class SimulationLoopHagedorn(SimulationLoop): r""" This class acts as the main simulation loop. It owns a propagator that propagates a set of initial values during a time evolution. All values are read from the ``Parameters.py`` file. """ def __init__(self, parameters): r""" Create a new simulation loop instance. """ # Keep a reference to the simulation parameters self.parameters = parameters #: The time propagator instance driving the simulation. self.propagator = None #: A ``IOManager`` instance for saving simulation results. self.IOManager = None #: The number of time steps we will perform. self.nsteps = parameters["nsteps"] # Set up serializing of simulation data self.IOManager = IOManager() self.IOManager.create_file(self.parameters) self.IOManager.create_block() def prepare_simulation(self): r""" Set up a Hagedorn propagator for the simulation loop. Set the potential and initial values according to the configuration. :raise ValueError: For invalid or missing input data. """ potential = PF().create_potential(self.parameters) N = potential.get_number_components() # Check for enough initial values if self.parameters["leading_component"] > N: raise ValueError("Leading component index out of range.") if len(self.parameters["parameters"]) < N: raise ValueError("Too few initial states given. Parameters are missing.") if len(self.parameters["coefficients"]) < N: raise ValueError("Too few initial states given. Coefficients are missing.") # Create a suitable wave packet packet = HagedornWavepacket(self.parameters) # See if we have a list of parameter tuples or just a single 5-tuple # This is for compatibility with the inhomogeneous case. try: # We have a list of parameter tuples, take the one given by the leading component len(self.parameters["parameters"][0]) parameters = self.parameters["parameters"][self.parameters["leading_component"]] except TypeError: # We have just a single 5-tuple of parameters, take it. parameters = self.parameters["parameters"] # Set the Hagedorn parameters packet.set_parameters(parameters) packet.set_quadrature(None) # Set the initial values for component, data in enumerate(self.parameters["coefficients"]): for index, value in data: packet.set_coefficient(component, index, value) # Project the initial values to the canonical basis packet.project_to_canonical(potential) # Finally create and initialize the propagator instace self.propagator = HagedornPropagator(potential, packet, self.parameters["leading_component"], self.parameters) # Which data do we want to save tm = self.parameters.get_timemanager() slots = tm.compute_number_saves() self.IOManager.add_grid(self.parameters, blockid="global") self.IOManager.add_wavepacket(self.parameters, timeslots=slots) # Write some initial values to disk nodes = self.parameters["f"] * sp.pi * sp.arange(-1, 1, 2.0 / self.parameters["ngn"], dtype=np.complexfloating) self.IOManager.save_grid(nodes, blockid="global") self.IOManager.save_wavepacket_parameters(self.propagator.get_wavepackets().get_parameters(), timestep=0) self.IOManager.save_wavepacket_coefficients(self.propagator.get_wavepackets().get_coefficients(), timestep=0) def run_simulation(self): r""" Run the simulation loop for a number of time steps. The number of steps is calculated in the ``initialize`` function. """ tm = self.parameters.get_timemanager() # Run the simulation for a given number of timesteps for i in xrange(1, self.nsteps + 1): print(" doing timestep " + str(i)) self.propagator.propagate() # Save some simulation data if tm.must_save(i): self.IOManager.save_wavepacket_parameters( self.propagator.get_wavepackets().get_parameters(), timestep=i ) self.IOManager.save_wavepacket_coefficients( self.propagator.get_wavepackets().get_coefficients(), timestep=i ) def end_simulation(self): r""" Do the necessary cleanup after a simulation. For example request the IOManager to write the data and close the output files. """ self.IOManager.finalize()
