Exemple #1
0
    def create(self, n=""):

        if n == "":
            n = self.child + "_parentSpace"

        currentParent = iterable(mc.listRelatives(self.child, p=True))
        if len(currentParent) > 0:
            currentParent = currentParent[0]
        else:
            currentParent = ""

        ps = mc.createNode("transform", n=n, p=self.child)
        self.append(ps)

        if mc.objExists(currentParent):
            mc.parent(ps, currentParent)
        else:
            currentParent = "world"
            mc.parent(ps, w=True)

        if not mc.objExists(self.child + ".zenParentSpace"):
            mc.addAttr(self.child, at="message", ln="zenParentSpace")

        if not mc.objExists(self.child + ".zenPrevParentNum"):
            mc.addAttr(self.child, at="long", ln="zenPrevParentNum", k=0, dv=0)

        mc.connectAttr(ps + ".message", self.child + ".zenParentSpace")

        if self.world == "":
            worldTr = mc.createNode("transform", n="world")
        else:
            worldTr = self.world

        self.addParents([worldTr], en=["world"])

        mc.parent(self.child, ps)

        if self.world == "":
            md = mc.createNode("multiplyDivide")
            mc.setAttr(md + ".i1", *mc.getAttr(self.parentConstraint + ".tg[0].tt")[0])
            mc.connectAttr(md + ".o", self.parentConstraint + ".tg[0].tt", f=True)

            worldMatrix = mc.createNode("fourByFourMatrix")
            wm = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
            for a in range(0, 4):
                for b in range(0, 4):
                    mc.setAttr(worldMatrix + ".in" + str(a) + str(b), wm[a][b])

            mc.connectAttr(worldMatrix + ".o", self.parentConstraint + ".tg[0].tpm", f=True)
            disconnectNodes(worldTr)
            mc.delete(worldTr)
Exemple #2
0
	def __init__(self,*args,**keywords):

		# default options

		self.name='limb'
		self.stretch=20
		self.squash=0
		self.twist=True # performs auto detect
		self.sway=True
		self.switch='ik' # initial ik/fk switch state
		self.handleOptions=[{'type':'doubleEllipse','spin':-180},{'type':'doubleEllipse','spin':-90},{'type':'doubleEllipse'},{'type':'locator'}]
		self.tol=1.0 # angle tolerance for preferred angles
		self.parent=''

		self.shortNames=\
		{
			'n':'name',
			'p':'parent',
			'sp':'softParent',
			'co':'controlObjects',
			'ho':'handleOptions'
		}

		# attributes

		self.controlObjects=['','','','']
		self.bindPoses=[]
		self.joints=[]
		self.group=''
		self.orientAxis=''
		self.bendAxis=''
		self.poleAxis=''
		self.ctrlJoints=[]
		self.handles=[]
		self.endEffector=''
		self.ikHandle=''
		self.jointParent=''
		self.jointParent=''
		self.originalRotations={}
		self.bendDirection=0
		self.poleVector=[]
		self.poleVectorWorld=[]
		self.upVector=[]
		self.aimVector=[]
		self.parentSpaces=[]

		for k in keywords:

			if k in self.__dict__:
				exec('self.'+k+'=keywords[k]')
			elif k in self.shortNames:
				exec('self.'+self.shortNames[k]+'=keywords[k]')

		uniqueNames(re=True)

		if len(args)==0:
			args=mc.ls(sl=True)

		sel=[]
		for a in args:
			sel.extend(iterable(a))
		sel=hierarchyOrder(sel)

		# parse options

		defualtHandleOptions=[{'type':'doubleEllipse','spin':-180},{'type':'doubleEllipse','spin':-90},{'type':'doubleEllipse'},{'type':'locator'}]

		i=len(self.handleOptions)
		while len(self.handleOptions)<4:
			self.handleOption.append(defualtHandleOptions[i])
			i+=1

		if isinstance(self.handleOptions,dict):
			self.handleOptions=[self.handleOptions,self.handleOptions,self.handleOptions]
		elif isIterable(self.handleOptions):
			if len(self.handleOptions)==0:
				self.handleOptions.append({})
			while len(self.handleOptions)<3:
				self.handleOptions.append(self.handleOptions[-1])
		else:
			self.handleOptions=[{},{},{}]

		self.controlObjects=iterable(self.controlObjects)
		self.orientAxis=self.orientAxis.lower()

		self.baseTwist=''
		self.hierarchy=[]
		if len(sel)>2:
			for j in sel[:-1]:
				if len(hierarchyBetween(j,sel[-1]))>len(self.hierarchy):
					self.hierarchy=hierarchyBetween(j,sel[-1])
			closest=9e999
			for s in removeAll([self.hierarchy[0],self.hierarchy[-1]],sel):
				if\
				(
					len(iterable(mc.listRelatives(self.hierarchy[0],p=True)))==0 or
					s in mc.listRelatives(mc.listRelatives(self.hierarchy[0],p=True)[0],c=True,type='joint')
				):
					dist=distanceBetween(s,self.hierarchy[0])
					if dist<closest:
						closest=dist
						self.baseTwist=s
		else:
			self.hierarchy=hierarchyBetween(sel[0],sel[-1])

		self.bindPoses=iterable(getBindPoses(self.hierarchy))

		self.joints=['','','']

		if len(self.hierarchy)<3:
			raise Exception('There are no joints between your start and end joint. No IK created.')

		self.joints[0]=self.hierarchy[0]
		self.joints[-1]=self.hierarchy[-1]

		# find the orientation axis

		self.orientAxis='x'
		axisLen={'x':0,'y':0,'z':0}
		for j in self.hierarchy[1:]:
			for a in ['x','y','z']:
				axisLen[a]+=abs(mc.getAttr(j+'.t'+a))
				if axisLen[a]>axisLen[self.orientAxis]:
					self.orientAxis=a

		# find bend joint and pole vector

		self.originalRotations={}

		for j in self.hierarchy[1:-1]: # check to see if any have a non-zero preferred angle
			for a in removeAll(self.orientAxis,['x','y','z']):
				if abs(mc.getAttr(j+'.pa'+a))>=self.tol:
					self.originalRotations[j+'.r'+a]=mc.getAttr(j+'.r'+a)
					mc.setAttr(j+'.r'+a,mc.getAttr(j+'.pa'+a))
		greatestAngle=0
		for j in self.hierarchy[1:-1]:
			jPos=mc.xform(j,q=True,ws=True,rp=True)
			prevJPos=mc.xform(self.hierarchy[self.hierarchy.index(j)-1],q=True,ws=True,rp=True)
			nextJPos=mc.xform(self.hierarchy[self.hierarchy.index(j)+1],q=True,ws=True,rp=True)
			vAngle=mc.angleBetween(v1=normalize(jPos[0]-prevJPos[0],jPos[1]-prevJPos[1],jPos[2]-prevJPos[2]),v2=normalize(nextJPos[0]-jPos[0],nextJPos[1]-jPos[1],jPos[2]-jPos[2]))[-1]
			if abs(vAngle)>greatestAngle:
				greatestAngle=abs(vAngle)
				self.joints[1]=j

		mp=midPoint\
		(
			self.hierarchy[0],self.hierarchy[-1],
			bias=\
			(
				distanceBetween(self.hierarchy[0],self.joints[1])/
				(distanceBetween(self.hierarchy[0],self.joints[1])+distanceBetween(self.joints[1],self.hierarchy[-1]))
			)
		)

		bendPoint=mc.xform(self.joints[1],q=True,ws=True,rp=True)

		self.poleVectorWorld=normalize\
		(
			bendPoint[0]-mp[0],
			bendPoint[1]-mp[1],
			bendPoint[2]-mp[2]
		)

		pmm=mc.createNode('pointMatrixMult')
		mc.setAttr(pmm+'.vm',True)
		mc.connectAttr(self.joints[1]+'.worldInverseMatrix',pmm+'.im')
		mc.setAttr(pmm+'.ip',*self.poleVectorWorld)

		self.poleVector=mc.getAttr(pmm+'.o')[0]

		disconnectNodes(pmm)
		mc.delete(pmm)

		greatestLength=0.0
		for i in [0,1,2]:
			if abs(self.poleVector[i])>greatestLength and ['x','y','z'][i]!=self.orientAxis:
				self.poleAxis=['x','y','z'][i]
				greatestLength=abs(self.poleVector[i])
				self.bendDirection=-abs(self.poleVector[i])/self.poleVector[i]

		for r in self.originalRotations:
			mc.setAttr(r,self.originalRotations[r])

		preferredAngleWarning=False
		if not mc.objExists(self.joints[1]):
			preferredAngleWarning=True
			mp=midPoint(self.hierarchy[0],self.hierarchy[-1])
			cd=9e999
			dist=0
			for j in self.hierarchy[1:-1]:
				dist=distanceBetween(j,mp)
				if dist<cd:
					cd=dist
					self.joints[1]=j
					self.bendAxis=removeAll(self.orientAxis,['z','y','x'])[0]

		if self.poleAxis=='': self.poleAxis=removeAll([self.orientAxis,self.bendAxis],['x','y','z'])[0]
		if self.bendAxis=='': self.bendAxis=removeAll([self.orientAxis,self.poleAxis],['x','y','z'])[0]
		if self.orientAxis=='': self.orientAxis=removeAll([self.bendAxis,self.poleAxis],['x','y','z'])[0]

		if self.poleAxis=='x': self.poleVector=[-self.bendDirection,0.0,0.0]
		if self.poleAxis=='y': self.poleVector=[0.0,-self.bendDirection,0.0]
		if self.poleAxis=='z': self.poleVector=[0.0,0.0,-self.bendDirection]

		if self.bendAxis=='x': self.upVector=[-self.bendDirection,0.0,0.0]
		if self.bendAxis=='y': self.upVector=[0.0,-self.bendDirection,0.0]
		if self.bendAxis=='z': self.upVector=[0.0,0.0,-self.bendDirection]

		if self.orientAxis=='x': self.aimVector=[self.bendDirection,0.0,0.0]
		if self.orientAxis=='y': self.aimVector=[0.0,self.bendDirection,0.0]
		if self.orientAxis=='z': self.aimVector=[0.0,0.0,self.bendDirection]

		if mc.objExists(self.baseTwist):

			conn=False
			for a in ['.r','.rx','.ry','.rz']:
				if mc.connectionInfo(self.baseTwist+a,id=True):
					conn=True
			if not conn:
				mc.orientConstraint(self.joints[0],self.baseTwist,sk=self.orientAxis)

