Esempio n. 1
0
#Train VAE
DTCRU.Train_VAE(accuracy_min=0.9, Load_Prev_Data=True)

#Create Repertoire Dendrogram
color_dict = {
    'Control': 'limegreen',
    '9H10': 'red',
    'RT': 'darkorange',
    'Combo': 'magenta'
}
DTCRU.Repertoire_Dendrogram(n_jobs=40,
                            distance_metric='KL',
                            log_scale=True,
                            dendrogram_radius=0.28,
                            repertoire_radius=0.35,
                            Load_Prev_Data=True,
                            gridsize=60,
                            color_dict=color_dict,
                            lw=4,
                            gaussian_sigma=1.0,
                            vmax=0.001)

import matplotlib.pyplot as plt

plt.figure()
plt.scatter(0,
            0,
            s=5000,
            edgecolors='magenta',
            facecolors='none',
            linewidths=8)
Esempio n. 2
0
from DeepTCR.DeepTCR import DeepTCR_U

# Instantiate training object
DTCRU = DeepTCR_U('Rep_Dendrogram',device='/gpu:2')

#Load Data from directories
DTCRU.Get_Data(directory='../../Data/Rudqvist',Load_Prev_Data=False,aggregate_by_aa=True,
               aa_column_beta=1,count_column=2,v_beta_column=7,d_beta_column=14,j_beta_column=21)

#Train VAE
DTCRU.Train_VAE(accuracy_min=0.9)
color_dict = {'Control':'limegreen','9H10':'red','RT':'darkorange','Combo':'magenta'}
DTCRU.Repertoire_Dendrogram(n_jobs=40,distance_metric='KL',
                           dendrogram_radius=0.28,repertoire_radius=0.35,Load_Prev_Data=True,gridsize=6,
                            color_dict=color_dict)