def ridge_penalty(beta, alpha): return alpha * dot(beta[1:], beta[1:])
def predict(x_i, beta): return dot(x_i, beta)
def predict(x_i, beta): """assumes that the firts element of each x_i is 1""" return dot(x_i, beta)
def transform_vector(v, components): return [dot(v, w) for w in components]
print random.seed(0) # so that you get the same results as me bootstrap_betas = bootstrap_statistic(zip(x, daily_minutes_good), estimate_sample_beta, 100) bootstrap_standard_errors = [ standard_deviation([beta[i] for beta in bootstrap_betas]) for i in range(4) ] print "bootstrap standard errors", bootstrap_standard_errors print print "p_value(30.63, 1.174)", p_value(30.63, 1.174) print "p_value(0.972, 0.079)", p_value(0.972, 0.079) print "p_value(-1.868, 0.131)", p_value(-1.868, 0.131) print "p_value(0.911, 0.990)", p_value(0.911, 0.990) print print "regularization" random.seed(0) for alpha in [0.0, 0.01, 0.1, 1, 10]: beta = estimate_beta_ridge(x, daily_minutes_good, alpha=alpha) print "alpha", alpha print "beta", beta print "dot(beta[1:],beta[1:])", dot(beta[1:], beta[1:]) print "r-squared", multiple_r_squared(x, daily_minutes_good, beta) print
def directional_variance_gradient_i(x_i, w): """the contribution of row x_i to the gradient of the direction-w variance""" projection_length = dot(x_i, direction(w)) return [2 * projection_length * x_ij for x_ij in x_i]
def project(v, w): """return the projection of v onto w""" coefficient = dot(v, w) return scalar_multiply(coefficient, w)
def directional_variance_i(x_i, w): """the variance of the row x_i in the direction w""" return dot(x_i, direction(w))**2
def covariance(x, y): n = len(x) return dot(de_mean(x), de_mean(y)) / (n - 1)
def logistic_log_partial_ij(x_i, y_i, beta, j): """ here i is the index of the data point, j the index of the derivative """ return (y_i - logistic(dot(x_i, beta))) * x_i[j]
def logistic_log_likelihood_i(x_i, y_i, beta): if y_i == 1: return math.log(logistic(dot(x_i, beta))) else: return math.log(1 - logistic(log(x_i, beta)))
# and maximize using gradient descent beta_hat = maximize_batch(fn, gradient_fn, beta_0) print "beta_batch", beta_hat beta_0 = [1, 1, 1] beta_hat = maximize_stochastic(logistic_log_likelihood_i, logistic_log_gradient_i, x_train, y_train, beta_0) print "beta stochastic", beta_hat true_positives = false_positives = true_negatives = false_negatives = 0 for x_i, y_i in zip(x_test, y_test): predict = logistic(dot(beta_hat, x_i)) if y_i == 1 and predict >= 0.5: # TP: paid and we predict paid true_positives += 1 elif y_i == 1: # FN: paid and we predict unpaid false_negatives += 1 elif predict >= 0.5: # FP: unpaid and we predict paid false_positives += 1 else: # TN: unpaid and we predict unpaid true_negatives += 1 precision = true_positives / (true_positives + false_positives) recall = true_positives / (true_positives + false_negatives) print "precision", precision print "recall", recall