def _define_forest(ns, parent=None, **kw): if run_purr: Timba.TDL.GUI.purr(mssel.msname + ".purrlog", [mssel.msname, '.']) # create Purr pipe global purrpipe purrpipe = Purr.Pipe.Pipe(mssel.msname) # get antennas from MS ANTENNAS = mssel.get_antenna_set(list(range(1, 15))) array = Meow.IfrArray(ns, ANTENNAS, mirror_uvw=False) stas = array.stations() # get phase centre from MS, setup observation observation = Meow.Observation(ns, phase_centre=mssel.get_phase_dir(), linear=mssel.is_linear_pol(), circular=mssel.is_circular_pol()) Meow.Context.set(array, observation) # get active correlations from MS Meow.Context.active_correlations = mssel.get_correlations() # make spigot nodes spigots = spigots0 = outputs = array.spigots(corr=mssel.get_corr_index()) # ...and an inspector for them StdTrees.vis_inspector(ns.inspector('input'), spigots, bookmark="Inspect input visibilities") inspectors = [ns.inspector('input')] Bookmarks.make_node_folder("Input visibilities by baseline", [spigots(p, q) for p, q in array.ifrs()], sorted=True, ncol=2, nrow=2) inspect_ifrs = array.ifrs() if do_solve: # filter solvable baselines by baseline length solve_ifrs = [] antpos = mssel.ms_antenna_positions if (min_baseline or max_baseline) and antpos is not None: for (ip, p), (iq, q) in array.ifr_index(): baseline = math.sqrt( ((antpos[ip, :] - antpos[iq, :])**2).sum()) if (not min_baseline or baseline > min_baseline) and \ (not max_baseline or baseline < max_baseline): solve_ifrs.append((p, q)) else: solve_ifrs = array.ifrs() inspect_ifrs = solve_ifrs # make a predict tree using the MeqMaker if do_solve or do_subtract: predict = meqmaker.make_predict_tree(ns) # make a ParmGroup and solve jobs for source parameters, if we have any if do_solve: parms = {} for src in meqmaker.get_source_list(ns): parms.update([(p.name, p) for p in src.get_solvables()]) if parms: pg_src = ParmGroup.ParmGroup("source", list(parms.values()), table_name="sources.fmep", individual=True, bookmark=True) # now make a solvejobs for the source ParmGroup.SolveJob("cal_source", "Calibrate source model", pg_src) # make nodes to compute residuals if do_subtract: residuals = ns.residuals for p, q in array.ifrs(): residuals(p, q) << spigots(p, q) - predict(p, q) outputs = residuals # and now we may need to correct the outputs if do_correct: if do_correct_sky: srcs = meqmaker.get_source_list(ns) sky_correct = srcs and srcs[0] else: sky_correct = None outputs = meqmaker.correct_uv_data(ns, outputs, sky_correct=sky_correct, inspect_ifrs=inspect_ifrs) # make solve trees if do_solve: # inputs to the solver are based on calibration type # if calibrating visibilities, feed them to condeq directly if cal_type == CAL.VIS: observed = spigots model = predict # else take ampl/phase component else: model = ns.model observed = ns.observed if cal_type == CAL.AMPL: for p, q in array.ifrs(): observed(p, q) << Meq.Abs(spigots(p, q)) model(p, q) << Meq.Abs(predict(p, q)) elif cal_type == CAL.LOGAMPL: for p, q in array.ifrs(): observed(p, q) << Meq.Log(Meq.Abs(spigots(p, q))) model(p, q) << Meq.Log(Meq.Abs(predict(p, q))) elif cal_type == CAL.PHASE: for p, q in array.ifrs(): observed(p, q) << 0 model(p, q) << Meq.Abs(predict(p, q)) * Meq.FMod( Meq.Arg(spigots(p, q)) - Meq.Arg(predict(p, q)), 2 * math.pi) else: raise ValueError("unknown cal_type setting: " + str(cal_type)) # make a solve tree solve_tree = StdTrees.SolveTree(ns, model, solve_ifrs=solve_ifrs) # the output of the sequencer