		# load ik2Bsolver - ikRPSolver does not work well with this setup

		mel.eval('ik2Bsolver')

		self.create()

		if preferredAngleWarning:
			raise Warning('Warning: Joints are co-linear and no preferred angles were set. Results may be unpredictable.')
Exemple #3
0
	def create(self):

		worldMatrixNode=mc.createNode('fourByFourMatrix')
		wm=\
		[
			[1,0,0,0],
			[0,1,0,0],
			[0,0,1,0],
			[0,0,0,1]
		]
		for a in range(0,4):
			for b in range(0,4):
				mc.setAttr( worldMatrixNode+'.in'+str(a)+str(b), wm[a][b] )

		self.worldMatrix=worldMatrixNode+'.o'

		wsMatrices=[]

		cleanup=[]

		lattices=[]
		uvPos=[]
		antipodes=[]

		cpos=mc.createNode('closestPointOnSurface')

		if 'surfaceAttr' not in self.__dict__ or len(self.surfaceAttr)==0 and len(self.edges)>0:
			mc.select(self.edges)
			rebuildNode,surfaceNodeTr=mel.eval('zenLoftBetweenEdgeLoopPathRings(2)')[:2]
			self.surfaceAttr=rebuildNode+'.outputSurface'

			children=mc.listRelatives(surfaceNodeTr,c=True,s=True,ni=True,type='nurbsSurface')
			if isIterable(children) and len(children)>0:
				self.uSpans=mc.getAttr(children[0]+'.spansU')
				self.vSpans=mc.getAttr(children[0]+'.spansV')

			mc.disconnectAttr(self.surfaceAttr,surfaceNodeTr+'.create')
			mc.delete(surfaceNodeTr)


		if self.uSpans<0 or self.vSpans<0:
			tempTr=mc.createNode('transform')
			tempCurve=mc.createNode('nurbsCurve',p=tempTr)
			mc.connectAttr(self.surfaceAttr,tempCurve+'.create')
			self.uSpans=mc.getAttr(tempCurve+'.spansU')
			self.vSpans=mc.getAttr(tempCurve+'.spansV')
			mc.disconnectAttr(self.surfaceAttr,tempCurve+'.create')
			mc.delete(tempTr)

		orderedTrs=[]
		orderedCtrls=[]

		if self.distribute not in ['u','v']: #calculate the axis of distribution
			if len(self.trs)!=0:
				mc.connectAttr(self.surfaceAttr,cpos+'.inputSurface')
				uMin=100
				vMin=100
				uMax=0
				vMax=0
				uPosList=[]
				vPosList=[]

				for i in range(0,self.number):

					orderedTrs.append('')
					orderedCtrls.append('')
					t=self.trs[i]

					if mc.objExists(t): # find the closest point
						if self.hasGeometry:
							center=mc.objectCenter(t)
							mc.setAttr(cpos+'.ip',*center)
							posCenter,uCenter,vCenter=mc.getAttr(cpos+'.p')[0],mc.getAttr(cpos+'.u'),mc.getAttr(cpos+'.v')

						rp=mc.xform(t,ws=True,q=True,rp=True)
						mc.setAttr(cpos+'.ip',*rp)
						posRP,uRP,vRP=mc.getAttr(cpos+'.p')[0],mc.getAttr(cpos+'.u'),mc.getAttr(cpos+'.v')

						# see which is closer - object center or rotate pivot
						if self.hasGeometry:
							distCenter=distanceBetween(posCenter,center)
							distRP=distanceBetween(posRP,rp)

						if self.hasGeometry==False or abs(distCenter)>abs(distRP) :
							uPosList.append(uRP)
							vPosList.append(vRP)
							if uRP<uMin: uMin=uRP
							if uRP>uMax: uMax=uRP
							if vRP<vMin: vMin=vRP
							if vRP>vMax: vMax=vRP
						else:
							uPosList.append(uCenter)
							vPosList.append(vCenter)
							if uCenter<uMin: uMin=uCenter
							if uCenter>uMax: uMax=uCenter
							if vCenter<vMin: vMin=vCenter
							if vCenter>vMax: vMax=vCenter

			cfsi=mc.createNode('curveFromSurfaceIso')

			mc.connectAttr(self.surfaceAttr,cfsi+'.is')
			mc.setAttr(cfsi+'.idr',0)
			mc.setAttr(cfsi+'.iv',.5)
			mc.setAttr(cfsi+'.r',True)
			mc.setAttr(cfsi+'.rv',True)

			if len(self.trs)!=0:
				mc.setAttr(cfsi+'.min',uMin)
				mc.setAttr(cfsi+'.max',uMax)

			ci=mc.createNode('curveInfo')
			mc.connectAttr(cfsi+'.oc',ci+'.ic')
			uLength=mc.getAttr(ci+'.al')

			mc.setAttr(cfsi+'.idr',1)

			if len(self.trs)!=0:
				mc.setAttr(cfsi+'.min',vMin)
				mc.setAttr(cfsi+'.max',vMax)

			vLength=mc.getAttr(ci+'.al')

			mc.delete(cfsi,ci)

			if uLength>vLength:
				self.distribute='u'

				if len(self.trs)!=0:
					searchList=uPosList
					orderedList=uPosList[:]
					orderedList.sort()
			else:
				self.distribute='v'

				if len(self.trs)!=0:
					searchList=vPosList
					orderedList=vPosList[:]
					orderedList.sort()

			reverseTrs=False

			orderIDList=[]
			for n in range(0,self.number):
				s=searchList[n]
				for i in range(0,self.number):
					if s==orderedList[i] and i not in orderIDList:
						orderIDList.append(i)
						orderedTrs[i]=self.trs[n]
						orderedCtrls[i]=self.ctrls[n]
						if n==0 and i>len(self.trs)/2:
							reverseTrs=True
						break

			if reverseTrs:
				orderedTrs.reverse()
				self.trs=orderedTrs
				orderedCtrls.reverse()
				self.ctrls=orderedCtrls
			else:
				self.trs=orderedTrs
				self.ctrls=orderedCtrls

		if self.rebuild: # interactive rebuild, maintains even parameterization over the rivet surface, use with caution

			if self.distribute=='u':
				self.surfaceAttr=mel.eval('zenUniformSurfaceRebuild("'+self.surfaceAttr+'",'+str(self.uSpans*2)+',-1)')+'.outputSurface'
			else:
				self.surfaceAttr=mel.eval('zenUniformSurfaceRebuild("'+self.surfaceAttr+'",-1,'+str(self.vSpans*2)+')')+'.outputSurface'

		if not mc.isConnected(self.surfaceAttr,cpos+'.inputSurface'):
			mc.connectAttr(self.surfaceAttr,cpos+'.inputSurface',f=True)

		if self.taper=='distance' or self.createAimCurve or self.closestPoint=='geometry': # find the closest points ( and antipodes )

			for i in range(0,self.number):
				t=self.trs[i]
				cp=ClosestPoints(self.surfaceAttr,t)
				self.ClosestPoints.append(cp)

				if self.taper=='distance' or self.createAimCurve: # antipodes are used for lattice allignment and curve calculations
					antipodes.append(cp.getAntipodes(1))

		if self.taper!='none' or self.scale!='none': # measures scale with scaling

			cfsiLength=mc.createNode('curveFromSurfaceIso')
			ciLength=mc.createNode('curveInfo')
			lengthMultiplierNode=mc.createNode('multDoubleLinear')

			mc.setAttr(cfsiLength+'.relative',True)
			mc.setAttr(cfsiLength+'.relativeValue',True)

			if self.distribute=='u':
				mc.setAttr(cfsiLength+'.isoparmDirection',0)
			else:
				mc.setAttr(cfsiLength+'.isoparmDirection',1)

			mc.setAttr(cfsiLength+'.minValue',0)
			mc.setAttr(cfsiLength+'.maxValue',1)

			mc.setAttr(cfsiLength+".isoparmValue",.5)

			mc.connectAttr(self.surfaceAttr,cfsiLength+'.inputSurface')

			if mc.objExists(self.spaceTr):

				lengthCurve=mc.createNode('nurbsCurve',p=self.spaceTr)
				lengthCurveTG=mc.createNode('transformGeometry')

				mc.connectAttr(self.spaceTr+'.worldMatrix[0]',lengthCurveTG+'.txf')
				mc.connectAttr(cfsiLength+'.outputCurve',lengthCurveTG+'.ig')
				mc.connectAttr(lengthCurveTG+'.og',lengthCurve+'.create')
				mc.connectAttr(lengthCurve+'.worldSpace',ciLength+'.inputCurve')
				mc.setAttr(lengthCurve+'.intermediateObject',True)

				cleanup.extend([lengthCurveTG,cfsiLength])

			else:

				mc.connectAttr(cfsiLength+'.outputCurve',ciLength+'.inputCurve')

			mc.connectAttr(ciLength+'.al',lengthMultiplierNode+'.i1')
			mc.setAttr(lengthMultiplierNode+'.i2',1.0/float(mc.getAttr(ciLength+'.al')))

			lengthMultiplier=lengthMultiplierNode+'.o'


		uvPos=[]
		closestDistanceToCenter=Decimal('infinity')
		centerMostRivetID=0
		closestDistancesToCenter=[Decimal('infinity'),Decimal('infinity')]
		centerMostRivetIDs=[0,0]

		uvMultipliers=[]
		aimGroups=[]

		for i in range(0,self.number):

			pTrs=mc.listRelatives(self.trs[i],p=True)
			parentTr=''
			if len(iterable(pTrs))>0:
				parentTr=pTrs[0]

			t=self.trs[i]
			c=self.ctrls[i]
			r=mc.createNode('transform',n='Rivet#')

			wsMatrices.append(mc.xform(t,q=True,ws=True,m=True))

