def __init__(self,ip,port): # global flyermmap print(posix_ipc.MESSAGE_QUEUES_SUPPORTED) print(posix_ipc.QUEUE_MESSAGES_MAX_DEFAULT) print(posix_ipc.QUEUE_MESSAGE_SIZE_MAX_DEFAULT) self.model_pub = rospy.Publisher("/gazebo/set_model_state",ModelState,queue_size=1) self.bridge = CvBridge() #self.image_sub = rospy.Subscriber("/mycam/image_raw",Image,self.callback) self.image_sub = rospy.Subscriber("/multisense/camera/left/image_raw",Image,self.callback) self.imageflag = 0 self.imagecnt = 0 self.key = 0 firstFoot = Foot([0,-0.1,0],Foot.RIGHT) standingFoot = Foot([0,0.1,0],Foot.LEFT) self.list = Steplist(firstFoot,standingFoot) self.height = 1.6 self.tilt = 0.0 memory = posix_ipc.SharedMemory("flyermmap", posix_ipc.O_CREAT, size=8*Mib) self.sem = posix_ipc.Semaphore("flyersem", posix_ipc.O_CREAT) self.memmap = mmap.mmap(memory.fd, memory.size) # flyermmap = self.memmap memory.close_fd() self.queue = posix_ipc.MessageQueue("/flyerqueue", posix_ipc.O_CREAT) #self.wsproc = prc.Popen('python flyerws.py', shell=True ) self.wsproc = prc.Popen('python -u flyerws.py --ip %s --port %s' % (ip,port), shell=True ) self.writecnt = 0 self.loc = (0,0,0) self.walker = Walker() self.walker.init()
class APlayer(threading.Thread): mpd = None mainloop = None def __init__(self): self.volume = 0 self.isPlaying = False self.isRandom = False self.walker = Walker() self.currentlyPlaying = {} self.nextId = [] self.currentPlaylist = "" self.watchCurrentSubscriber = [] self.timer = None try: self.mpd = MPDClient() self.mpd.timeout = 10; self.mpd.idletimeout = None self.walker.setMPD(self) except Exception, e: print "Problem with setting up the mpd stuff" print "Error: {0}".format(str(e)) threading.Thread.__init__(self)
def __init__(self, model_dir, config, node_feat_dim, edge_feat_dim, out_dim, loss, node_feat_enc=None, edge_feat_enc=None): """ :param model_dir: Directory to store model in :param config: Python Dict that specifies the configuration of the model :param node_feat_dim: Dimension of the node features :param edge_feat_dim: Dimension of the edge features :param out_dim: Output dimension :param loss: torch.nn Loss object used for training :param node_feat_enc: Optional initial embedding of node features :param edge_feat_enc: Optional initial embedding of edge features """ super(CRaWl, self).__init__() self.model_dir = model_dir self.config = config self.out_dim = out_dim self.node_feat_enc = node_feat_enc self.edge_feat_enc = edge_feat_enc self.layers = config['layers'] self.hidden = config['hidden_dim'] self.kernel_size = config['kernel_size'] self.dropout = config['dropout'] self.pool = config['pool'] if 'pool' in config.keys() else 'mean' self.vn = config['vn'] if 'vn' in config.keys() else False self.walker = Walker(config) self.walk_dim = self.walker.struc_feat_dim self.conv_dim = config['conv_dim'] if 'conv_dim' in config.keys() else self.hidden modules = [] for i in range(self.layers): modules.append(ConvModule(conv_dim=self.conv_dim, node_dim_in=node_feat_dim if i == 0 else self.hidden, edge_dim_in=edge_feat_dim, w_feat_dim=self.walk_dim, dim_out=self.hidden, kernel_size=self.kernel_size)) if self.vn and i < self.layers - 1: modules.append(VNUpdate(self.hidden, config)) self.convs = Sequential(*modules) self.node_out = Sequential(BatchNorm1d(self.hidden), ReLU()) if config['graph_out'] == 'linear': self.graph_out = Sequential(Dropout(self.dropout), Linear(self.hidden, out_dim)) else: self.graph_out = Sequential(Dropout(self.dropout), Linear(self.hidden, self.hidden), ReLU(), Linear(self.hidden, out_dim)) self.criterion = loss pytorch_total_params = sum(p.numel() for p in self.parameters() if p.requires_grad) print(f'Number of paramters: {pytorch_total_params}')