is either the residuals or the spigots, # according to what has been set above outputs = solve_tree.sequencers(inputs=observed, outputs=outputs) # make sinks and vdm. # The list of inspectors must be supplied here inspectors += meqmaker.get_inspectors() or [] StdTrees.make_sinks(ns, outputs, spigots=spigots0, post=inspectors) Bookmarks.make_node_folder("Corrected/residual visibilities by baseline", [outputs(p, q) for p, q in array.ifrs()], sorted=True, ncol=2, nrow=2) if not do_solve: if do_subtract: name = "Generate residuals" comment = "Generated residual visibilities." elif do_correct: name = "Generate corrected data" comment = "Generated corrected visibilities." else: name = None if name: # make a TDL job to runsthe tree def run_tree(mqs, parent, **kw): global tile_size purrpipe.title("Calibrating").comment(comment) mqs.execute(Meow.Context.vdm.name, mssel.create_io_request(tile_size), wait=False) TDLRuntimeMenu( name, TDLOption( 'tile_size', "Tile size, in timeslots", [10, 60, 120, 240], more=int, doc= """Input data is sliced by time, and processed in chunks (tiles) of the indicated size. Larger tiles are faster, but use more memory.""" ), TDLRuntimeJob(run_tree, name)) # very important -- insert meqmaker's runtime options properly # this should come last, since runtime options may be built up during compilation. TDLRuntimeOptions(*meqmaker.runtime_options(nest=False)) # insert solvejobs if do_solve: TDLRuntimeOptions(*ParmGroup.get_solvejob_options()) # finally, setup imaging options imsel = mssel.imaging_selector(npix=512, arcmin=meqmaker.estimate_image_size()) TDLRuntimeMenu("Make an image from this MS", *imsel.option_list()) # and close meqmaker -- this exports annotations, etc meqmaker.close()
def _define_forest(ns,parent=None,**kw): if not mssel.msname: raise RuntimeError,"MS not set"; if run_purr: Timba.TDL.GUI.purr(mssel.msname+".purrlog",[mssel.msname,'.']); # create Purr pipe global purrpipe; purrpipe = Purr.Pipe.Pipe(mssel.msname); # setup contexts from MS mssel.setup_observation_context(ns); array = Meow.Context.array; # make spigot nodes for data mssel.enable_input_column(True); spigots = array.spigots(corr=mssel.get_corr_index()); meqmaker.make_per_ifr_bookmarks(spigots,"Input visibilities"); # data tensor ns.DT << Meq.Composer(dims=[0],mt_polling=True,*[ spigots(p,q) for p,q in array.ifrs() ]); # predict tree using the MeqMaker all_sources = meqmaker.get_source_list(ns); dg_sources = deopts.enabled and dgsel.filter(all_sources); if dg_sources: # first group all sources without a diffgain on them groups = [ [ src for src in all_sources if not src in dg_sources ] ]; # group diffgain-enabled sources by grouping tag clusters = set([src.get_attr(diffgain_group,None) for src in dg_sources]); dg_groups = [ (name,[ src for src in dg_sources if src.get_attr(diffgain_group) == name ]) for name in clusters if name ]; # add sources without a grouping tag individually, as single-source groups dg_groups += [ (src.name,[src]) for src in dg_sources if not src.get_attr(diffgain_group,None) ]; # now sort by brightness flux_dgg = [ (sum([src.get_attr('Iapp',0) or src.get_attr('I') for src in dgg[1]]),dgg) for dgg in dg_groups ]; flux_dgg.sort(lambda a,b:cmp(b[0],a[0])); diffgain_labels = [ dgg[0] for flux,dgg in flux_dgg ]; groups += [ dgg[1] for flux,dgg in flux_dgg ]; num_diffgains = len(flux_dgg); # now make predict trees models = []; for i,group in enumerate(groups): MT = ns.MT(i); predict = meqmaker.make_predict_tree(MT.Subscope(),sources=group); ns.MT(i) << Meq.Composer(dims=[0],mt_polling=True,*[ predict(p,q) for p,q in array.ifrs() ]); models.append(ns.MT(i)); print "Number of diffgain predict groups:",len(groups); else: diffgain_labels = []; num_diffgains = 0; predict = meqmaker.make_predict_tree(ns); ns.MT << Meq.Composer(dims=[0],mt_polling=True,*[ predict(p,q) for p,q in array.ifrs() ]); models = [ ns.MT ]; solve_ifrs = array.subset(calibrate_ifrs,strict=False).ifrs(); downsample_subtiling = [ stefcal_downsample_timeint,stefcal_downsample_freqint ] if stefcal_downsample else [1,1]; import Calico.OMS.StefCal.StefCal kwopts = {} gopts.set_stefcal_node_options(kwopts,visualize=stefcal_visualize); bopts.set_stefcal_node_options(kwopts,visualize=stefcal_visualize); deopts.set_stefcal_node_options(kwopts,visualize=stefcal_visualize); ns.stefcal << Meq.PyNode(class_name="StefCalNode",module_name=Calico.OMS.StefCal.StefCal.__file__, ifrs=[ "%s:%s"%(p,q) for p,q in array.ifrs() ], baselines=[ array.baseline(ip,iq) for (ip,p),(iq,q) in array.ifr_index() ], solve_ifrs=[ "%s:%s"%(p,q) for p,q in solve_ifrs ], noise_per_chan=stefcal_noise_per_chan, downsample_subtiling=downsample_subtiling, num_major_loops=stefcal_nmajor, regularization_factor=1e-6,# rescale=stefcal_rescale, init_from_previous=False, critical_flag_threshold=critical_flag_threshold, diffgain_labels=diffgain_labels, # flagging options output_flag_bit=Meow.MSUtils.FLAGMASK_OUTPUT, # IFR gain solution options apply_ifr_gains=stefcal_ifr_gains, solve_ifr_gains=(stefcal_ifr_gain_mode != MODE_SOLVE_APPLY), reset_ifr_gains=stefcal_ifr_gain_reset, save_ifr_gains=(stefcal_ifr_gain_mode == MODE_SOLVE_SAVE), ifr_gain_table=stefcal_ifr_gain_table, per_chan_ifr_gains=stefcal_per_chan_ifr_gains, diag_ifr_gains=(stefcal_diagonal_ifr_gains == DIAGONLY), residuals=(do_output == CORRECTED_RESIDUALS), subtract_dgsrc=(do_output == CORRECTED_DATA_SUB), verbose=stefcal_verbose, children=[ns.DT]+models,**kwopts); inspectors = meqmaker.get_inspectors() or []; # make output bookmarks nv = 0; for p,q in array.ifrs(): sel = ns.output_sel(p,q) << Meq.Selector(ns.stefcal,index=range(nv,nv+4),multi=True); ns.output(p,q) << Meq.Composer(sel,dims=[2,2]); nv += 4; meqmaker.make_per_ifr_bookmarks(ns.output,"Output visibilities"); Bookmarks.Page("StefCal outputs").add(ns.stefcal,viewer="Record Browser"); if gopts.enabled and gopts.visualize and stefcal_visualize: ns.stefcal_vis_G << Meq.PyNode(class_name="StefCalVisualizer",module_name=Calico.OMS.StefCal.StefCal.__file__, label="G",flag_unity=visualize_flag_unity,norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations); ns.stefcal_vis_G_avg << Meq.PyNode(class_name="StefCalVisualizer",module_name=Calico.OMS.StefCal.StefCal.__file__, label="G",freq_average=True,flag_unity=visualize_flag_unity,norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations); Bookmarks.Page("StefCal G plotter").add(ns.stefcal_vis_G,viewer="Result Plotter"); Bookmarks.Page("StefCal G inspector").add(ns.stefcal_vis_G_avg,viewer="Collections Plotter"); inspectors += [ ns.stefcal_vis_G,ns.stefcal_vis_G_avg ]; if bopts.enabled and bopts.visualize and stefcal_visualize: ns.stefcal_vis_B << Meq.PyNode(class_name="StefCalVisualizer",module_name=Calico.OMS.StefCal.StefCal.__file__, label="B",flag_unity=visualize_flag_unity,norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations); ns.stefcal_vis_B_avg << Meq.PyNode(class_name="StefCalVisualizer",module_name=Calico.OMS.StefCal.StefCal.