			if self.constraint: mc.setAttr(r+'.inheritsTransform',False)

			if not mc.objExists(c):
				c=t
				if not mc.objExists(t):
					c=r

			if not mc.objExists(c+'.zenRivet'):
				mc.addAttr(c,at='message',ln='zenRivet',sn='zriv')

			mc.connectAttr(r+'.message',c+'.zriv',f=True)

			if not mc.objExists(c+'.uPos'):
				mc.addAttr(c,k=True,at='double',ln='uPos',dv=50)
			if not mc.objExists(c+'.vPos'):
				mc.addAttr(c,k=True,at='double',ln='vPos',dv=50)

			if self.closestPoint=='geometry':
				up,vp=self.ClosestPoints[i].uvs[0]
			else:
				if mc.objExists(t):
					if self.hasGeometry:
						center=mc.objectCenter(t)
						mc.setAttr(cpos+'.ip',*center)
						posCenter,uCenter,vCenter=mc.getAttr(cpos+'.p')[0],mc.getAttr(cpos+'.u'),mc.getAttr(cpos+'.v')

					rp=mc.xform(t,ws=True,q=True,rp=True)
					mc.setAttr(cpos+'.ip',*rp)
					posRP,uRP,vRP=mc.getAttr(cpos+'.p')[0],mc.getAttr(cpos+'.u'),mc.getAttr(cpos+'.v')

					if self.hasGeometry:
						distCenter=distanceBetween(posCenter,center)
						distRP=distanceBetween(posRP,rp)

					if self.hasGeometry==False or abs(distCenter)>abs(distRP):
						up=uRP
						vp=vRP
					else:
						up=uCenter
						vp=vCenter

				elif len(distribute)>0:

					if self.distribute=='u':
						up=(i+1)/self.number
						vp=.5
					else:
						up=.5
						vp=(i+1)/self.number

			if up>float(self.uSpans)-.01: up=float(self.uSpans)-.01
			if vp>float(self.vSpans)-.01: vp=float(self.vSpans)-.01
			if up<.01: up=.01
			if vp<.01: vp=.01

			uvPos.append((up,vp))

			if up<.5 and self.distribute=='u' and Decimal(str(abs(.5-up)))<Decimal(str(closestDistancesToCenter[0])):
				closestDistancesToCenter[0]=abs(.5-up)
				centerMostRivetIDs[0]=i

			if up>.5 and self.distribute=='u' and Decimal(str(abs(.5-up)))<Decimal(str(closestDistancesToCenter[1])):
				closestDistancesToCenter[1]=abs(.5-up)
				centerMostRivetIDs[1]=i

			if up<.5 and self.distribute=='v' and Decimal(str(abs(.5-vp)))<Decimal(str(closestDistancesToCenter[0])):
				closestDistancesToCenter[0]=abs(.5-vp)
				centerMostRivetIDs[0]=i

			if up>.5 and self.distribute=='v' and Decimal(str(abs(.5-vp)))<Decimal(str(closestDistancesToCenter[1])):
				closestDistancesToCenter[1]=abs(.5-vp)
				centerMostRivetIDs[1]=i

			mc.setAttr(c+'.uPos',up*100)
			mc.setAttr(c+'.vPos',vp*100)

			posi=mc.createNode('pointOnSurfaceInfo')
			mc.setAttr((posi+".caching"),True)
			#mc.setAttr((posi+".top"),True)

			multiplyU=mc.createNode('multDoubleLinear')
			mc.connectAttr(c+".uPos",multiplyU+".i1")
			mc.setAttr(multiplyU+'.i2',.01)
			multiplyV=mc.createNode('multDoubleLinear')
			mc.connectAttr(c+".vPos",multiplyV+".i1")
			mc.setAttr(multiplyV+'.i2',.01)

			uvMultipliers.append([multiplyU,multiplyV])

			mc.connectAttr(self.surfaceAttr,posi+".inputSurface");
			mc.connectAttr(multiplyU+".o",posi+".parameterU")
			mc.connectAttr(multiplyV+".o",posi+".parameterV")

			dm=mc.createNode('decomposeMatrix')
			mc.setAttr(dm+'.caching',True)
			fbfm=mc.createNode('fourByFourMatrix')
			mc.setAttr(fbfm+'.caching',True)

			mc.connectAttr(posi+'.nnx',fbfm+'.in00')
			mc.connectAttr(posi+'.nny',fbfm+'.in01')
			mc.connectAttr(posi+'.nnz',fbfm+'.in02')
			mc.connectAttr(posi+'.nux',fbfm+'.in10')
			mc.connectAttr(posi+'.nuy',fbfm+'.in11')
			mc.connectAttr(posi+'.nuz',fbfm+'.in12')
			mc.connectAttr(posi+'.nvx',fbfm+'.in20')
			mc.connectAttr(posi+'.nvy',fbfm+'.in21')
			mc.connectAttr(posi+'.nvz',fbfm+'.in22')
			mc.connectAttr(posi+'.px',fbfm+'.in30')
			mc.connectAttr(posi+'.py',fbfm+'.in31')
			mc.connectAttr(posi+'.pz',fbfm+'.in32')

			if self.constraint:# and not self.parent:
				mc.connectAttr(fbfm+'.output',dm+'.inputMatrix')
			else:
				multMatrix=mc.createNode('multMatrix')
				mc.connectAttr(r+'.parentInverseMatrix',multMatrix+'.i[1]')
				mc.connectAttr(fbfm+'.output',multMatrix+'.i[0]')
				mc.connectAttr(multMatrix+'.o',dm+'.inputMatrix')

			mc.connectAttr(dm+'.outputTranslate',r+'.t')
			mc.connectAttr(dm+'.outputRotate',r+'.r')

			if t!=r:

				if self.createAimCurve:
					aimGroup=mc.createNode('transform',n='rivetAimGrp#')
					mc.parent(aimGroup,t,r=True)
					mc.parent(aimGroup,r)
					if self.keepPivot or self.closestPoint=='pivot':
						mc.xform(aimGroup,ws=True,piv=mc.xform(t,q=True,ws=True,rp=True))
					else:
						mc.xform(aimGroup,ws=True,piv=self.ClosestPoints[i][1])
					self.aimGroups.append(aimGroup)

				if self.constraint:

					if self.parent: # parent and constraint == ParentSpace

						self.parentSpaces.append(ParentSpace(t,r))
						pc=self.parentSpaces[i].parentConstraint

						sc=self.parentSpaces[i].scaleConstraint

						skip=['x']
						if\
						(
							(self.distribute=='v' and 'length' in self.scaleDirection) or
							(self.distribute=='u' and 'width' in self.scaleDirection) or
							t in self.skipScaleObjects
						):
							skip.append('y')
						if\
						(
							(self.distribute=='u' and 'length' in self.scaleDirection) or
							(self.distribute=='v' and 'width' in self.scaleDirection) or
							t in self.skipScaleObjects
						):
							skip.append('z')

						mc.scaleConstraint(sc,e=True,sk=skip)

						if t in self.skipRotateObjects:
							mc.parentConstraint(pc,e=True,sr=('x','y','z'))
						if t in self.skipTranslateObjects:
							mc.parentConstraint(pc,e=True,st=('x','y','z'))

					else: #just constraint

						if t in self.skipRotateObjects:
							pc=mc.parentConstraint(r,t,sr=('x','y','z'),mo=True)[0]#
						if t in self.skipTranslateObjects:
							pc=mc.parentConstraint(r,t,st=('x','y','z'),mo=self.mo)[0]
						if t not in self.skipRotateObjects and t not in self.skipTranslateObjects:
							pc=mc.parentConstraint(r,t,mo=self.mo)[0]



					pcTargets=mc.parentConstraint(pc,q=True,tl=True)

					pcIDs=[]

					nsc=listNodeConnections(r,pc,s=False,d=True)

					for n in range(0,len(nsc)):
						if len(nsc[n])==2 and mc.objExists(nsc[n][-1]):
							pcID=getIDs(nsc[n][-1])
							if isinstance(pcID,int):
								pcIDs.append(pcID)

					pcIDs=removeDuplicates(pcIDs)

					for pcID in pcIDs:
						mc.connectAttr(self.worldMatrix,pc+'.tg['+str(pcID)+'].tpm',f=True)
						mc.connectAttr(dm+'.outputTranslate',pc+'.tg['+str(pcID)+'].tt',f=True)
						mc.connectAttr(dm+'.outputRotate',pc+'.tg['+str(pcID)+'].tr',f=True)

					cleanup.append(r)

					if self.parent:

						scTargets=mc.scaleConstraint(sc,q=True,tl=True)

						scIDs=[]

						nsc=listNodeConnections(r,sc,s=False,d=True)

						for n in range(0,len(nsc)):
							if len(nsc[n])==2 and mc.objExists(nsc[n][-1]):
								scIDs.append(getIDs(nsc[n][-1]))

						scIDs=removeDuplicates(scIDs)

						scMD=mc.createNode('multiplyDivide')
						mc.setAttr(scMD+'.i1',1,1,1)
						mc.setAttr(scMD+'.i2',1,1,1)

						for scID in scIDs:

							mc.connectAttr(self.worldMatrix,sc+'.tg['+str(scID)+'].tpm',f=True)
							#mc.connectAttr(scMD+'.o',sc+'.tg['+str(scID)+'].ts',f=True)
							mc.connectAttr(scMD+'.ox',sc+'.tg['+str(scID)+'].tsx',f=True)
							mc.connectAttr(scMD+'.oy',sc+'.tg['+str(scID)+'].tsy',f=True)
							mc.connectAttr(scMD+'.oz',sc+'.tg['+str(scID)+'].tsz',f=True)

						r=self.parentSpaces[i][0]
						#xfm=mc.xform(r,q=True,ws=True,m=True)
						#mc.setAttr(r+'.inheritsTransform',False)
						#mc.xform(r,m=xfm)
						#mc.connectAttr(self.surfaceMatrix,multMatrix+'.i[1]',f=True)#self.parentSpaces[i][0]+'.parentInverseMatrix'

