = 1
    ncols = 2
    fig, axs = plt.subplots(figsize=(5 * ncols, 5 * nrows),
                            nrows=nrows,
                            ncols=ncols)

    train_test_vmaf_on_dataset(train_dataset,
                               test_dataset,
                               param,
                               param,
                               axs[0],
                               axs[1],
                               result_store,
                               parallelize=True,
                               logger=None,
                               output_model_filepath=output_model_filepath,
                               **kwargs)

    if 'xlim' in kwargs:
        axs[0].set_xlim(kwargs['xlim'])
        axs[1].set_xlim(kwargs['xlim'])

    if 'ylim' in kwargs:
        axs[0].set_ylim(kwargs['ylim'])
        axs[1].set_ylim(kwargs['ylim'])

    bbox = {'facecolor': 'white', 'alpha': 1, 'pad': 20}
    axs[0].annotate('Training Set',
                    xy=(0.1, 0.85),
                    xycoords='axes fraction',
                    bbox=bbox)
    axs[1].annotate('Testing Set',
                    xy=(0.1, 0.85),
                    xycoords='axes fraction',
                    bbox=bbox)

    plt.tight_layout()

    # === clean up ===
    close_logger(logger)
Пример #2
0
def run_vmaf_cv(train_dataset_filepath,
                test_dataset_filepath,
                param_filepath,
                output_model_filepath=None,
                **kwargs):

    logger = get_stdout_logger()
    result_store = FileSystemResultStore()

    train_dataset = import_python_file(train_dataset_filepath)
    test_dataset = import_python_file(test_dataset_filepath) if test_dataset_filepath is not None else None

    param = import_python_file(param_filepath)

    # === plot scatter ===

    nrows = 1
    ncols = 2
    fig, axs = plt.subplots(figsize=(5*ncols, 5*nrows), nrows=nrows, ncols=ncols)

    train_test_vmaf_on_dataset(train_dataset, test_dataset, param, param, axs[0], axs[1],
                               result_store, parallelize=True, logger=None,
                               output_model_filepath=output_model_filepath,
                               **kwargs)

    if 'xlim' in kwargs:
        axs[0].set_xlim(kwargs['xlim'])
        axs[1].set_xlim(kwargs['xlim'])

    if 'ylim' in kwargs:
        axs[0].set_ylim(kwargs['ylim'])
        axs[1].set_ylim(kwargs['ylim'])

    bbox = {'facecolor':'white', 'alpha':1, 'pad':20}
    axs[0].annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox)
    axs[1].annotate('Testing Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox)

    plt.tight_layout()

    # === clean up ===
    close_logger(logger)
Пример #3
0
def run_vmaf_kfold_cv(dataset_filepath,
                      contentid_groups,
                      param_filepath,
                      aggregate_method,
                      ):

    logger = get_stdout_logger()
    result_store = FileSystemResultStore()
    dataset = import_python_file(dataset_filepath)
    param = import_python_file(param_filepath)

    fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1)

    cv_on_dataset(dataset, param, param, ax, result_store, contentid_groups,
                  logger, aggregate_method)

    ax.set_xlim([0, 120])
    ax.set_ylim([0, 120])
    plt.tight_layout()

    # === clean up ===
    close_logger(logger)
Пример #4
0
def run_vmaf_kfold_cv(dataset_filepath,
                      contentid_groups,
                      param_filepath,
                      aggregate_method,
                      ):

    logger = get_stdout_logger()
    result_store = FileSystemResultStore()
    dataset = import_python_file(dataset_filepath)
    param = import_python_file(param_filepath)

    fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1)

    cv_on_dataset(dataset, param, param, ax, result_store, contentid_groups,
                  logger, aggregate_method)

    ax.set_xlim([0, 120])
    ax.set_ylim([0, 120])
    plt.tight_layout()

    # === clean up ===
    close_logger(logger)