__file__, label="B",freq_average=True,flag_unity=visualize_flag_unity,norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations); Bookmarks.Page("StefCal B plotter").add(ns.stefcal_vis_B,viewer="Result Plotter"); Bookmarks.Page("StefCal B inspector").add(ns.stefcal_vis_B_avg,viewer="Collections Plotter"); inspectors += [ ns.stefcal_vis_B,ns.stefcal_vis_B_avg ]; if deopts.enabled and deopts.visualize and stefcal_visualize: for i,label in enumerate(diffgain_labels): vde = ns.stefcal_vis_dE(label) << Meq.PyNode(class_name="StefCalVisualizer",module_name=Calico.OMS.StefCal.StefCal.__file__, label="dE:%s"%label,flag_unity=visualize_flag_unity,norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations); vde_avg = ns.stefcal_vis_dE_avg(label) << Meq.PyNode(class_name="StefCalVisualizer",module_name=Calico.OMS.StefCal.StefCal.__file__, label="dE:%s"%label,freq_average=True,flag_unity=visualize_flag_unity,norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations); Bookmarks.Page("StefCal dE:%s plotter"%label).add(vde,viewer="Result Plotter"); Bookmarks.Page("StefCal dE:%s inspector"%label).add(vde_avg,viewer="Collections Plotter"); inspectors += [ vde,vde_avg ]; # make sinks StdTrees.make_sinks(ns,ns.output,spigots=spigots,post=inspectors, corr_index=mssel.get_corr_index()); # this should come last, since runtime options may be built up during compilation. TDLRuntimeOptions(*meqmaker.runtime_options(nest=False)); # finally, setup imaging options imsel = mssel.imaging_selector(npix=512,arcmin=meqmaker.estimate_image_size()); TDLRuntimeMenu("Make an image from this MS",*imsel.option_list()); # and close meqmaker -- this exports annotations, etc meqmaker.close(); # add options to clear all solutions from Calico.OMS.StefCal import StefCal TDLRuntimeOption("stefcal_reset_all","Remove all existing solutions",False); for opt in gopts,bopts,deopts: if opt.enabled: TDLRuntimeOption("reset","Remove existing %s solutions (%s)"%(opt.label,os.path.basename(opt.table)),False,namespace=opt); if stefcal_ifr_gains: TDLRuntimeOption("stefcal_reset_ifr_gains","Remove existing interferometer errors (%s)"%( os.path.basename(stefcal_ifr_gain_table)),False); TDLRuntimeJob(_run_stefcal,"Run StefCal",job_id="stefcal");
def _define_forest(ns,parent=None,**kw): if run_purr: Timba.TDL.GUI.purr(mssel.msname+".purrlog",[mssel.msname,'.']); # create Purr pipe global purrpipe; purrpipe = Purr.Pipe.Pipe(mssel.msname); # get antennas from MS ANTENNAS = mssel.get_antenna_set(list(range(1,15))); array = Meow.IfrArray(ns,ANTENNAS,mirror_uvw=False); stas = array.stations(); # get phase centre from MS, setup observation observation = Meow.Observation(ns,phase_centre=mssel.get_phase_dir(), linear=mssel.is_linear_pol(), circular=mssel.is_circular_pol()); Meow.Context.set(array,observation); # get active correlations from MS Meow.Context.active_correlations = mssel.get_correlations(); # make spigot nodes spigots = spigots0 = outputs = array.spigots(corr=mssel.get_corr_index()); # ...and an inspector for them StdTrees.vis_inspector(ns.inspector('input'),spigots, bookmark="Inspect input visibilities"); inspectors = [ ns.inspector('input') ]; Bookmarks.make_node_folder("Input visibilities by baseline", [ spigots(p,q) for p,q in array.ifrs() ],sorted=True,ncol=2,nrow=2); inspect_ifrs = array.ifrs(); if do_solve: # filter solvable baselines by baseline length solve_ifrs = []; antpos = mssel.ms_antenna_positions; if (min_baseline or max_baseline) and antpos is not None: for (ip,p),(iq,q) in array.ifr_index(): baseline = math.sqrt(((antpos[ip,:]-antpos[iq,:])**2).sum()); if (not min_baseline or baseline > min_baseline) and \ (not max_baseline or baseline < max_baseline): solve_ifrs.append((p,q)); else: solve_ifrs = array.ifrs(); inspect_ifrs = solve_ifrs; # make a predict tree using the MeqMaker if do_solve or do_subtract: predict = meqmaker.make_predict_tree(ns); # make a ParmGroup and solve jobs for source parameters, if we have any if do_solve: parms = {}; for src in meqmaker.get_source_list(ns): parms.update([(p.name,p) for p in src.get_solvables()]); if parms: pg_src = ParmGroup.ParmGroup("source",list(parms.values()), table_name="sources.fmep", individual=True,bookmark=True); # now make a solvejobs for the source ParmGroup.SolveJob("cal_source","Calibrate source model",pg_src); # make nodes to compute residuals if do_subtract: residuals = ns.residuals; for p,q in array.ifrs(): residuals(p,q) << spigots(p,q) - predict(p,q); outputs = residuals; # and now we may need to correct the outputs if do_correct: if do_correct_sky: srcs = meqmaker.get_source_list(ns); sky_correct = srcs and srcs[0]; else: sky_correct = None; outputs = meqmaker.correct_uv_data(ns,outputs,sky_correct=sky_correct,inspect_ifrs=inspect_ifrs); # make solve trees if do_solve: # inputs to the solver are based on calibration type # if calibrating visibilities, feed them to condeq directly if cal_type == CAL.VIS: observed = spigots; model = predict; # else take ampl/phase component else: model = ns.model; observed = ns.observed; if cal_type == CAL.AMPL: for p,q in array.ifrs(): observed(p,q) << Meq.Abs(spigots(p,q)); model(p,q) << Meq.Abs(predict(p,q)); elif cal_type == CAL.LOGAMPL: for p,q in array.ifrs(): observed(p,q) << Meq.Log(Meq.Abs(spigots(p,q))); model(p,q) << Meq.Log(Meq.Abs(predict(p,q))); elif cal_type == CAL.PHASE: for p,q in array.ifrs(): observed(p,q) << 0; model(p,q) << Meq.Abs(predict(p,q))*Meq.FMod(Meq.Arg(spigots(p,q))-Meq.Arg(predict(p,q)),2*math.pi); else: raise ValueError("unknown cal_type setting: "+str(cal_type)); # make a solve tree solve_tree = StdTrees.SolveTree(ns,model,solve_ifrs=solve_ifrs); # the output of the sequencer is either the residuals or the spigots, # according to what has been set above outputs = solve_tree.sequencers(inputs=observed,outputs=outputs); # make sinks and vdm. # The list of inspectors must be supplied here inspectors += meqmaker.get_inspectors() or []; StdTrees.make_sinks(ns,outputs,spigots=spigots0,post=inspectors); Bookmarks.make_node_folder("Corrected/residual visibilities by baseline", [ outputs(p,q) for p,q in array.ifrs() ],sorted=True,ncol=2,nrow=2); if not do_solve: if do_subtract: name = "Generate residuals"; comment = "Generated residual visibilities."; elif do_correct: name = "Generate corrected data"; comment = "Generated corrected visibilities."; else: name = None; if name: # make a TDL job to runsthe tree def run_tree (mqs,parent,**kw): global tile_size; purrpipe.title("Calibrating").comment(comment); mqs.execute(Meow.Context.vdm.name,mssel.create_io_request(tile_size),wait=False); TDLRuntimeMenu(name, TDLOption('tile_size',"Tile size, in timeslots",[10,60,120,240],more=int, doc="""Input data is sliced by time, and processed in chunks (tiles) of the indicated size. Larger tiles are faster, but use more