				elif self.createAimCurve:
					mc.parent(t,w=True)
					mc.setAttr(t+'.inheritsTransform',False)
					mc.parent(t,r,r=True)
				else:
					mc.parent(t,r)

				if mc.objExists(parentTr) and (self.parent or self.createAimCurve) and not self.constraint:

					if not (parentTr in iterable(mc.listRelatives(r,p=True))):

						if mc.getAttr(r+'.inheritsTransform')==True:
							mc.parent(r,parentTr,r=True)
						else:
							mc.parent(r,parentTr)

					if mc.getAttr(r+'.inheritsTransform')==False:

						dm=mc.createNode('decomposeMatrix')
						mc.connectAttr(parentTr+'.worldMatrix',dm+'.inputMatrix')
						mc.connectAttr(dm+'.os',t+'.s',f=True)

			if self.taper!='none' or self.scale!='none':

				cfsiU=mc.createNode('curveFromSurfaceIso')

				mc.setAttr(cfsiU+'.relative',True)
				mc.setAttr(cfsiU+'.relativeValue',True)
				mc.setAttr(cfsiU+'.isoparmDirection',0)
				mc.setAttr(cfsiU+'.minValue',0)
				mc.setAttr(cfsiU+'.maxValue',1)

				mc.connectAttr(multiplyV+".o",cfsiU+".isoparmValue")
				mc.connectAttr(self.surfaceAttr,cfsiU+'.inputSurface')

				cfsiV=mc.createNode('curveFromSurfaceIso')

				mc.setAttr(cfsiV+'.relative',True)
				mc.setAttr(cfsiV+'.relativeValue',True)
				mc.setAttr(cfsiV+'.isoparmDirection',1)
				mc.setAttr(cfsiV+'.minValue',0)
				mc.setAttr(cfsiV+'.maxValue',1)

				mc.connectAttr(multiplyV+".o",cfsiV+".isoparmValue")
				mc.connectAttr(self.surfaceAttr,cfsiV+'.inputSurface')

				subtractNode=mc.createNode('addDoubleLinear')
				mc.setAttr(subtractNode+'.i1',-(1/(self.number*2)))
				addNode=mc.createNode('addDoubleLinear')
				mc.setAttr(addNode+'.i1',1/(self.number*2))
				addSubClampNode=mc.createNode('clamp')
				mc.setAttr(addSubClampNode+'.min',0,0,0)
				mc.setAttr(addSubClampNode+'.max',1,1,1)
				mc.connectAttr(subtractNode+'.o',addSubClampNode+'.inputR')
				mc.connectAttr(addNode+'.o',addSubClampNode+'.inputG')

				if self.distribute=='u':
					mc.connectAttr(multiplyU+".o",subtractNode+".i2")
					mc.connectAttr(multiplyU+".o",addNode+".i2")
					mc.connectAttr(addSubClampNode+'.outputR',cfsiU+'.minValue')
					mc.connectAttr(addSubClampNode+'.outputG',cfsiU+'.maxValue')
				else:
					mc.connectAttr(multiplyV+".o",subtractNode+".i2")
					mc.connectAttr(multiplyV+".o",addNode+".i2")
					mc.connectAttr(addSubClampNode+'.outputR',cfsiV+'.minValue')
					mc.connectAttr(addSubClampNode+'.outputG',cfsiV+'.maxValue')

				ciU=mc.createNode('curveInfo')
				mc.connectAttr(cfsiU+'.outputCurve',ciU+'.inputCurve')

				ciV=mc.createNode('curveInfo')
				mc.connectAttr(cfsiV+'.outputCurve',ciV+'.inputCurve')

				mdlU=mc.createNode('multDoubleLinear')
				mc.connectAttr(ciU+'.al',mdlU+'.i1')
				mc.setAttr(mdlU+'.i2',1/float(mc.getAttr(ciU+'.al')))

				mdlV=mc.createNode('multDoubleLinear')
				mc.connectAttr(ciV+'.al',mdlV+'.i1')
				mc.setAttr(mdlV+'.i2',1/float(mc.getAttr(ciV+'.al')))

				if not mc.objExists(c+'.minScaleWidth'): mc.addAttr(c,ln='minScaleWidth',at='double',k=True,min=0,dv=self.minScaleWidth)
				if not mc.objExists(c+'.maxScaleWidth'): mc.addAttr(c,ln='maxScaleWidth',at='double',k=True,min=0,dv=self.maxScaleWidth)
				if not mc.objExists(c+'.minScaleLength'): mc.addAttr(c,ln='minScaleLength',at='double',k=True,min=0,dv=self.minScaleLength)
				if not mc.objExists(c+'.maxScaleLength'): mc.addAttr(c,ln='maxScaleLength',at='double',k=True,min=0,dv=self.maxScaleLength)

				clampNode=mc.createNode('clamp')

				minScaleLengthNode=mc.createNode('multDoubleLinear')
				maxScaleLengthNode=mc.createNode('multDoubleLinear')
				minScaleWidthNode=mc.createNode('multDoubleLinear')
				maxScaleWidthNode=mc.createNode('multDoubleLinear')

				mc.connectAttr(c+'.minScaleLength',minScaleLengthNode+'.i1')
				mc.connectAttr(lengthMultiplier,minScaleLengthNode+'.i2')

				mc.connectAttr(c+'.maxScaleLength',maxScaleLengthNode+'.i1')
				mc.connectAttr(lengthMultiplier,maxScaleLengthNode+'.i2')

				mc.connectAttr(c+'.minScaleWidth',minScaleWidthNode+'.i1')
				mc.connectAttr(lengthMultiplier,minScaleWidthNode+'.i2')

				mc.connectAttr(c+'.maxScaleWidth',maxScaleWidthNode+'.i1')
				mc.connectAttr(lengthMultiplier,maxScaleWidthNode+'.i2')

				if self.distribute=='u':
					mc.connectAttr(minScaleLengthNode+'.o',clampNode+'.minR')
					mc.connectAttr(maxScaleLengthNode+'.o',clampNode+'.maxR')
					mc.connectAttr(minScaleWidthNode+'.o',clampNode+'.minG')
					mc.connectAttr(maxScaleWidthNode+'.o',clampNode+'.maxG')
				else:
					mc.connectAttr(minScaleWidthNode+'.o',clampNode+'.minR')
					mc.connectAttr(maxScaleWidthNode+'.o',clampNode+'.maxR')
					mc.connectAttr(minScaleLengthNode+'.o',clampNode+'.minG')
					mc.connectAttr(maxScaleLengthNode+'.o',clampNode+'.maxG')

				mc.connectAttr(mdlU+'.o',clampNode+'.ipr')
				mc.connectAttr(mdlV+'.o',clampNode+'.ipg')

				if self.scale=='relative' and self.parent:#or len(self.scaleDirection)<2:#

					if\
					(
						(self.distribute=='u' and 'length' in self.scaleDirection) or
						(self.distribute=='v' and 'width' in self.scaleDirection)
					):
						if self.constraint:
							mc.connectAttr(clampNode+'.opr',scMD+'.i1y')
						else:
							mc.connectAttr(clampNode+'.opr',r+'.sy',f=True)
					if\
					(
						(self.distribute=='v' and 'length' in self.scaleDirection) or
						(self.distribute=='u' and 'width' in self.scaleDirection)
					):
						if self.constraint:
							mc.connectAttr(clampNode+'.opg',scMD+'.i1z')
						else:
							mc.connectAttr(clampNode+'.opg',r+'.sz',f=True)


				elif self.taper!='none' and self.parent:

					#self.autoFlexGroups

					mc.setAttr(t+'.sx',lock=True)
					mc.setAttr(t+'.sy',lock=True)
					mc.setAttr(t+'.sz',lock=True)
					mc.setAttr(t+'.tx',lock=True)
					mc.setAttr(t+'.ty',lock=True)
					mc.setAttr(t+'.tz',lock=True)
					mc.setAttr(t+'.rx',lock=True)
					mc.setAttr(t+'.ry',lock=True)
					mc.setAttr(t+'.rz',lock=True)

					aimTr=mc.createNode('transform',p=t)
					mc.xform(aimTr,ws=True,t=antipodes[i])

					#mc.setAttr(db+'.p1',*self.ClosestPoints[i][0])
					#mc.setAttr(db+'.p2',*antipodes[i])
					axisLength=distanceBetween(self.ClosestPoints[i][0],antipodes[i])#mc.getAttr(db+'.d')

					ffd,lattice,latticeBase=mc.lattice(t,divisions=(2,2,2),objectCentered=True,ol=1)
					latticeLowEndPoints=mc.ls(lattice+'.pt[0:1][0:0][0:1]',fl=True)
					latticeHighEndPoints=mc.ls(lattice+'.pt[0:1][1:1][0:1]',fl=True)

					mc.parent(latticeBase,lattice)

					mc.setAttr(lattice+'.sy',axisLength)

					lattices.append([ffd,lattice,latticeBase])

					mc.parent(lattice,t)
					mc.xform(lattice,ws=True,a=True,t=mc.xform(r,q=True,ws=True,a=True,rp=True))
					mc.xform(lattice,os=True,a=True,ro=(0,0,0))
					mc.move(0,axisLength/2,0,lattice,r=True,os=True,wd=True)

					xSum,ySum,zSum=0,0,0
					for p in latticeLowEndPoints:
						px,py,pz=mc.pointPosition(p,w=True)
						xSum+=px
						ySum+=py
						zSum+=pz

					mc.xform(lattice,ws=True,piv=(xSum/len(latticeLowEndPoints),ySum/len(latticeLowEndPoints),zSum/len(latticeLowEndPoints)))
					mc.xform(latticeBase,ws=True,piv=(xSum/len(latticeLowEndPoints),ySum/len(latticeLowEndPoints),zSum/len(latticeLowEndPoints)))

					ac=mc.aimConstraint(aimTr,lattice,aim=(0,1,0),wut='objectrotation',wuo=r,u=(0,0,1),mo=False)
					mc.delete(ac)

					ac=mc.aimConstraint(aimTr,aimGroup,aim=(0,1,0),wut='objectrotation',wuo=r,u=(0,0,1),mo=False)
					mc.delete(ac,aimTr)

					lowEndCluster,lowEndClusterHandle=mc.cluster(latticeLowEndPoints)[:2]
					highEndCluster,highEndClusterHandle=mc.cluster(latticeHighEndPoints)[:2]

					lowEndClusterHandleShape=mc.listRelatives(lowEndClusterHandle,c=True)[0]
					highEndClusterHandleShape=mc.listRelatives(highEndClusterHandle,c=True)[0]