class SimulationLoopFourier(SimulationLoop): """This class acts as the main simulation loop. It owns a propagator that propagates a set of initial values during a time evolution. """ def __init__(self, parameters): """Create a new simulation loop instance for a simulation using the Fourier propagation method. :param parameters: The simulation parameters. :type parameters: A :py:class:`ParameterProvider` instance. """ # Keep a reference to the simulation parameters self.parameters = parameters # The time propagator instance driving the simulation. self.propagator = None # An `IOManager` instance for saving simulation results. self.IOManager = None # Which data do we want to save self._tm = self.parameters.get_timemanager() # Set up serialization of simulation data self.IOManager = IOManager() self.IOManager.create_file() self.IOManager.create_block() # Save the simulation parameters self.IOManager.add_parameters() self.IOManager.save_parameters(parameters) def prepare_simulation(self): r"""Set up a Fourier propagator for the simulation loop. Set the potential and initial values according to the configuration. :raise: :py:class:`ValueError` For invalid or missing input data. """ # The potential instance potential = BlockFactory().create_potential(self.parameters) # Compute the position space grid points grid = BlockFactory().create_grid(self.parameters) # Construct initial values I = Initializer(self.parameters) initialvalues = I.initialize_for_fourier(grid) # Transform the initial values to the canonical basis BT = BasisTransformationWF(potential) BT.set_grid(grid) BT.transform_to_canonical(initialvalues) # Finally create and initialize the propagator instance self.propagator = FourierPropagator(potential, initialvalues, self.parameters) # Write some initial values to disk slots = self._tm.compute_number_saves() self.IOManager.add_grid(self.parameters, blockid="global") self.IOManager.add_fourieroperators(self.parameters) self.IOManager.add_wavefunction(self.parameters, timeslots=slots) self.IOManager.save_grid(grid.get_nodes(flat=True), blockid="global") self.IOManager.save_fourieroperators(self.propagator.get_operators()) self.IOManager.save_wavefunction(initialvalues.get_values(), timestep=0) def run_simulation(self): r"""Run the simulation loop for a number of time steps. """ # The number of time steps we will perform. nsteps = self._tm.compute_number_timesteps() # Run the prepropagate step self.propagator.pre_propagate() # Note: We do not save any data here # Run the simulation for a given number of timesteps for i in xrange(1, nsteps+1): print(" doing timestep "+str(i)) self.propagator.propagate() # Save some simulation data if self._tm.must_save(i): # Run the postpropagate step self.propagator.post_propagate() self.IOManager.save_wavefunction(self.propagator.get_wavefunction().get_values(), timestep=i) # Run the prepropagate step self.propagator.pre_propagate() # Run the postpropagate step self.propagator.post_propagate() # Note: We do not save any data here def end_simulation(self): """Do the necessary cleanup after a simulation. For example request the :py:class:`IOManager` to write the data and close the output files. """ self.IOManager.finalize()
class SimulationLoopHagedornInhomogeneous(SimulationLoop): r"""This class acts as the main simulation loop. It owns a propagator that propagates a set of initial values during a time evolution. """ def __init__(self, parameters): r"""Create a new simulation loop instance for a simulation using the semiclassical Hagedorn wavepacket based propagation method. :param parameters: The simulation parameters. :type parameters: A :py:class:`ParameterProvider` instance. """ # Keep a reference to the simulation parameters self.parameters = parameters # The time propagator instance driving the simulation. self.propagator = None # A `IOManager` instance for saving simulation results. self.IOManager = None # The time manager self._tm = TimeManager(self.parameters) # Set up serialization of simulation data self.IOManager = IOManager() self.IOManager.create_file() # Save the simulation parameters self.IOManager.add_parameters() self.IOManager.save_parameters(parameters) def prepare_simulation(self): r"""Set up a Hagedorn propagator for the simulation loop. Set the potential and initial values according to the configuration. :raise: :py:class:`ValueError` For invalid or missing input data. """ # The potential instance potential = BlockFactory().create_potential(self.parameters) # Project the initial values to the canonical basis BT = BasisTransformationHAWP(potential) # Finally create and initialize the propagator instance # TODO: Attach the "leading_component to the hawp as codata self.propagator = HagedornPropagatorInhomogeneous(self.parameters, potential) # Create suitable wavepackets for packet_descr in self.parameters["initvals"]: packet = BlockFactory().create_wavepacket(packet_descr) # Transform to canonical basis BT.set_matrix_builder(packet.get_innerproduct()) BT.transform_to_canonical(packet) # And hand over self.propagator.add_wavepacket((packet,)) # Add storage for each packet npackets = len(self.parameters["initvals"]) slots = self._tm.compute_number_saves() key = ("q","p","Q","P","S","adQ") for i in xrange(npackets): bid = self.IOManager.create_block() self.IOManager.add_inhomogwavepacket(self.parameters, timeslots=slots, blockid=bid, key=key) # Write some initial values to disk for packet in self.propagator.get_wavepackets(): self.IOManager.save_inhomogwavepacket_description(packet.get_description()) # Pi self.IOManager.save_inhomogwavepacket_parameters(packet.get_parameters(key=key), timestep=0, key=key) # Basis shapes for shape in packet.get_basis_shapes(): self.IOManager.save_inhomogwavepacket_basisshapes(shape) # Coefficients self.IOManager.save_inhomogwavepacket_coefficients(packet.get_coefficients(), packet.get_basis_shapes(), timestep=0) def run_simulation(self): r"""Run the simulation loop for a number of time steps. """ # The number of time steps we will perform. nsteps = self._tm.compute_number_timesteps() # Which parameter data to save. key = ("q","p","Q","P","S","adQ") # Run the prepropagate step self.propagator.pre_propagate() # Note: We do not save any data here # Run the simulation for a given number of timesteps for i in xrange(1, nsteps+1): print(" doing timestep "+str(i)) self.propagator.propagate() # Save some simulation data if self._tm.must_save(i): # Run the postpropagate step self.propagator.post_propagate() # TODO: Generalize for arbitrary number of wavepackets packets = self.propagator.get_wavepackets() assert len(packets) == 1 for packet in packets: # Pi self.IOManager.save_inhomogwavepacket_parameters(packet.get_parameters(key=key), timestep=i, key=key) # Basis shapes (in case they changed!) for shape in packet.get_basis_shapes(): self.IOManager.save_inhomogwavepacket_basisshapes(shape) # Coefficients self.IOManager.save_inhomogwavepacket_coefficients(packet.get_coefficients(), packet.get_basis_shapes(), timestep=i) # Run the prepropagate step self.propagator.pre_propagate() # Run the postpropagate step self.propagator.post_propagate() # Note: We do not save any data here def end_simulation(self): r"""Do the necessary cleanup after a simulation. For example request the :py:class:`IOManager` to write the data and close the output files. """ self.IOManager.finalize()
class SimulationLoopHagedornInhomogeneous(SimulationLoop): r"""This class acts as the main simulation loop. It owns a propagator that propagates a set of initial values during a time evolution. """ def __init__(self, parameters): r"""Create a new simulation loop instance for a simulation using the semiclassical Hagedorn wavepacket based propagation method. :param parameters: The simulation parameters. :type parameters: A :py:class:`ParameterProvider` instance. """ # Keep a reference to the simulation parameters self.parameters = parameters # The time propagator instance driving the simulation. self.propagator = None # A `IOManager` instance for saving simulation results. self.IOManager = None # The time manager self._tm = TimeManager(self.parameters) # Set up serialization of simulation data self.IOManager = IOManager() self.IOManager.create_file(self.parameters) def prepare_simulation(self): r"""Set up a Hagedorn propagator for the simulation loop. Set the potential and initial values according to the configuration. :raise ValueError: For invalid or missing input data. """ # The potential instance potential = BlockFactory().create_potential(self.parameters) # Project the initial values to the canonical basis BT = BasisTransformationHAWP(potential) # Finally create and initialize the propagator instace # TODO: Attach the "leading_component to the hawp as codata self.propagator = HagedornPropagatorInhomogeneous( self.parameters, potential) # Create suitable wavepackets for packet_descr in self.parameters["initvals"]: packet = BlockFactory().create_wavepacket(packet_descr) # Transform to canonical basis BT.set_matrix_builder(packet.get_quadrature()) BT.transform_to_canonical(packet) # And