def main(argv): # set up argument parsing parser = argparse.ArgumentParser() parser.add_argument('input_graph', help='Original graph input file, in\ edge list format') parser.add_argument('seed', help='Seed file, to pull start nodes from') parser.add_argument('-e', '--restart_prob', type=float, default=0.7, help='Restart probability for random walk') parser.add_argument('-l', '--low_list', nargs='?', default=None, help='<Optional> List of genes expressed and\ unexpressed in the current tissue, if applicable') parser.add_argument('-n', '--node_list', nargs='?', default=None, help='<Optional> Order of output probs') parser.add_argument('-o', '--original_graph_prob', type=float, default=0.1, help='Probability of walking on the original (non-\ tissue specific) graph, if applicable') parser.add_argument('-r', '--remove', nargs='+', help='<Optional> Nodes to remove from the graph, if any') opts = parser.parse_args() seed_list = generate_seed_list(opts.seed) node_list = get_node_list(opts.node_list) if opts.node_list else [] # filter nodes we want to remove out of the starting seed, if any remove_list = opts.remove if opts.remove else [] if remove_list: seed_list = [s for s in seed_list if s not in remove_list] # run the experiments, and write a rank list to stdout wk = Walker(opts.input_graph, opts.low_list, remove_list) wk.run_exp(seed_list, opts.restart_prob, opts.original_graph_prob, node_list)
def makeMeasurements(self): w = Walker(r.randint(350,450),2) path = w.startWalking() ts = datetime(2015,02,13,6) for x in path: ts = ts - timedelta(days=1) self.measurements.append(Measurement(ts,x,r.random()*5))
def translate(ast, output_header, namespace=None): """ Walk concord message format(CMF) AST and generate C++ code. Return C++ code as a string. """ with open(os.path.join(os.path.dirname(__file__), "serialize.hpp")) as f: cmf_base_header = f.read() with open(os.path.join(os.path.dirname(__file__), "serialize.cpp")) as f: cmf_base_serialization = f.read() visitor = CppVisitor() walker = Walker(ast, visitor) walker.walk() impl = copyright() \ + include_header(output_header) + '\n' \ + cmf_base_serialization + '\n' \ + file_namespace(namespace) + '\n' \ + visitor.output \ + file_trailer(namespace) header = copyright() \ + header_guard(output_header) \ + header_includes() + '\n' \ + cmf_base_header + '\n' \ + file_namespace(namespace) \ + visitor.output_declaration + '\n' \ + file_trailer(namespace) \ + header_guard_trailer(output_header) return header, impl
def __init__ (self, start_dir, sqlitefile): if 0 and os.path.exists (sqlitefile): raise AlreadyExistsError, '\nERROR: sqlite_file already exists at {}\n'.format(sqlitefile) Walker.__init__(self, start_dir) self.db_table = CommsDBTable(sqlitefile)
def __init__(self, objectLogicPath, object): Live.__init__(self,objectLogicPath, object) Walker.__init__(self, objectLogicPath, object) logicFileName = object.GetLogicFileName() configFile=ini.IniFile(objectLogicPath) configFile.ReadString("npc", "group") self.SetHealth(configFile.ReadInt("npc", "health")) self._clock = sf.Clock() self._alarm = False
def test_walker(): """Test that Walker class can be used as required.""" start, home = 10, 20 w = Walker(start, home) assert not w.is_at_home() move() assert w.get_position() != start move() assert w.get_steps() == 2
