Esempio n. 1
0
def create_bn_inception():

    # Input variables denoting the features and label data
    feature_var = input_variable((NUM_CHANNELS, IMAGE_HEIGHT, IMAGE_WIDTH))
    label_var = input_variable((NUM_CLASSES))

    bn_time_const = 4096
    z = bn_inception_model(feature_var, NUM_CLASSES, bn_time_const)

    # loss and metric
    ce  = cross_entropy_with_softmax(z, label_var)
    pe  = classification_error(z, label_var)
    pe5 = classification_error(z, label_var, topN=5)

    log_number_of_parameters(z)
    print()

    return {
        'feature': feature_var,
        'label'  : label_var,
        'ce'     : ce,
        'pe'     : pe,
        'pe5'    : pe5, 
        'output' : z
    }
def create_bn_inception():

    # Input variables denoting the features and label data
    feature_var = input((num_channels, image_height, image_width))
    label_var = input((num_classes))

    bn_time_const = 4096
    z = bn_inception_model(feature_var, num_classes, bn_time_const)

    # loss and metric
    ce = cross_entropy_with_softmax(z, label_var)
    pe = classification_error(z, label_var)
    pe5 = classification_error(z, label_var, topN=5)

    log_number_of_parameters(z)
    print()

    return {
        'feature': feature_var,
        'label': label_var,
        'ce': ce,
        'pe': pe,
        'pe5': pe5,
        'output': z
    }
Esempio n. 3
0
def create_bn_inception():

    # Input variables denoting the features and label data
    feature_var = input_variable((num_channels, image_height, image_width))
    label_var = input_variable((num_classes))

    bn_time_const = 4096
    z = bn_inception_model(feature_var, num_classes, bn_time_const)

    # loss and metric
    ce  = cross_entropy_with_softmax(z, label_var)
    pe  = classification_error(z, label_var)
    pe5 = classification_error(z, label_var, topN=5)

    log_number_of_parameters(z)
    print()

    return {
        'feature': feature_var,
        'label'  : label_var,
        'ce'     : ce,
        'pe'     : pe,
        'pe5'    : pe5, 
        'output' : z
    }