hand over self.propagator.add_wavepacket((packet, )) # Add storage for each packet npackets = len(self.parameters["initvals"]) slots = self._tm.compute_number_saves() for i in xrange(npackets): bid = self.IOManager.create_block() self.IOManager.add_inhomogwavepacket(self.parameters, timeslots=slots, blockid=bid) # Write some initial values to disk for packet in self.propagator.get_wavepackets(): self.IOManager.save_inhomogwavepacket_description( packet.get_description()) # Pi self.IOManager.save_inhomogwavepacket_parameters( packet.get_parameters(), timestep=0) # Basis shapes for shape in packet.get_basis_shape(): self.IOManager.save_inhomogwavepacket_basisshapes(shape) # Coefficients self.IOManager.save_inhomogwavepacket_coefficients( packet.get_coefficients(), packet.get_basis_shape(), timestep=0) def run_simulation(self): r"""Run the simulation loop for a number of time steps. """ # The number of time steps we will perform. nsteps = self._tm.compute_number_timesteps() # Run the simulation for a given number of timesteps for i in xrange(1, nsteps + 1): print(" doing timestep " + str(i)) self.propagator.propagate() # Save some simulation data if self._tm.must_save(i): # TODO: Generalize for arbitrary number of wavepackets packets = self.propagator.get_wavepackets() assert len(packets) == 1 for packet in packets: # Pi self.IOManager.save_inhomogwavepacket_parameters( packet.get_parameters(), timestep=i) # Basis shapes (in case they changed!) for shape in packet.get_basis_shape(): self.IOManager.save_inhomogwavepacket_basisshapes( shape) # Coefficients self.IOManager.save_inhomogwavepacket_coefficients( packet.get_coefficients(), packet.get_basis_shape(), timestep=i) def end_simulation(self): r"""Do the necessary cleanup after a simulation. For example request the :py:class:`IOManager` to write the data and close the output files. """ self.IOManager.finalize()
class SimulationLoopFourier(SimulationLoop): """This class acts as the main simulation loop. It owns a propagator that propagates a set of initial values during a time evolution. """ def __init__(self, parameters): """Create a new simulation loop instance for a simulation using the Fourier propagation method. :param parameters: The simulation parameters. :type parameters: A :py:class:`ParameterProvider` instance. """ # Keep a reference to the simulation parameters self.parameters = parameters # The time propagator instance driving the simulation. self.propagator = None # An `IOManager` instance for saving simulation results. self.IOManager = None # Which data do we want to save self._tm = self.parameters.get_timemanager() # Set up serialization of simulation data self.IOManager = IOManager() self.IOManager.create_file(self.parameters) self.IOManager.create_block() def prepare_simulation(self): r"""Set up a Fourier propagator for the simulation loop. Set the potential and initial values according to the configuration. :raise ValueError: For invalid or missing input data. """ # The potential instance potential = BlockFactory().create_potential(self.parameters) # Compute the position space grid points grid = BlockFactory().create_grid(self.parameters) # Construct initial values I = Initializer(self.parameters) initialvalues = I.initialize_for_fourier(grid) # Transform the initial values to the canonical basis BT = BasisTransformationWF(potential) BT.set_grid(grid) BT.transform_to_canonical(initialvalues) # Finally create and initialize the propagator instace self.propagator = FourierPropagator(potential, initialvalues, self.parameters) # Write some initial values to disk slots = self._tm.compute_number_saves() self.IOManager.add_grid(self.parameters, blockid="global") self.IOManager.add_fourieroperators(self.parameters) self.IOManager.add_wavefunction(self.parameters, timeslots=slots) self.IOManager.save_grid(grid.get_nodes(flat=False), blockid="global") self.IOManager.save_fourieroperators(self.propagator.get_operators()) self.IOManager.save_wavefunction(initialvalues.get_values(), timestep=0) def run_simulation(self): r"""Run the simulation loop for a number of time steps. """ # The number of time steps we will perform. nsteps = self._tm.compute_number_timesteps() # Run the simulation for a given number of timesteps for i in xrange(1, nsteps + 1): print(" doing timestep " + str(i)) self.propagator.propagate() # Save some simulation data if self._tm.must_save(i): self.IOManager.save_wavefunction( self.propagator.get_wavefunction().get_values(), timestep=i) def end_simulation(self): """Do the necessary cleanup after a simulation. For example request the :py:class:`IOManager` to write the data and close the output files. """ self.IOManager.finalize()