def generate_walks(network_data, num_walks, walk_length, schema, file_name): if schema is not None: node_type = load_node_type(file_name + '/node_type.txt') else: node_type = None from walker import Walker walker = Walker(network_data, num_walks, walk_length, schema, node_type) all_walks = walker.walk() print('Finish generating the walks') return all_walks
class RandomWalker(Sketch): width = 800 height = 200 def setup(self): self.walker = Walker(self) self.background(255) def draw(self): self.walker.step() self.walker.render()
def __init__(self): ''' connect to midi device and set up ros ''' self.sp = SmartPAD('SmartPAD') self.axis = Axis() self.axis.init() self.walker = Walker() self.walker.init() self.web = pages.Pages() rospy.loginfo("Using input device %s" % self.sp.device) os.environ['PORT'] = '8081'
def translate(ast, namespace=None): """ Walk concord message format(CMF) AST and generate Python code. Return Python code as a string. """ with open(os.path.join(os.path.dirname(__file__), "serialize.py")) as f: base_serializers = f.read() + '\n' visitor = PyVisitor() walker = Walker(ast, visitor) walker.walk() return header + base_serializers + visitor.output
def translate(ast, namespace=None): """ Walk concord message format(CMF) AST and generate C++ code. Return C++ code as a string. """ with open(os.path.join(os.path.dirname(__file__), "serialize.h")) as f: cmf_base_serialization = f.read() s = cmf_base_serialization + '\n' + file_header(namespace) visitor = CppVisitor() walker = Walker(ast, visitor) walker.walk() return s + visitor.output + file_trailer(namespace)
def run(self, niter=50000): self.p0 = np.identity(26, dtype=bool) self.chain = np.zeros((niter+1, 26, 26), dtype=bool) self.probchain = np.zeros((niter+1)) self.chain[0] = self.p0 self.probchain[0] = self.lnprob(self.p0) w1 = Walker(p0=self.p0, k=30, lnprobfunc=self.lnprob) for i in range(niter): w1.iterate() self.chain[i+1] = w1.p self.probchain[i+1] = w1.lnprob return
def __init__(self): self.n_features = 366 self.n_actions = 8 self.max_epoch = 1000 self.max_steps = 40 # define sound source information self.src_pos_x = -2.0 self.src_pos_y = 1.6 self.src_pos_z = -4.0 # sample as a grid map with 0.5m unit # change step length to 1m self.unit = 1.0 self.room_grids_x = [i for i in np.arange(-3.0, 3.0 + self.unit, self.unit)] self.room_grids_z = [i for i in np.arange(-4.0, 4.0 + self.unit, self.unit)] # define wall and obstacles self.wall_axis_z = {-4: [i for i in np.arange(-5.0, 6.0, 1.0)], 4: [i for i in np.arange(-5.0, 6.0, 1.0)], 0: [i for i in np.arange(-5.0, 6.0, 1.0) if i != 0]} self.wall_axis_x = {5: [i for i in np.arange(-4.0, 5.0, 1.0)], 1: [i for i in np.arange(-4.0, 5.0, 1.0) if i != -2 and i != 2], -1: [i for i in np.arange(-4.0, 5.0, 1.0) if i != -2 and i != 2], -5: [i for i in np.arange(-4.0, 5.0, 1.0)]} # define checkpoints: room gates, hall center self.room_gates = [[-2.0, 1, -1.0], [2.0, 1, -1.0], [-2.0, 1, 1.0], [2.0, 1, 1.0]] self.hall_center = [[0, 0, 0]] # define room zone self.room1_x = [i for i in np.arange(-3.5, 0, 0.5)] self.room1_z = [i for i in np.arange(-4.5, -1, 0.5)] self.room2_x = [i for i in np.arange(0.5, 4.0, 0.5)] self.room2_z = [i for i in np.arange(-4.5, -1, 0.5)] self.room3_x = [i for i in np.arange(-3.5, 0, 0.5)] self.room3_z = [i for i in np.arange(1.5, 5.0, 0.5)] self.room4_x = [i for i in np.arange(0.5, 4.0, 0.5)] self.room4_z = [i for i in np.arange(1.5, 5.0, 0.5)] self.hall_x = [i for i in np.arange(-3.5, 4.0, 0.5)] self.hall_z = [i for i in np.arange(-0.5, 1.0, 0.5)] self.walker = Walker(self.n_features, self.n_actions) self.BayeProb = {1: 0.25, 2: 0.25, 3: 0.25, 4: 0.25} self.Pzx = {1: 1, 2: 1, 3: 1, 4: 1}