memory."""), TDLRuntimeJob(run_tree,name) ); # very important -- insert meqmaker's runtime options properly # this should come last, since runtime options may be built up during compilation. TDLRuntimeOptions(*meqmaker.runtime_options(nest=False)); # insert solvejobs if do_solve: TDLRuntimeOptions(*ParmGroup.get_solvejob_options()); # finally, setup imaging options imsel = mssel.imaging_selector(npix=512,arcmin=meqmaker.estimate_image_size()); TDLRuntimeMenu("Make an image from this MS",*imsel.option_list()); # and close meqmaker -- this exports annotations, etc meqmaker.close();
def _define_forest(ns, parent=None, **kw): if not mssel.msname: raise RuntimeError("MS not set") if run_purr: Timba.TDL.GUI.purr(mssel.msname + ".purrlog", [mssel.msname, '.']) # create Purr pipe global purrpipe purrpipe = Purr.Pipe.Pipe(mssel.msname) # setup contexts from MS mssel.setup_observation_context(ns, prefer_baseline_uvw=True) array = Meow.Context.array # make spigot nodes for data if do_solve or do_output not in [CORRUPTED_MODEL]: mssel.enable_input_column(True) spigots = spigots0 = outputs = array.spigots( corr=mssel.get_corr_index()) if enable_inspectors: meqmaker.make_per_ifr_bookmarks(spigots, "Input visibilities") # add IFR-based errors, if any spigots = meqmaker.apply_visibility_processing(ns, spigots) else: mssel.enable_input_column(False) spigots = spigots0 = None # make spigot nodes for model corrupt_uvdata = model_spigots = None if read_ms_model: mssel.enable_model_column(True) model_spigots = array.spigots(column="PREDICT", corr=mssel.get_corr_index()) if enable_inspectors: meqmaker.make_per_ifr_bookmarks(model_spigots, "UV-model visibilities") # if calibrating on (input-corrupt model), make corrupt model if do_solve and cal_type == CAL.DIFF: corrupt_uvdata = meqmaker.corrupt_uv_data(ns, model_spigots) # if needed, then make a predict tree using the MeqMaker if do_solve or do_output != CORRECTED_DATA: if model_spigots and not corrupt_uvdata: uvdata = model_spigots else: uvdata = None predict = meqmaker.make_predict_tree(ns, uvdata=uvdata) else: predict = None output_title = "Uncorrected residuals" # make nodes to compute residuals if do_output in [CORRECTED_RESIDUALS, RESIDUALS]: residuals = ns.residuals for p, q in array.ifrs(): if corrupt_uvdata: residuals(p, q) << Meq.Subtract(spigots( p, q), corrupt_uvdata(p, q), predict(p, q)) else: residuals(p, q) << spigots(p, q) - predict(p, q) if enable_inspectors: meqmaker.make_per_ifr_bookmarks(residuals, "Uncorrected residuals") outputs = residuals # and now we may need to correct the outputs if do_output in [CORRECTED_DATA, CORRECTED_RESIDUALS]: if do_correct_sky: srcs = meqmaker.get_source_list(ns) if do_correct_sky is FIRST_SOURCE: sky_correct = srcs and srcs[0] else: srcs = [ src for src in srcs if fnmatch.fnmatchcase(src.name, do_correct_sky) ] sky_correct = srcs and srcs[0] else: sky_correct = None outputs = meqmaker.correct_uv_data(ns, outputs, sky_correct=sky_correct, flag_jones=flag_jones) output_title = "Corrected data" if do_output is CORRECTED_DATA else "Corrected residuals" elif do_output == CORRUPTED_MODEL: outputs = predict output_title = "Predict" elif do_output == CORRUPTED_MODEL_ADD: outputs = ns.output for p, q in array.ifrs(): outputs(p, q) << spigots(p, q) + predict(p, q) output_title = "Data+predict" # make flaggers if flag_enable and do_output in [ CORRECTED_DATA, RESIDUALS, CORRECTED_RESIDUALS ]: flaggers = [] if flag_res is not None or flag_mean_res