					#mc.parent(highEndClusterHandle,t)

					if mc.isConnected(lowEndClusterHandleShape+'.clusterTransforms[0]',lowEndCluster+'.clusterXforms'):
						mc.disconnectAttr(lowEndClusterHandleShape+'.clusterTransforms[0]',lowEndCluster+'.clusterXforms')
					if mc.isConnected(highEndClusterHandleShape+'.clusterTransforms[0]',highEndCluster+'.clusterXforms'):
						mc.disconnectAttr(highEndClusterHandleShape+'.clusterTransforms[0]',highEndCluster+'.clusterXforms')

					self.autoFlexGroups.append\
					(
						(
							mc.createNode('transform',n='rivetBaseAutoFlex#',p=r),
							mc.createNode('transform',n='rivetEndAutoFlex#',p=aimGroup)
						)
					)

					self.handles.append\
					(
						(
							mc.createNode('transform',n='rivetBaseCtrl#',p=self.autoFlexGroups[i][0]),
							mc.createNode('transform',n='rivetEndCtrl#',p=self.autoFlexGroups[i][1])
						)
					)

					self.handleShapes.append\
					(
						(
							mc.createNode('locator',p=self.handles[i][0]),
							mc.createNode('locator',p=self.handles[i][1])
						)
					)

					mc.setAttr(self.handleShapes[i][0]+'.los',.5,.5,.5)
					mc.setAttr(self.handleShapes[i][1]+'.los',.5,.5,.5)

					mc.xform(self.autoFlexGroups[i][0],ws=True,a=True,t=mc.xform(t,q=True,ws=True,rp=True))
					mc.xform(self.autoFlexGroups[i][0],ws=True,a=True,piv=mc.xform(t,q=True,ws=True,rp=True))

					for bp in self.bindPoses: mc.dagPose((self.handles[i][0],self.handles[i][1]),a=True,n=bp)

					mc.xform(self.autoFlexGroups[i][1],ws=True,t=antipodes[i])

					mc.hide(lattice)

					mc.connectAttr(self.handles[i][0]+'.worldInverseMatrix[0]',lowEndCluster+'.bindPreMatrix',f=True)
					mc.disconnectAttr(self.handles[i][0]+'.worldInverseMatrix[0]',lowEndCluster+'.bindPreMatrix')

					mc.connectAttr(self.handles[i][0]+'.worldMatrix[0]',lowEndCluster+'.matrix',f=True)

					mc.connectAttr(self.handles[i][1]+'.worldInverseMatrix[0]',highEndCluster+'.bindPreMatrix',f=True)
					mc.disconnectAttr(self.handles[i][1]+'.worldInverseMatrix[0]',highEndCluster+'.bindPreMatrix')

					mc.connectAttr(self.handles[i][1]+'.worldMatrix[0]',highEndCluster+'.matrix',f=True)

					aimGroups.append(aimGroup)

					if self.distribute=='u':
						mc.connectAttr(clampNode+'.opr',self.autoFlexGroups[i][0]+'.sy')
					else:
						mc.connectAttr(clampNode+'.opg',self.autoFlexGroups[i][0]+'.sz')

					mc.delete([lowEndClusterHandle,highEndClusterHandle])

				self.rivets.append(r)

		if self.createAimCurve and self.parent:

			pmm=mc.createNode('pointMatrixMult')
			arcPoints=[]
			ids=[0,centerMostRivetIDs[0],centerMostRivetIDs[1],-1]

			for id in ids:

				measureTr=mc.createNode('transform')
				aimTr=mc.createNode('transform',p=self.trs[id])
				mc.parent(measureTr,self.trs[id])

				mc.xform(aimTr,ws=True,t=antipodes[id])
				mc.xform(measureTr,ws=True,t=mc.xform(self.rivets[id],q=True,ws=True,a=True,rp=True))
				#mc.xform(measureTr,os=True,a=True,ro=(0,0,0),s=(1,1,1))

				ac=mc.aimConstraint(aimTr,measureTr,aim=(0,1,0),wut='objectrotation',wuo=self.rivets[id],u=(0,0,1),mo=False)
				mc.delete(ac,aimTr)

				mc.connectAttr(measureTr+'.worldInverseMatrix',pmm+'.inMatrix',f=True)

				maxYID=-1
				maxY=0.0
				yVal=0.0

				for i in range(0,self.number):

					mc.setAttr(pmm+'.ip',*antipodes[i])
					yVal=mc.getAttr(pmm+'.oy')
					if yVal>maxY:
						maxY=yVal
						maxYID=i

				mc.setAttr(pmm+'.ip',*antipodes[maxYID])

				oy=mc.getAttr(pmm+'.oy')

				mc.setAttr(pmm+'.ip',*antipodes[id])

				ox=mc.getAttr(pmm+'.ox')
				oz=mc.getAttr(pmm+'.oz')

				mc.connectAttr(measureTr+'.worldMatrix',pmm+'.inMatrix',f=True)
				mc.setAttr(pmm+'.ip',ox,oy,oz)

				ap=mc.getAttr(pmm+'.o')[0]

				arcPoints.append(ap)

				mc.disconnectAttr(measureTr+'.worldMatrix',pmm+'.inMatrix')

				mc.delete(measureTr)

			mc.delete(pmm)

			arcCtrlArg=arcPoints
			arcCtrlKeys={'arcWeight':self.arcWeight,'p':self.parents,'sp':self.softParents}

			for k in arcCtrlKeys:
				if type(arcCtrlKeys[k]).__name__=='NoneType':
					del(arcCtrlKeys[k])

			self.ArcCtrl=ArcCtrl(*arcCtrlArg,**arcCtrlKeys)

			mc.addAttr(self.ArcCtrl[0],at='bool',ln='showHandles',k=True,dv=False)
			mc.setAttr(self.ArcCtrl[0]+'.showHandles',k=False,cb=True)
			mc.setAttr(self.ArcCtrl[0]+'.v',k=False,cb=True)
			mc.setAttr(self.ArcCtrl[1]+'.v',k=False,cb=True)

			for h in self.handles:
				mc.connectAttr(self.ArcCtrl[0]+'.showHandles',h[0]+'.v')
				mc.connectAttr(self.ArcCtrl[0]+'.showHandles',h[1]+'.v')

			for bp in self.bindPoses: mc.dagPose(self.ArcCtrl,a=True,n=bp)

			cpoc=mc.createNode('closestPointOnCurve')
			mc.connectAttr(self.ArcCtrl.outputCurve,cpoc+'.inCurve')

			for i in range(0,self.number):

				aimTr=mc.createNode('transform')
				poci=mc.createNode('pointOnCurveInfo')
				dm=mc.createNode('decomposeMatrix')
				fbfm=mc.createNode('fourByFourMatrix')

				mc.connectAttr(poci+'.nnx',fbfm+'.in00')
				mc.connectAttr(poci+'.nny',fbfm+'.in01')
				mc.connectAttr(poci+'.nnz',fbfm+'.in02')
				mc.connectAttr(poci+'.ntx',fbfm+'.in10')
				mc.connectAttr(poci+'.nty',fbfm+'.in11')
				mc.connectAttr(poci+'.ntz',fbfm+'.in12')

				mc.connectAttr(self.ArcCtrl.outputNormal+'X',fbfm+'.in20')
				mc.connectAttr(self.ArcCtrl.outputNormal+'Y',fbfm+'.in21')
				mc.connectAttr(self.ArcCtrl.outputNormal+'Z',fbfm+'.in22')

				mc.connectAttr(poci+'.px',fbfm+'.in30')
				mc.connectAttr(poci+'.py',fbfm+'.in31')
				mc.connectAttr(poci+'.pz',fbfm+'.in32')

				mc.connectAttr(fbfm+'.output',dm+'.inputMatrix')
				mc.connectAttr(dm+'.outputTranslate',aimTr+'.t')
				mc.connectAttr(dm+'.outputRotate',aimTr+'.r')

				mc.setAttr(cpoc+'.ip',*antipodes[i])
				cpu=mc.getAttr(cpoc+'.u')
				mc.setAttr(poci+'.parameter',cpu)

				mc.connectAttr(self.ArcCtrl.outputCurve,poci+'.inputCurve')

				ac=mc.aimConstraint(aimTr,self.aimGroups[i],aim=(0,1,0),wut='objectrotation',wuo=aimTr,u=(0,0,1),mo=not(self.realign))[0]

				disconnectNodes(aimTr,ac)

				mc.connectAttr(fbfm+'.output',ac+'.worldUpMatrix',f=True)
				mc.connectAttr(dm+'.ot',ac+'.target[0].targetTranslate',f=True)

				mc.delete(aimTr)

				sc=mc.createNode('subCurve')

				mc.setAttr(sc+'.relative',True)
				mc.setAttr(sc+'.minValue',0)
				mc.setAttr(sc+'.maxValue',1)

				mc.connectAttr(self.ArcCtrl.outputCurve,sc+'.ic')

				if self.distribute=='u':
					uMultAttr=uvMultipliers[i][0]+".o"
				else:
					uMultAttr=uvMultipliers[i][1]+".o"