class SimulationLoopFourier(SimulationLoop): r""" This class acts as the main simulation loop. It owns a propagator that propagates a set of initial values during a time evolution. All values are read from the ``Parameters.py`` file. """ def __init__(self, parameters): r""" Create a new simulation loop instance. """ # Keep a reference to the simulation parameters self.parameters = parameters #: The time propagator instance driving the simulation. self.propagator = None #: A ``IOManager`` instance for saving simulation results. self.IOManager = None #: The number of time steps we will perform. self.nsteps = parameters["nsteps"] # Set up serializing of simulation data self.IOManager = IOManager() self.IOManager.create_file(self.parameters) self.IOManager.create_block() def prepare_simulation(self): r""" Set up a Fourier propagator for the simulation loop. Set the potential and initial values according to the configuration. :raise ValueError: For invalid or missing input data. """ # Compute the position space grid points nodes = self.parameters["f"] * sp.pi * sp.arange(-1, 1, 2.0/self.parameters["ngn"], dtype=np.complexfloating) # The potential instance potential = PF().create_potential(self.parameters) # Check for enough initial values if not self.parameters.has_key("initial_values"): if len(self.parameters["parameters"]) < potential.get_number_components(): raise ValueError("Too few initial states given. Parameters are missing.") if len(self.parameters["coefficients"]) < potential.get_number_components(): raise ValueError("Too few initial states given. Coefficients are missing.") # Calculate the initial values sampled from a hagedorn wave packet d = dict([("ncomponents", 1), ("basis_size", self.parameters["basis_size"]), ("eps", self.parameters["eps"])]) # Initial values given in the "fourier" specific format if self.parameters.has_key("initial_values"): initialvalues = [ np.zeros(nodes.shape, dtype=np.complexfloating) for i in xrange(self.parameters["ncomponents"]) ] for level, params, coeffs in self.parameters["initial_values"]: hwp = HagedornWavepacket(d) hwp.set_parameters(params) for index, value in coeffs: hwp.set_coefficient(0, index, value) iv = hwp.evaluate_at(nodes, component=0, prefactor=True) initialvalues[level] = initialvalues[level] + iv # Initial value read in compatibility mode to the packet algorithms else: # See if we have a list of parameter tuples or just a single 5-tuple # This is for compatibility with the inhomogeneous case. try: # We have a list of parameter tuples this is ok for the loop below len(self.parameters["parameters"][0]) parameters = self.parameters["parameters"] except TypeError: # We have just a single 5-tuple of parameters, we need to replicate for looping parameters = [ self.parameters["parameters"] for i in xrange(self.parameters["ncomponents"]) ] initialvalues = [] for level, item in enumerate(parameters): hwp = HagedornWavepacket(d) hwp.set_parameters(item) # Set the coefficients of the basis functions for index, value in self.parameters["coefficients"][level]: hwp.set_coefficient(0, index, value) iv = hwp.evaluate_at(nodes, component=0, prefactor=True) initialvalues.append(iv) # Project the initial values to the canonical basis initialvalues = potential.project_to_canonical(nodes, initialvalues) # Store the initial values in a WaveFunction object IV = WaveFunction(self.parameters) IV.set_grid(nodes) IV.set_values(initialvalues) # Finally create and initialize the propagator instace self.propagator = FourierPropagator(potential, IV, self.parameters) # Which data do we want to save tm = self.parameters.get_timemanager() slots = tm.compute_number_saves() print(tm) self.IOManager.add_grid(self.parameters, blockid="global") self.IOManager.add_fourieroperators(self.parameters) self.IOManager.add_wavefunction(self.parameters, timeslots=slots) # Write some initial values to disk