def main(argv): # set up argument parsing parser = argparse.ArgumentParser() parser.add_argument('input_graph', help='Original graph input file, in\ edge list format') parser.add_argument('seed', help='Seed file, to pull start nodes from') parser.add_argument('-e', '--restart_prob', type=float, default=0.7, help='Restart probability for random walk') parser.add_argument('-l', '--low_list', nargs='?', default=None, help='<Optional> List of genes expressed and\ unexpressed in the current tissue, if applicable' ) parser.add_argument('-n', '--node_list', nargs='?', default=None, help='<Optional> Order of output probs') parser.add_argument('-o', '--original_graph_prob', type=float, default=0.1, help='Probability of walking on the original (non-\ tissue specific) graph, if applicable') parser.add_argument( '-r', '--remove', nargs='+', help='<Optional> Nodes to remove from the graph, if any') opts = parser.parse_args() seed_list = generate_seed_list(opts.seed) node_list = get_node_list(opts.node_list) if opts.node_list else [] # filter nodes we want to remove out of the starting seed, if any remove_list = opts.remove if opts.remove else [] if remove_list: seed_list = [s for s in seed_list if s not in remove_list] # run the experiments, and write a rank list to stdout wk = Walker(opts.input_graph, opts.low_list, remove_list) wk.run_exp(seed_list, opts.restart_prob, opts.original_graph_prob, node_list)
def __init__(self): events.AddListener(self) Walker.__init__(self) self.health = 10 self.energy = 1 self.xMax = 4 self.xMin = -4 self.yMax = 2 self.yMin = -2 self.state = State.fastWalking self.knownAvatars = [] self.xFightingReach = 10 self.yFightingReach = 4 self.attack = attacks.Hug() self.stunCounter = 0
def __init__(self, ip, port): self.bridge = CvBridge() self.imageflags = [0, 0, 0, 0, 0] #I 1gray 2small 3fc 4seg (zero not used) self.imagecnt = 0 self.key = 0 self.height = 1.6 self.tilt = 0.0 self.torso = 0.0 self.headtilt = 0.0 self.headrot = 0.0 self.stepspending = 0 self.totalsteps = 0 self.nextposetime = 0 self.nextfsstime = 0 memory = posix_ipc.SharedMemory("flyermmap", posix_ipc.O_CREAT, size=8 * IPComm.Mib) self.sem = posix_ipc.Semaphore("flyersem", posix_ipc.O_CREAT) self.memmap = mmap.mmap(memory.fd, memory.size) memory.close_fd() self.image_sub = rospy.Subscriber("/olrun/image/gray", Image, self.callback) self.fcimage_sub = rospy.Subscriber("/olrun/image/fc", Image, self.callbackfc) self.segimage_sub = rospy.Subscriber("/olrun/image/seg", Image, self.callbackseg) self.smallimage_sub = rospy.Subscriber("/olrun/image/small", Image, self.callbacksmall) ROBOT_NAME = rospy.get_param('/ihmc_ros/robot_name') fss_name = "/ihmc_ros/{0}/output/footstep_status".format(ROBOT_NAME) pose_name = "/ihmc_ros/{0}/output/robot_pose".format(ROBOT_NAME) self.fssSubscriber = rospy.Subscriber(fss_name, FootstepStatusRosMessage, self.rcvdfss) self.poseSubscriber = rospy.Subscriber(pose_name, Odometry, self.rcvdpose) self.queue = posix_ipc.MessageQueue("/flyerqueue", posix_ipc.O_CREAT) self.wsproc = prc.Popen('python -u flyerws.py --ip %s --port %s' % (ip, port), shell=True) self.writecnt = 0 self.loc = [0.0, 0.0, 0.0] self.walker = Walker() self.walker.init() self.neck_joint = [0.0, 0.0, 0.0] self.torso_joint = 0.0