				#adjust for offset

				multOffsetCalc=mc.createNode('multDoubleLinear')
				mc.setAttr(multOffsetCalc+'.i1',1/mc.getAttr(uMultAttr))
				mc.connectAttr(uMultAttr,multOffsetCalc+'.i2')

				multOffset=mc.createNode('multDoubleLinear')
				mc.setAttr(multOffset+'.i1',cpu)
				mc.connectAttr(multOffsetCalc+'.o',multOffset+'.i2')

				mc.connectAttr(multOffset+'.o',poci+'.parameter',f=True)

				subtractNode=mc.createNode('addDoubleLinear')
				mc.setAttr(subtractNode+'.i1',-(1.0/(self.number*2)))
				addNode=mc.createNode('addDoubleLinear')
				mc.setAttr(addNode+'.i1',1.0/(self.number*2))
				addSubClampNode=mc.createNode('clamp')
				mc.setAttr(addSubClampNode+'.min',0,0,0)
				mc.setAttr(addSubClampNode+'.max',1,1,1)
				mc.connectAttr(subtractNode+'.o',addSubClampNode+'.inputR')
				mc.connectAttr(addNode+'.o',addSubClampNode+'.inputG')

				mc.connectAttr(multOffset+".o",subtractNode+".i2")
				mc.connectAttr(multOffset+".o",addNode+".i2")
				mc.connectAttr(addSubClampNode+'.outputR',sc+'.minValue')
				mc.connectAttr(addSubClampNode+'.outputG',sc+'.maxValue')

				ciU=mc.createNode('curveInfo')
				mc.connectAttr(sc+'.outputCurve',ciU+'.inputCurve')

				mdlU=mc.createNode('multDoubleLinear')
				mc.connectAttr(ciU+'.al',mdlU+'.i1')
				mc.setAttr(mdlU+'.i2',1/float(mc.getAttr(ciU+'.al')))

				clampNode=mc.createNode('clamp')

				if not mc.objExists(c+'.minScaleEnd'): mc.addAttr(self.ctrls[i],ln='minScaleEnd',at='double',k=True,min=0,max=1,dv=0)
				if not mc.objExists(c+'.maxScaleEnd'): mc.addAttr(self.ctrls[i],ln='maxScaleEnd',at='double',k=True,min=0,dv=1)

				mc.connectAttr(self.ctrls[i]+'.minScaleEnd',clampNode+'.minR')
				mc.connectAttr(self.ctrls[i]+'.maxScaleEnd',clampNode+'.maxR')

				mc.connectAttr(mdlU+'.o',clampNode+'.ipr')

				if self.distribute=='u':
					mc.connectAttr(clampNode+'.opr',self.autoFlexGroups[i][1]+'.sz')
				else:
					mc.connectAttr(clampNode+'.opr',self.autoFlexGroups[i][1]+'.sy')

			mc.delete(cpoc)

		if self.parent:
			self[:]=self.rivets
		else:
			self[:]=self.trs
		#if self.mo:
		#	#for i in len(self.trs):
		#		#try: mc.xform(t,q=True,ws=True,m=wsMatrices[i]))
		#		#except: pass

		cleanup.append(cpos)

		for c in cleanup:
			if mc.objExists(c):
				disconnectNodes(c)
				mc.delete(c)

		if self.snapToSurface:
			if self.createAimCurve or self.taper:
				for i in range(0,self.number):
					mc.xform(self.handles[i][0],ws=True,t=mc.xform(self.rivets[i],q=True,ws=True,rp=True))
					mc.xform(self.trs[i],ws=True,rp=mc.xform(self.rivets[i],q=True,ws=True,rp=True))
			else:
				for i in range(0,self.number):
					mc.xform(self.trs[i],ws=True,t=mc.xform(self.rivets[i],q=True,ws=True,rp=True))
					mc.xform(self.trs[i],ws=True,ro=mc.xform(self.rivets[i],q=True,ws=True,ro=True))
Exemple #4
0
	def create(self):

		# arguments and list options are reversed before and after creation to conform context with IK Handle creation
		for lo in self.__dict__:
			if isinstance(self.__dict__[lo],list):
				exec('self.'+lo+'.reverse()')

		self.arcCheck()

		trSpaces=[]
		cleanup=[]
		curveShapes=[]
		keep=[]

		loft=''

		if self.createSurface:
			xs=[0,1]
		else:
			xs=[0]

		for i in [0,1]:
			self.handles.append(mc.createNode('transform',n=self.names[i]))
			trSpaces.append(self.handles[-1])

		mc.addAttr(self.handles[1],ln='arcNormal',at='float3')
		mc.addAttr(self.handles[1],ln='arcNormalX',at='float',p='arcNormal')
		mc.addAttr(self.handles[1],ln='arcNormalY',at='float',p='arcNormal')
		mc.addAttr(self.handles[1],ln='arcNormalZ',at='float',p='arcNormal')

		blendCurveShapes=[]
		arc=[]
		bs=[]
		bn=[]
		mdlWidth=[]
		origShape=[]
		ci=[]
		spans=0
		ext=[]
		measureCurves=[]

		if len(xs)>1:

			mdlWidth.append(mc.createNode('multDoubleLinear'))
			mc.setAttr(mdlWidth[0]+'.i2',-.5)

			mdlWidth.append(mc.createNode('multDoubleLinear'))
			mc.setAttr(mdlWidth[1]+'.i2',.5)

		for x in xs:

			#align handles

			arc.append([])
			arc[x].append(mc.createNode('makeThreePointCircularArc',n='arc#'))
			arc[x].append(mc.createNode('makeThreePointCircularArc',n='arc#'))
			#mc.setAttr(arc[x][0]+'.sections',16)
			#mc.setAttr(arc[x][1]+'.sections',16)

			n=0
			for i in range(0,2)+[-1]:
				mc.setAttr(arc[x][0]+'.point'+str(n+1),*self.arcPoints[i])
				n+=1
			n=0
			for i in [0]+range(-2,0):
				mc.setAttr(arc[x][1]+'.point'+str(n+1),*self.arcPoints[i])
				n+=1

			bn.append(mc.createNode('blendColors'))
			mc.connectAttr(arc[x][0]+'.nr',bn[x]+'.c1')
			mc.connectAttr(arc[x][1]+'.nr',bn[x]+'.c2')

			if x==0:
				mc.connectAttr(bn[x]+'.op',self.handles[1]+'.arcNormal')

			self.outputNormal=self.handles[1]+'.arcNormal'

			if x==0:

				fbfm=mc.createNode('fourByFourMatrix')
				dm=mc.createNode('decomposeMatrix')

				cpoc=['','']

				bcN=mc.createNode('blendColors')
				bcT=mc.createNode('blendColors')
				bcP=mc.createNode('blendColors')

				mc.setAttr(bn[x]+'.b',self.arcWeight)
				mc.setAttr(bcN+'.b',self.arcWeight)
				mc.setAttr(bcT+'.b',self.arcWeight)
				mc.setAttr(bcP+'.b',self.arcWeight)

				mc.connectAttr(bcN+'.opr',fbfm+'.in00')
				mc.connectAttr(bcN+'.opg',fbfm+'.in01')
				mc.connectAttr(bcN+'.opb',fbfm+'.in02')

				mc.connectAttr(bcT+'.opr',fbfm+'.in10')
				mc.connectAttr(bcT+'.opg',fbfm+'.in11')
				mc.connectAttr(bcT+'.opb',fbfm+'.in12')

				mc.connectAttr(bcP+'.opr',fbfm+'.in30')
				mc.connectAttr(bcP+'.opg',fbfm+'.in31')
				mc.connectAttr(bcP+'.opb',fbfm+'.in32')

				mc.connectAttr(bn[x]+'.opr',fbfm+'.in20')
				mc.connectAttr(bn[x]+'.opg',fbfm+'.in21')
				mc.connectAttr(bn[x]+'.opb',fbfm+'.in22')

				mc.connectAttr(fbfm+'.output',dm+'.inputMatrix')

				for i in [0,1]:

					cpoc[i]=mc.createNode('closestPointOnCurve')
					mc.connectAttr(arc[x][i]+'.oc',cpoc[i]+'.ic')

					mc.connectAttr(cpoc[i]+'.nx',bcN+'.c'+str(i+1)+'r')
					mc.connectAttr(cpoc[i]+'.ny',bcN+'.c'+str(i+1)+'g')
					mc.connectAttr(cpoc[i]+'.nz',bcN+'.c'+str(i+1)+'b')

					mc.connectAttr(cpoc[i]+'.tx',bcT+'.c'+str(i+1)+'r')
					mc.connectAttr(cpoc[i]+'.ty',bcT+'.c'+str(i+1)+'g')
					mc.connectAttr(cpoc[i]+'.tz',bcT+'.c'+str(i+1)+'b')

					mc.connectAttr(cpoc[i]+'.px',bcP+'.c'+str(i+1)+'r')
					mc.connectAttr(cpoc[i]+'.py',bcP+'.c'+str(i+1)+'g')
					mc.connectAttr(cpoc[i]+'.pz',bcP+'.c'+str(i+1)+'b')

				for i in [0,-1]:

					mc.setAttr(cpoc[0]+'.ip',*self.arcPoints[i])
					mc.setAttr(cpoc[1]+'.ip',*self.arcPoints[i])
					mc.setAttr(trSpaces[i]+'.t',*mc.getAttr(dm+'.ot')[0])
					mc.setAttr(trSpaces[i]+'.r',*mc.getAttr(dm+'.or')[0])

				for i in [0,-1]:

					mc.disconnectAttr(arc[x][i]+'.oc',cpoc[i]+'.ic')

				mc.disconnectAttr(bn[x]+'.opr',fbfm+'.in20')
				mc.disconnectAttr(bn[x]+'.opg',fbfm+'.in21')
				mc.disconnectAttr(bn[x]+'.opb',fbfm+'.in22')

				mc.delete(fbfm,dm,cpoc,bcN,bcT,bcP)

				if len(xs)>1:
					loft=mc.createNode('loft')
					mc.setAttr(loft+'.autoReverse',False)
					mc.setAttr(loft+'.uniform',True)

			poci=mc.createNode('pointOnCurveInfo')

			i=0
			for f in [.01,.99]:

				pmm=mc.createNode('pointMatrixMult')

				if len(xs)>1:
					mc.connectAttr(mdlWidth[x]+'.o',pmm+'.ipz')

				mc.connectAttr(trSpaces[i]+'.wm[0]',pmm+'.im')
				mc.connectAttr(pmm+'.o',arc[x][0]+'.point'+str([1,3][i]))
				mc.connectAttr(pmm+'.o',arc[x][1]+'.point'+str([1,3][i]))