self.IOManager.save_grid(nodes, blockid="global") self.IOManager.save_fourieroperators(self.propagator.get_operators()) self.IOManager.save_wavefunction(IV.get_values(), timestep=0) def run_simulation(self): r""" Run the simulation loop for a number of time steps. The number of steps is calculated in the ``initialize`` function. """ tm = self.parameters.get_timemanager() # Run the simulation for a given number of timesteps for i in xrange(1, self.nsteps+1): print(" doing timestep "+str(i)) self.propagator.propagate() # Save some simulation data if tm.must_save(i): self.IOManager.save_wavefunction(self.propagator.get_wavefunction().get_values(), timestep=i) def end_simulation(self): r""" Do the necessary cleanup after a simulation. For example request the IOManager to write the data and close the output files. """ self.IOManager.finalize()
class SimulationLoopSpawnAdiabatic(SimulationLoop): r""" This class acts as the main simulation loop. It owns a propagator that propagates a set of initial values during a time evolution. All values are read from the ``Parameters.py`` file. """ def __init__(self, parameters): r""" Create a new simulation loop instance. """ # Keep a reference to the simulation parameters self.parameters = parameters self.tm = TimeManager(parameters) #: The time propagator instance driving the simulation. self.propagator = None #: A ``IOManager`` instance for saving simulation results. self.iom = IOManager() self.iom.create_file(parameters) self.gid = self.iom.create_group() def prepare_simulation(self): r""" Set up a Spawning propagator for the simulation loop. Set the potential and initial values according to the configuration. :raise ValueError: For invalid or missing input data. """ potential = PotentialFactory().create_potential(self.parameters) N = potential.get_number_components() # Check for enough initial values if self.parameters["leading_component"] > N: raise ValueError("Leading component index out of range.") if len(self.parameters["parameters"]) < N: raise ValueError("Too few initial states given. Parameters are missing.") if len(self.parameters["coefficients"]) < N: raise ValueError("Too few initial states given. Coefficients are missing.") # Create a suitable wave packet packet = HagedornWavepacket(self.parameters) packet.set_parameters(self.parameters["parameters"][self.parameters["leading_component"]]) packet.set_quadrature(None) # Set the initial values for component, data in enumerate(self.parameters["coefficients"]): for index, value in data: packet.set_coefficient(component, index, value) # Project the initial values to the canonical basis packet.project_to_canonical(potential) # Finally create and initialize the propagator instace inner = HagedornPropagator(potential, packet, self.parameters["leading_component"], self.parameters) self.propagator = SpawnAdiabaticPropagator(inner, potential, packet, self.parameters["leading_component"], self.parameters) # Write some initial values to disk slots = self.tm.compute_number_saves() for packet in self.propagator.get_wavepackets(): bid = self.iom.create_block(groupid=self.gid) self.iom.add_wavepacket(self.parameters, timeslots=slots, blockid=bid) self.iom.save_wavepacket_coefficients(packet.get_coefficients(), blockid=bid, timestep=0) self.iom.save_wavepacket_parameters(packet.get_parameters(), blockid=bid, timestep=0) def run_simulation(self): r""" Run the simulation loop for a number of time steps. The number of steps is calculated in the ``initialize`` function. """ tm = self.tm # Run the simulation for a given number of timesteps for i in xrange(1, tm.get_nsteps()+1): print(" doing timestep "+str(i)) self.propagator.propagate(tm.compute_time(i)) # Save some simulation data if tm.must_save(i): # Check if we need more data blocks for newly spawned packets while self.iom.get_number_blocks(groupid=self.gid) < self.propagator.get_number_packets(): bid = self.iom.create_block(groupid=self.gid) self.iom.add_wavepacket(self.parameters, blockid=bid) for index, packet in enumerate(self.propagator.get_wavepackets()): self.iom.save_wavepacket_coefficients(packet.get_coefficients(), timestep=i, blockid=index) self.iom.save_wavepacket_parameters(packet.get_parameters(), timestep=i, blockid=index) def end_simulation(self): r""" Do the necessary cleanup after a simulation. For example request the IOManager to write the data and close the output files. """ self.iom.finalize()