def __init__(self, path): self.path = path self.queue = Queue.PriorityQueue() self.watcher = Watcher(path, self.queue) self.walker = Walker(path, self.queue, Settings.is_rescan_forced()) self.reader = Reader(self.queue) self.validator = Validator(self.queue)
def Setup(self): #Create the ground self.world.CreateStaticBody(position=(0, -10), shapes=b2PolygonShape(box=(10000, 10))) #Make some walkers self.walkerList = [] for i in range(learningSettings.groupSize): self.walkerList.append( Walker(self.world, (i * 10, 0), learningSettings.useSimpleWalkers)) #Make a population of agents if (learningSettings.loadPopulation): self.population = Population.loadFromFile( learningSettings.populationFile) #Reduce the number of agents to the best performing ones self.population.pruneToTopAgents(learningSettings.groupSize) else: jointCount = len(self.walkerList[0].jointList) sampleNetwork = Network(jointCount + 2, jointCount, [jointCount]) self.population = Population(learningSettings.walkerCount, sampleNetwork) #If we need it, setup an environment for speciation if (learningSettings.selectionCriteria == selection.SPECIATION): self.environment = speciation.Environment() self.environment.generateAllFood(self.walkerList[0], learningSettings.foodCount, learningSettings.foodUses, learningSettings.foodEnergy)
def __init__(self): self.n_features = 366 self.n_actions = 8 self.max_epoch = 100 self.max_steps = 100 # define sound source information self.src_pos_x = -3.0 self.src_pos_y = 1.6 self.src_pos_z = -3.0 # sample as a grid map with 0.5m unit self.unit = 0.5 self.room_grids = [i for i in np.arange(-3.5, 3.5 + self.unit, self.unit)] self.walker = Walker(self.n_features, self.n_actions)
def main(): # Initialize pygame pygame.init() clock = pygame.time.Clock() globals.window = pygame.display.set_mode((globals.WIDTH, globals.HEIGHT), False) globals.window.fill(BACKGROUND_COLOR) loop = True # Create the walkers walkers = [] for i in range(NUM_WALKERS): if RANDOM_COLORS: color = (random.randint(0, 255), random.randint(0, 150), random.randint(100, 255)) else: color = (0, 0, 0) # Default to black if no random colors walkers.append(Walker(globals.WIDTH / 2, globals.HEIGHT / 2, color)) while(loop): clock.tick(60) for i in range(len(walkers)): walkers[i].update() walkers[i].draw() # Check if the escape key has been pressed for event in pygame.event.get(): if event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: pygame.quit() quit() pygame.display.flip()
def make_graph(self): for h_line in self.horizon_lines: coeff_x, coeff_y, bias = h_line.eq for v_line in self.vertical_lines: cx, cy, b = v_line.eq A = np.array([[coeff_x, coeff_y], [cx, cy]]) B = np.array([bias, b]) root = Corner(np.linalg.solve(A, B).astype(int)) h_line.corners.append(root) v_line.corners.append(root) self.corners.append(root) for line in self.lines: line.line_link() self.walker = Walker(self.corners)
def AddSpike(self): # Release/spawn some number of ions at Post Synaptic Density amp = random.randint( 1, 15) #should be drawn from Gaussian and have some meaning print "Spike of size ", amp for i in xrange(amp): #draw a random position in proximity of PSD self.Ions.append( Walker([random.random(), 1 - 0.1 * random.random()]))
