def ridge_penalty(beta, alpha):
    return alpha * dot(beta[1:], beta[1:])
def predict(x_i, beta):
    return dot(x_i, beta)
def predict(x_i, beta):
    """assumes that the firts element of each x_i is 1"""
    return dot(x_i, beta)
def transform_vector(v, components):
    return [dot(v, w) for w in components]
    print

    random.seed(0)  # so that you get the same results as me

    bootstrap_betas = bootstrap_statistic(zip(x, daily_minutes_good),
                                          estimate_sample_beta, 100)

    bootstrap_standard_errors = [
        standard_deviation([beta[i] for beta in bootstrap_betas])
        for i in range(4)
    ]

    print "bootstrap standard errors", bootstrap_standard_errors
    print

    print "p_value(30.63, 1.174)", p_value(30.63, 1.174)
    print "p_value(0.972, 0.079)", p_value(0.972, 0.079)
    print "p_value(-1.868, 0.131)", p_value(-1.868, 0.131)
    print "p_value(0.911, 0.990)", p_value(0.911, 0.990)
    print

    print "regularization"

    random.seed(0)
    for alpha in [0.0, 0.01, 0.1, 1, 10]:
        beta = estimate_beta_ridge(x, daily_minutes_good, alpha=alpha)
        print "alpha", alpha
        print "beta", beta
        print "dot(beta[1:],beta[1:])", dot(beta[1:], beta[1:])
        print "r-squared", multiple_r_squared(x, daily_minutes_good, beta)
        print
def directional_variance_gradient_i(x_i, w):
    """the contribution of row x_i to the gradient of
    the direction-w variance"""
    projection_length = dot(x_i, direction(w))
    return [2 * projection_length * x_ij for x_ij in x_i]
def project(v, w):
    """return the projection of v onto w"""
    coefficient = dot(v, w)
    return scalar_multiply(coefficient, w)
def directional_variance_i(x_i, w):
    """the variance of the row x_i in the direction w"""
    return dot(x_i, direction(w))**2
def covariance(x, y):
    n = len(x)
    return dot(de_mean(x), de_mean(y)) / (n - 1)
Esempio n. 10
0
def logistic_log_partial_ij(x_i, y_i, beta, j):
    """ here i is the index of the data point, j the index of the derivative """
    return (y_i - logistic(dot(x_i, beta))) * x_i[j]
Esempio n. 11
0
def logistic_log_likelihood_i(x_i, y_i, beta):
    if y_i == 1:
        return math.log(logistic(dot(x_i, beta)))
    else:
        return math.log(1 - logistic(log(x_i, beta)))
Esempio n. 12
0
    # and maximize using gradient descent
    beta_hat = maximize_batch(fn, gradient_fn, beta_0)

    print "beta_batch", beta_hat

    beta_0 = [1, 1, 1]
    beta_hat = maximize_stochastic(logistic_log_likelihood_i,
                                   logistic_log_gradient_i, x_train, y_train,
                                   beta_0)

    print "beta stochastic", beta_hat

    true_positives = false_positives = true_negatives = false_negatives = 0

    for x_i, y_i in zip(x_test, y_test):
        predict = logistic(dot(beta_hat, x_i))

        if y_i == 1 and predict >= 0.5:  # TP: paid and we predict paid
            true_positives += 1
        elif y_i == 1:  # FN: paid and we predict unpaid
            false_negatives += 1
        elif predict >= 0.5:  # FP: unpaid and we predict paid
            false_positives += 1
        else:  # TN: unpaid and we predict unpaid
            true_negatives += 1

    precision = true_positives / (true_positives + false_positives)
    recall = true_positives / (true_positives + false_negatives)

    print "precision", precision
    print "recall", recall