				mc.connectAttr(arc[x][i]+'.outputCurve',poci+'.inputCurve',f=True)
				mc.setAttr(poci+'.top',True)
				mc.setAttr(poci+'.parameter',f)

				pmm=mc.createNode('pointMatrixMult')

				mc.connectAttr(trSpaces[i]+'.worldInverseMatrix',pmm+'.inMatrix')
				mc.setAttr(pmm+'.ip',*mc.getAttr(poci+'.p')[0])
				ap=mc.getAttr(pmm+'.o')[0]
				mc.connectAttr(trSpaces[i]+'.worldMatrix',pmm+'.inMatrix',f=True)
				mc.setAttr(pmm+'.ip',*ap)

				if len(xs)>1: mc.connectAttr(mdlWidth[x]+'.o',pmm+'.ipz')

				mc.connectAttr(pmm+'.o',arc[x][i]+'.point2',f=True)

				i+=1

			self.curveShapes.append(mc.createNode('nurbsCurve',p=trSpaces[1],n=self.names[1]+'Shape#'))
			blendCurveShapes.append(mc.createNode('nurbsCurve',p=trSpaces[1],n=self.names[1]+'Shape#'))

			mc.connectAttr(arc[x][0]+'.outputCurve',self.curveShapes[x]+'.create')
			mc.connectAttr(arc[x][1]+'.outputCurve',blendCurveShapes[x]+'.create')

			spans=mc.getAttr(self.curveShapes[x]+'.spans')

			bs.append(mc.blendShape(blendCurveShapes[x],self.curveShapes[x],o='local',w=(0,1))[0])
			origShape.append(mc.listConnections(arc[x][0]+'.outputCurve',d=True,s=False,sh=True)[0])

			blendConnectAttrs=mc.listConnections(origShape[x]+'.worldSpace',p=True,sh=True)

			for b in blendConnectAttrs:
				mc.connectAttr(arc[x][0]+'.outputCurve',b,f=True)

			mc.connectAttr(arc[x][1]+'.outputCurve',bs[x]+'.it[0].itg[0].iti[6000].igt',f=True)

			rc=mc.createNode('rebuildCurve')
			mc.setAttr(rc+'.kcp',False)
			mc.connectAttr(arc[x][0]+'.sections',rc+'.spans',f=True)
			mc.setAttr(rc+'.kr',0)

			reverseCurve=mc.createNode('reverseCurve')
			mc.connectAttr(rc+'.oc',reverseCurve+'.ic')

			tg=mc.createNode('transformGeometry')
			mc.connectAttr(tg+'.og',self.curveShapes[x]+'.create',f=True)
			mc.connectAttr(reverseCurve+'.oc',tg+'.ig')
			mc.connectAttr(trSpaces[1]+'.worldInverseMatrix',tg+'.transform',f=True)

			if self.stretch<0 or self.squash<0:
				mc.connectAttr(bs[x]+'.og[0]',rc+'.ic')
			else:
				rc2=mc.createNode('rebuildCurve')
				mc.connectAttr(arc[x][0]+'.sections',rc2+'.spans',f=True)
				mc.setAttr(rc2+'.kr',0)

				mc.connectAttr(bs[x]+'.og[0]',rc2+'.ic',f=True)

				sub=mc.createNode('subCurve')
				mc.setAttr(sub+'.r',True)
				mc.setAttr(sub+'.min',0)
				mc.setAttr(sub+'.max',1)

				ext=''

				ext=mc.createNode('extendCurve')
				mc.setAttr(ext+'.rmk',True)
				mc.setAttr(ext+'.d',.00001)
				mc.connectAttr(sub+'.oc',ext+'.ic1',f=True)
				mc.connectAttr(ext+'.oc',rc+'.ic',f=True)

				mc.connectAttr(rc2+'.oc',sub+'.ic',f=True)

				if not mc.objExists(self.handles[0]+'.stretch'):
					mc.addAttr(self.handles[0],ln='stretch',at='float',min=0,dv=self.stretch,k=True)
				if not mc.objExists(self.handles[0]+'.squash'):
					mc.addAttr(self.handles[0],ln='squash',at='float',min=0,max=100,dv=self.squash,k=True)
				if not mc.objExists(self.handles[1]+'.length'):
					mc.addAttr(self.handles[1],ln='length',at='float',min=0,k=True)
				if not mc.objExists(self.handles[1]+'.overSquash'):
					mc.addAttr(self.handles[1],ln='overSquash',at='float',min=0,dv=100,k=False)
				if not mc.objExists(self.handles[1]+'.overStretch'):
					mc.addAttr(self.handles[1],ln='overStretch',at='float',min=0,dv=100,k=False)

				ci.append(mc.createNode('curveInfo'))
				mc.connectAttr(rc+'.oc',ci[x]+'.ic',f=True)

				mc.connectAttr(rc2+'.oc',ci[x]+'.ic',f=True)

				measureAttr=ci[x]+'.al'

				if x==0 and len(xs)>1:
					pma=mc.createNode('plusMinusAverage')
					mc.setAttr(pma+'.op',3)
					overStretchPMA=mc.createNode('plusMinusAverage')
					mc.setAttr(overStretchPMA+'.op',3)
					mc.connectAttr(overStretchPMA+'.o1',self.handles[1]+'.overStretch')
					overSquashPMA=mc.createNode('plusMinusAverage')
					mc.setAttr(overSquashPMA+'.op',3)
					mc.connectAttr(overSquashPMA+'.o1',self.handles[1]+'.overSquash')

				if len(xs)>1:
					mc.connectAttr(ci[x]+'.al',pma+'.i1['+str(x)+']')
					measureAttr=pma+'.o1'

				mc.setAttr(self.handles[1]+'.length',float(mc.getAttr(measureAttr)))

				if x==0:
					stretchADL=mc.createNode('plusMinusAverage')
					mc.setAttr(stretchADL+'.op',2)# subtract
					mc.connectAttr(measureAttr,stretchADL+'.i1[0]')
					mc.connectAttr(self.handles[1]+'.length',stretchADL+'.i1[1]')

					stretchMD=mc.createNode('multiplyDivide')
					mc.setAttr(stretchMD+'.op',2)# divide
					mc.connectAttr(stretchADL+'.o1',stretchMD+'.i1x')
					mc.connectAttr(self.handles[1]+'.length',stretchMD+'.i2x')
					stretch=stretchMD+'.ox'

					mc.connectAttr(self.handles[0]+'.stretch',stretchMD+'.i1y')
					mc.setAttr(stretchMD+'.i2y',100)
					stretchMax=stretchMD+'.oy'

					stretchMDClamp=mc.createNode('clamp')
					mc.connectAttr(stretchMax,stretchMDClamp+'.mxr')#stretchMD+'.oy'
					mc.setAttr(stretchMDClamp+'.mnr',0.0001)
					mc.connectAttr(stretchMax,stretchMDClamp+'.ipr')

					stretchMax=stretchMDClamp+'.opr'

					mc.connectAttr(stretchMax,stretchMDClamp+'.mxg')
					mc.setAttr(stretchMDClamp+'.mng',0.0001)
					mc.connectAttr(stretch,stretchMDClamp+'.ipg')
					stretchClamped=stretchMDClamp+'.opg'

					mc.connectAttr(stretch,stretchMDClamp+'.mxb')
					mc.setAttr(stretchMDClamp+'.mnb',0.0001)
					mc.connectAttr(stretch,stretchMDClamp+'.ipb')
					stretchClampedLo=stretchMDClamp+'.opb'

					stretchGapPMA=mc.createNode('plusMinusAverage')# difference between max stretch and current stretch
					mc.setAttr(stretchGapPMA+'.op',2)# subtract
					mc.connectAttr(stretchMax,stretchGapPMA+'.i1[0]')
					mc.connectAttr(stretchClampedLo,stretchGapPMA+'.i1[1]')
					stretchGAP=stretchGapPMA+'.o1'

					stretchGapPercMD=mc.createNode('multiplyDivide')# %difference between max stretch and current stretch
					mc.setAttr(stretchGapPercMD+'.op',2)# divide
					mc.connectAttr(stretchGAP,stretchGapPercMD+'.i1x')
					mc.connectAttr(stretchMax,stretchGapPercMD+'.i2x')
					stretchGapPerc=stretchGapPercMD+'.ox'

					stretchPlusOneNode=mc.createNode('addDoubleLinear')
					mc.connectAttr(stretchClampedLo,stretchPlusOneNode+'.i1')
					mc.setAttr(stretchPlusOneNode+'.i2',1)
					stretchPlusOne=stretchPlusOneNode+'.o'

					overStretchSubNode=mc.createNode('plusMinusAverage')
					mc.setAttr(overStretchSubNode+'.op',2)# subtract
					mc.connectAttr(stretchClampedLo,overStretchSubNode+'.i1[0]')#stretchMinusFallOff
					mc.connectAttr(stretchClamped,overStretchSubNode+'.i1[1]')#stretchClampedMinusFallOff
					overStretchDivNode=mc.createNode('multiplyDivide')
					mc.setAttr(overStretchDivNode+'.op',2)# divide
					mc.connectAttr(overStretchSubNode+'.o1',overStretchDivNode+'.i1x')
					mc.connectAttr(stretchPlusOne,overStretchDivNode+'.i2x')
					overStretch=overStretchDivNode+'.ox'

					if len(xs)>1:
						mc.connectAttr(overStretch,overStretchPMA+'.i1['+str(x)+']')