def generate_code_and_tests(ast): """ Walk concord message format(CMF) AST and generate C++ code and C++ tests""" namespace = "cmf::test" print("Generating C++ Message structs and serialization code") code = cppgen.translate(ast, namespace) test_code = file_header(namespace) print("Generating C++ message instances and serialization tests") visitor = InstanceVisitor() # We generate `max_size` msg instances for tests for i in range(0, MAX_SIZE): visitor.size = i walker = Walker(ast, visitor) walker.walk() for msg_name, instances in visitor.existing_instances.items(): for instance in instances: test_code += instance + "\n\n" test_code += testSerializationStr(msg_name) return code, test_code + file_trailer(namespace, ast)
def initialize_walkers_(self, population): if self.memory_safe: self.__dict__['population'] = population for i in range(self.chain.no_of_nodes): trans_prob = self.chain.get_node_transition_probability(self.chain.node_ids[i]) next_step_processor = Markov(trans_prob) for j in range(population[i]): wlk = Walker(next_step_processor = next_step_processor,\ initial_id = self.chain.node_ids[i]) self.walkers.append(wlk)
def simulate(self): s = Simulation() robot = Walker(s.space, [self.chromosome[0], self.chromosome[1]], self.chromosome[2], self.chromosome[3],\ self.chromosome[4], self.chromosome[5], self.chromosome[6], self.chromosome[7], self.chromosome[8]) print "Simulating best Individual with score: ", self.score currentPosition = s.step(0.02) energy = s.get_ke() while (currentPosition > 0 and energy > 1): energy = s.get_ke() #print "currentPosition: ", currentPosition currentPosition = s.step(0.02)
def load_map(file, move_keys, player_number): # Load map # Load background color f = open(path.join("levels", file + ".txt"), "r") data = f.read() f.close() data = data.split("\n") data[0] = data[0].split(",") color = data[0] tile_chars = {} data.pop(0) # Load tiles while "=" in data[0]: tile_chars[data[0][0]] = data[0].split("=")[1].split(",") data.pop(0) # Initialize objects tiles = [] net = [] walkers = [] climbers = [] stones = [] players = [] # Load objects y = 1 for row in range(len(data)): x = -1 for tile in range(len(data[row])): if data[row][tile] in tile_chars: tiles.append( Tile(x, y, TILE_WIDTH, TILE_HEIGHT, tile_chars[data[row][tile]])) elif data[row][tile] == "p" and len(players) < player_number: players.append( Player(x, y, CHAR_WIDTH, CHAR_HEIGHT, 0, move_keys[len(players)])) elif data[row][tile] == "w": walkers.append(Walker(x, y, CHAR_WIDTH, CHAR_HEIGHT, 0)) elif data[row][tile] == "n": net.append(Net(x, y, TILE_WIDTH, TILE_HEIGHT, 6)) elif data[row][tile] == "c": net.append(Net(x, y, TILE_WIDTH, TILE_HEIGHT, 6)) climbers.append(Climber(x, y, CHAR_WIDTH, CHAR_HEIGHT, 0)) elif data[row][tile] == "s": stones.append(Stone(x, y, TILE_WIDTH, TILE_HEIGHT, 7)) x += TILE_WIDTH y -= TILE_HEIGHT # Return objects return tiles, net, stones, players, walkers, climbers, color
def __init__(self): Walker.__init__(self) events.AddListener(self) self.health = 3 self.state = State.normal self.upPressed = False self.rightPressed = False self.downPressed = False self.leftPressed = False self.xFriction = 1 self.yFriction = 2 self.xAccel = 1 self.yAccel = 1 self.xMax = 6 self.xMin = -6 self.yMax = 2 self.yMin = -2 self.stunCounter = 0 self.yoyo = LogicalYoyo() self.attacks = attacks.makeYoyoAttacks(self.yoyo) self.strings = [] self.selectedAttack = None
def send(): send.butt.setEnabled(False) robot = Robot("192.168.0.14", "5469") walk = Walker(robot) robot.locomotion.gait(stance, step, zmp, hack, sensor, stiff, odo, arm) walk.linear_go_to(300.0, 0.0, 100.0) time.sleep(1.0) while not walk.is_done(): time.sleep(1.0) walk.stop() send.butt.setEnabled(True)
