def create_bn_inception(): # Input variables denoting the features and label data feature_var = input_variable((NUM_CHANNELS, IMAGE_HEIGHT, IMAGE_WIDTH)) label_var = input_variable((NUM_CLASSES)) bn_time_const = 4096 z = bn_inception_model(feature_var, NUM_CLASSES, bn_time_const) # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) pe5 = classification_error(z, label_var, topN=5) log_number_of_parameters(z) print() return { 'feature': feature_var, 'label' : label_var, 'ce' : ce, 'pe' : pe, 'pe5' : pe5, 'output' : z }
def create_bn_inception(): # Input variables denoting the features and label data feature_var = input((num_channels, image_height, image_width)) label_var = input((num_classes)) bn_time_const = 4096 z = bn_inception_model(feature_var, num_classes, bn_time_const) # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) pe5 = classification_error(z, label_var, topN=5) log_number_of_parameters(z) print() return { 'feature': feature_var, 'label': label_var, 'ce': ce, 'pe': pe, 'pe5': pe5, 'output': z }
def create_bn_inception(): # Input variables denoting the features and label data feature_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) bn_time_const = 4096 z = bn_inception_model(feature_var, num_classes, bn_time_const) # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) pe5 = classification_error(z, label_var, topN=5) log_number_of_parameters(z) print() return { 'feature': feature_var, 'label' : label_var, 'ce' : ce, 'pe' : pe, 'pe5' : pe5, 'output' : z }