					#squash
					squashPMA=mc.createNode('plusMinusAverage')
					mc.setAttr(squashPMA+'.op',2)# subtract
					mc.connectAttr(self.handles[1]+'.length',squashPMA+'.i1[0]')
					mc.connectAttr(measureAttr,squashPMA+'.i1[1]')
					squashDist=squashPMA+'.o1'

					squashDistClamp=mc.createNode('clamp')
					mc.connectAttr(squashDist,squashDistClamp+'.mxr')#stretchMD+'.oy'
					mc.setAttr(squashDistClamp+'.mnr',0.00001)
					mc.connectAttr(squashDist,squashDistClamp+'.ipr')
					squashDistClamped=squashDistClamp+'.opr'

					squashMD=mc.createNode('multiplyDivide')
					mc.setAttr(squashMD+'.op',2)# divide
					mc.connectAttr(squashDistClamped,squashMD+'.i1x')
					mc.connectAttr(self.handles[1]+'.length',squashMD+'.i2x')
					squash=squashMD+'.ox'

					mc.connectAttr(self.handles[0]+'.squash',squashMD+'.i1y')
					mc.setAttr(squashMD+'.i2y',100)
					squashMax=squashMD+'.oy'

					squashMDClamp=mc.createNode('clamp')
					mc.connectAttr(squashMax,squashMDClamp+'.mxr')
					mc.setAttr(squashMDClamp+'.mnr',0.00001)
					mc.connectAttr(squashMax,squashMDClamp+'.ipr')
					squashMax=squashMDClamp+'.opr'

					mc.connectAttr(squashMax,squashMDClamp+'.mxg')
					mc.setAttr(squashMDClamp+'.mng',0.0001)
					mc.connectAttr(squash,squashMDClamp+'.ipg')
					squashClamped=squashMDClamp+'.opg'

					mc.connectAttr(squash,squashMDClamp+'.mxb')
					mc.setAttr(squashMDClamp+'.mnb',0.0001)
					mc.connectAttr(squash,squashMDClamp+'.ipb')
					squashClampedLo=squashMDClamp+'.opb'

					squashGapPMA=mc.createNode('plusMinusAverage')# difference between max squash and current squash
					mc.setAttr(squashGapPMA+'.op',2)# subtract
					mc.connectAttr(squashMax,squashGapPMA+'.i1[0]')
					mc.connectAttr(squashClampedLo,squashGapPMA+'.i1[1]')
					squashGAP=squashGapPMA+'.o1'

					squashGapPercMD=mc.createNode('multiplyDivide')# %difference between max squash and current squash
					mc.setAttr(squashGapPercMD+'.op',2)# divide
					mc.connectAttr(squashGAP,squashGapPercMD+'.i1x')
					mc.connectAttr(squashMax,squashGapPercMD+'.i2x')
					squashGapPerc=squashGapPercMD+'.ox'

					overSquashSubNode=mc.createNode('plusMinusAverage')
					mc.setAttr(overSquashSubNode+'.op',2)# subtract
					mc.connectAttr(squashClampedLo,overSquashSubNode+'.i1[0]')#squashMinusFallOff
					mc.connectAttr(squashClamped,overSquashSubNode+'.i1[1]')#squashClampedMinusFallOff
					overSquash=overSquashSubNode+'.o1'#overSquashDivNode+'.ox'

					overSquashDistanceMDL=mc.createNode('multDoubleLinear')
					mc.connectAttr(self.handles[1]+'.length',overSquashDistanceMDL+'.i1')
					mc.connectAttr(overSquash,overSquashDistanceMDL+'.i2')
					overSquashDistanceClamp=mc.createNode('clamp')
					mc.connectAttr(overSquashDistanceMDL+'.o',overSquashDistanceClamp+'.mxr')#stretchMD+'.oy'
					mc.setAttr(overSquashDistanceClamp+'.mnr',0.00001)
					mc.connectAttr(overSquashDistanceMDL+'.o',overSquashDistanceClamp+'.ipr')
					overSquashDistance=overSquashDistanceClamp+'.opr'

					if len(xs)>1:
						mc.connectAttr(overSquash,overSquashPMA+'.i1['+str(x)+']')

				if mc.objExists(ext+'.d'): mc.connectAttr(overSquashDistance,ext+'.d')
				mc.connectAttr(overStretch,sub+'.min')

			disconnectNodes(origShape[x])
			mc.delete(origShape[x])
			disconnectNodes(blendCurveShapes[x])
			mc.delete(blendCurveShapes[x])

			if x==len(xs)-1:
				if 'spans' not in mc.listAttr(self.handles[1]):
					mc.addAttr(self.handles[1],ln='spans',at='long',min=0,dv=spans,k=True)
					mc.connectAttr(self.handles[1]+'.spans',arc[0][0]+'.sections')
					mc.connectAttr(self.handles[1]+'.spans',arc[0][1]+'.sections')

			if len(xs)>1:
				mc.connectAttr(tg+'.og',loft+'.ic['+str(x)+']')
				disconnectNodes(self.curveShapes[x])
				if x==1:
					mc.delete(self.curveShapes[x])

					self.outputSurface=loft+'.os'

					if self.createSurface:
						self.surface=mc.createNode('nurbsSurface',p=trSpaces[1])
						mc.connectAttr(self.outputSurface,self.surface+'.create',f=True)

					if not self.createSurface or ( self.scaleLength and mc.objExists(self.handles[1]+'.length') ):

						self.curveShapes[0]=mc.createNode('nurbsCurve',p=trSpaces[1])
						cfsi=mc.createNode('curveFromSurfaceIso')
						mc.setAttr(cfsi+'.r',True)
						mc.setAttr(cfsi+'.rv',True)
						mc.setAttr(cfsi+'.min',0)
						mc.setAttr(cfsi+'.max',1)
						mc.setAttr(cfsi+'.idr',1)
						mc.setAttr(cfsi+'.idr',1)
						mc.setAttr(cfsi+'.iv',.5)
						mc.connectAttr(self.outputSurface,cfsi+'.is',f=True)
						mc.connectAttr(cfsi+'.oc',self.curveShapes[0]+'.create',f=True)
						self.outputCurve=cfsi+'.oc'

		for i in [0,-1]:
			if self.handleType[i]=='none':
				self.handleShapes.append([''])
			else:
				if 'type' not in self.handleOptions[i]: self.handleOptions[i]['type']=self.handleType[i-1]
				self.handleShapes.append(Handle(self.handles[i],**self.handleOptions[i]))

		keep=keep+[self.surface]+self.handleShapes[0]+self.handleShapes[-1]

		if not self.createSurface or self.scaleLength: keep.append(self.curveShapes[0])

		cleanup.extend\
		(
			removeAll\
			(
				keep,
				(
					removeDuplicates(mc.listRelatives(trSpaces[1],c=True,type='nurbsSurface'))+
					removeDuplicates(mc.listRelatives(trSpaces[1],c=True,type='nurbsCurve'))
				)
			)
		)

		if self.createSurface:
			self.outputSurface=self.surface+'.worldSpace'
		else:
			self.outputCurve=self.curveShapes[0]+'.worldSpace'

		mc.addAttr(self.handles[0],ln='arcWeight',at='double',k=True,min=0,max=1,dv=self.arcWeight)
		if self.createSurface:
			mc.addAttr(self.handles[1],ln='width',at='double',k=True,min=.001,dv=self.width)
			mc.connectAttr(self.handles[1]+'.width',mdlWidth[0]+'.i1')
			mc.connectAttr(self.handles[1]+'.width',mdlWidth[1]+'.i1')

		rev=mc.createNode('reverse')

		mc.connectAttr(self.handles[0]+'.arcWeight',rev+'.ix')

		mc.connectAttr(rev+'.ox',bn[0]+'.b')
		if self.createSurface: mc.connectAttr(rev+'.ox',bn[1]+'.b')

		mc.connectAttr(rev+'.ox',bs[0]+'.en')
		if self.createSurface: mc.connectAttr(rev+'.ox',bs[1]+'.en')

		for i in [0,-1]:

			if self.parents[i]=='.':
				mc.parent(self.handles[i],self.handles[[-1,0][i]])
			elif mc.objExists(self.parents[i]):
				mc.parent(self.handles[i],self.parents[i])

			if self.softParents[i]=='.':
				self.parentSpaces[i]=ParentSpace(self.handles[i],self.handles[[-1,0][i]])
			elif mc.objExists(self.softParents[i]):
				self.parentSpaces[i]=ParentSpace(self.handles[i],self.softParents[i])

		for c in cleanup:
			if mc.objExists(c):
				disconnectNodes(c)
				mc.delete(c)

		if self.scaleLength and mc.objExists(self.handles[1]+'.length'):

			measureCurve=mc.createNode('nurbsCurve',p=self.handles[1],n=self.names[1]+'Shape#')
			mc.connectAttr(self.curveShapes[0]+'.local',measureCurve+'.create')
			ciOrig=mc.createNode('curveInfo')
			mc.connectAttr(measureCurve+'.worldSpace[0]',ciOrig+'.ic',f=True)
			#mc.connectAttr(ciOrig+'.al',self.handles[1]+'.length',f=True)

			divLength=mc.createNode('multiplyDivide')
			mc.setAttr(divLength+'.op',2)
			mc.connectAttr(self.handles[1]+'.length',divLength+'.i1x')
			mc.setAttr(divLength+'.i2x',mc.getAttr(self.handles[1]+'.length'))
			multLength=mc.createNode('multiplyDivide')
			mc.setAttr(multLength+'.op',1)
			mc.connectAttr(ciOrig+'.al',multLength+'.i1x')
			mc.connectAttr(divLength+'.ox',multLength+'.i2x')
			for attr in [overSquashDistanceMDL+'.i1',stretchADL+'.i1[1]',stretchMD+'.i2x',squashPMA+'.i1[0]',squashMD+'.i2x']:
				mc.connectAttr(multLength+'.ox',attr,f=True)

			mc.addAttr(self.handles[1],ln='globalLength',at='double')
			mc.connectAttr(multLength+'.ox',self.handles[1]+'.globalLength',f=True)
			mc.addAttr(self.handles[1],ln='lengthScale',at='double')
			mc.connectAttr(divLength+'.ox',self.handles[1]+'.lengthScale',f=True)

			mc.disconnectAttr(self.curveShapes[0]+'.local',measureCurve+'.create')
			mc.setAttr(measureCurve+'.intermediateObject',True)
			#mc.setAttr(self.handles[1]+'.length',k=False,cb=False)

			if self.createSurface:
				mc.delete(self.curveShapes[0])

		# put lists back in input order
		for lo in self.__dict__:
			if isinstance(self.__dict__[lo],list):
				exec('self.'+lo+'.reverse()')

		self[:]=list(self.handles)