def main(argv): # set up argument parsing # parser = argparse.ArgumentParser() # parser.add_argument('input_graph', help='Original graph input file, in\ # edge list format') # parser.add_argument('seed', help='Seed file, to pull start nodes from') # parser.add_argument('-e', '--restart_prob', type=float, default=0.7, # help='Restart probability for random walk') # parser.add_argument('-l', '--low_list', nargs='?', default=None, # help='<Optional> List of genes expressed and\ # unexpressed in the current tissue, if applicable') # parser.add_argument('-n', '--node_list', nargs='?', default=None, # help='<Optional> Order of output probs') # parser.add_argument('-o', '--original_graph_prob', type=float, default=0.1, # help='Probability of walking on the original (non-\ # tissue specific) graph, if applicable') # parser.add_argument('-r', '--remove', nargs='+', # help='<Optional> Nodes to remove from the graph, if any') # opts = parser.parse_args() #************************************************************************* seed = 'testdata/seeds.tsv' node_list = None seed_list = generate_seed_list(seed) node_list = get_node_list(node_list) if node_list else [] remove = None # filter nodes we want to remove out of the starting seed, if any remove_list = remove if remove else [] if remove_list: seed_list = [s for s in seed_list if s not in remove_list] # run the experiments, and write a rank list to stdout input_graph = 'testdata/observed_network.txt' restart_prob = 0.7 original_graph_prob = 0.1 low_list = None wk = Walker(input_graph, low_list, remove_list) wk.run_exp(seed_list, restart_prob, original_graph_prob, node_list)
def interactive(self): # Interactive mode running = True robot = None while running: # Deal with clicks and other events for event in pygame.event.get(): if event.type == QUIT: running = False if event.type == MOUSEBUTTONDOWN: robot = Walker(self.space, \ self._invy(event.pos), \ 80, 60, 10, pi/16, 0, 0, 0) self.step(0.02)
class Scanner: def __init__(self, path): self.path = path self.queue = Queue.PriorityQueue() self.watcher = Watcher(path, self.queue) self.walker = Walker(path, self.queue, Settings.is_rescan_forced()) self.reader = Reader(self.queue) self.validator = Validator(self.queue) def start(self): self.validator.start() self.watcher.start() self.walker.start() self.reader.start() def stop(self): self.watcher.stop() self.reader.stop() self.validator.join() self.walker.join() self.watcher.join() self.reader.join()
def main(file_path=None, all_sync=False): inifile = cp.SafeConfigParser() inifile.read(os.getcwd() + "/confing.ini") """ load config file """ host = inifile.get("receiver", "host") port = inifile.get("receiver", "port") user = inifile.get("receiver", "user") passwd = inifile.get("receiver", "passwd") header_path = inifile.get("file", "header_path") transfer = Transfer("ftp") transfer.inst.connect(host, port, user, passwd) if all_sync: syncdir = inifile.get("all_sync", "syncdir") walker = Walker(syncdir) w = walker.start() while True: try: file_path = w.next() remote_path = file_path.replace(header_path, "") dirname = os.path.dirname(remote_path) filename = os.path.basename(remote_path) send(transfer.inst, dirname, filename, file_path) except StopIteration: return if file_path: remote_path = file_path.replace(header_path, "") if remote_path[0] != "/": remote_path = "/" + remote_path dirname = os.path.dirname(remote_path) filename = os.path.basename(remote_path) """ Connection with remote server """ send(transfer.inst, dirname, filename, file_path)
class Smartie(object): ''' Class to connect to and publish the Korg NanoKontrol midi device as a ros joystick ''' def __init__(self): ''' connect to midi device and set up ros ''' self.sp = SmartPAD('SmartPAD') self.axis = Axis() self.axis.init() self.walker = Walker() self.walker.init() self.web = pages.Pages() rospy.loginfo("Using input device %s" % self.sp.device) os.environ['PORT'] = '8081' def finish(self): self.sp.finish() self.axis.fini() self.web.finish() #del self.sp #del self.axis def run(self): try: thread.start_new_thread(self.web.run, ()) while not rospy.is_shutdown(): done, data, steps = self.sp.readin() if done: rospy.signal_shutdown("Smartie Done") self.axis.process_keys(data) self.walker.process_keys(steps) finally: rospy.loginfo("Smartie Died") self.finish()
def run_memory_safe_(self, time, display_progress = False): population_changes = {key: np.zeros(self.times.shape[0]) for key in self.chain.node_ids} prg = np.arange(0, np.sum(self.population), 1) prg_count = 0 for p in range(len(self.population)): trans_prob = self.chain.get_node_transition_probability(self.chain.node_ids[p]) next_step_processor = Markov(trans_prob) for i in range(self.population[p]): iteration = 0 walker = Walker(next_step_processor = next_step_processor,\ initial_id = self.chain.node_ids[p]) for tt in self.times[1:]: curr = walker.current_position() walker.next_step_processor.transition_probability = \ self.chain.nodes[curr].transition_probability next_pos = self.chain.next(curr) if len(next_pos) == 0: walker.empty_step() continue pmf = self.chain.get_node_probability_mass_function(curr) pmf = [pmf[pos] for pos in next_pos] walker.walk(possible_states = next_pos, \ current_state = curr, \ probability_mass_function = pmf) nxt = walker.current_position() population_changes[curr][iteration] -= 1 population_changes[nxt][iteration] += 1 iteration += 1 if display_progress: self._display_progress(prg_count, prg) prg_count += 1 return population_changes
class Graph(): def __init__(self, lines): self.lines = lines self.corners = [] self.horizon_lines = [] self.vertical_lines = [] self.walker = None self.set_directed_lines() self.make_graph() def set_directed_lines(self): for line in self.lines: if line.direction is 'h': self.horizon_lines.append(line) else: self.vertical_lines.append(line) def make_graph(self): for h_line in self.horizon_lines: coeff_x, coeff_y, bias = h_line.eq for v_line in self.vertical_lines: cx, cy, b = v_line.eq A = np.array([[coeff_x, coeff_y], [cx, cy]]) B = np.array([bias, b]) root = Corner(np.linalg.solve(A, B).astype(int)) h_line.corners.append(root) v_line.corners.append(root) self.corners.append(root) for line in self.lines: line.line_link() self.walker = Walker(self.corners) def get_quad_list(self): return self.walker.get_quad_list()
def setup(self): self.walker = Walker(self) self.background(255)
def visitFunction(self, node): print "[fn]", node.name Walker.visitFunction(self, node)
WIDTH = 400 HEIGHT = 400 BACKGROUND = (0, 170, 0) screen = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption("Random walk with coloured trail") screen.fill(BACKGROUND) pygame.display.update() clock = pygame.time.Clock() def move(): return (random.choice([-2,0,2]), random.choice([-2,0,2])) pos = [WIDTH//2, HEIGHT//2] walker = Walker(screen, pos, get_move=move, size=2) it = 0 while True: clock.tick(120) for ev in pygame.event.get(): if ev.type == QUIT: pygame.quit() sys.exit() walker.walk() walker.c = (55,0,it) walker.pos[0] %= WIDTH walker.pos[1] %= HEIGHT walker.draw()