is not None: for p, q in array.ifrs(): ns.absres(p, q) << Meq.Abs(outputs(p, q)) # make flagger for residuals if flag_res is not None: for p, q in array.ifrs(): ns.flagres(p, q) << Meq.ZeroFlagger( ns.absres(p, q) - flag_res, oper='gt', flag_bit=Meow.MSUtils.FLAGMASK_OUTPUT) flaggers.append(ns.flagres) # ...and an inspector for them if enable_inspectors: meqmaker.make_per_ifr_bookmarks(ns.flagres, "Residual amplitude flags") # make flagger for mean residuals if flag_mean_res is not None: ns.meanabsres << Meq.Mean( *[ns.absres(p, q) for p, q in array.ifrs()]) ns.flagmeanres << Meq.ZeroFlagger( ns.meanabsres - flag_mean_res, oper='gt', flag_bit=Meow.MSUtils.FLAGMASK_OUTPUT) Meow.Bookmarks.Page("Mean residual amplitude flags").add( ns.flagmeanres, viewer="Result Plotter") flaggers.append(lambda p, q: ns.flagmeanres) # merge flags into output if flaggers: if enable_inspectors: meqmaker.make_per_ifr_bookmarks(outputs, output_title + " (unflagged)") for p, q in array.ifrs(): ns.flagged(p, q) << Meq.MergeFlags( outputs(p, q), *[f(p, q) for f in flaggers]) outputs = ns.flagged if enable_inspectors: meqmaker.make_per_ifr_bookmarks(outputs, output_title) abs_outputs = outputs('abs') for p, q in array.ifrs(): abs_outputs(p, q) << Meq.Abs(outputs(p, q)) meqmaker.make_per_ifr_bookmarks(abs_outputs, output_title + " (mean amplitudes)") # make solve trees if do_solve: # parse ifr specification solve_ifrs = array.subset(calibrate_ifrs, strict=False).ifrs() if not solve_ifrs: raise RuntimeError( "No interferometers selected for calibration. Check your ifr specification (under calibration options)." ) # inputs to the solver are based on calibration type if corrupt_uvdata: [ ns.diff(p, q) << spigots(p, q) - corrupt_uvdata(p, q) for p, q in solve_ifrs ] rhs = ns.diff else: rhs = spigots lhs = predict weights = modulo = None # if calibrating visibilities, feed them to condeq directly, else take ampl/phase if cal_what == CAL.VIS: pass elif cal_what == CAL.AMPL: [ x('ampl', p, q) << Meq.Abs(x(p, q)) for p, q in ifrs for x in [rhs, lhs] ] lhs = lhs('ampl') rhs = rhs('ampl') elif cal_what == CAL.LOGAMPL: [ x('logampl', p, q) << Meq.Log(Meq.Abs(x(p, q))) for p, q in ifrs for x in [rhs, lhs] ] lhs = lhs('logampl') rhs = rhs('logampl') elif cal_what == CAL.PHASE: [ x('phase', p, q) << Meq.Arg(x(p, q)) for p, q in ifrs for x in [rhs, lhs] ] [rhs('ampl', p, q) << Meq.Abs(rhs(p, q)) for p, q in ifrs] lhs = lhs('phase') rhs = rhs('phase') weights = rhs('ampl') modulo = 2 * math.pi else: raise ValueError("unknown cal_what setting: " + str(cal_what)) # make a solve tree solve_tree = StdTrees.SolveTree(ns, lhs, solve_ifrs=solve_ifrs, weights=weights, modulo=modulo) # the output of the sequencer is either the residuals or the spigots, # according to what has been set above outputs = solve_tree.sequencers(inputs=rhs, outputs=outputs) post = ((enable_inspectors and meqmaker.get_inspectors()) or []) StdTrees.make_sinks(ns, outputs, spigots=spigots0, post=post, corr_index=mssel.get_corr_index()) if not do_solve: name = "Generate " + output_title.lower() comment = "Generated " + output_title.lower() if name: # make a TDL job to run the tree def run_tree(mqs, parent, wait=False, **kw): global tile_size purrpipe.title("Calibrating").comment(comment) return mqs.execute(Meow.Context.vdm.name, mssel.create_io_request(tile_size), wait=wait) TDLRuntimeMenu( name, TDLOption( 'tile_size', "Tile size, in timeslots", [10, 60, 120, 240], more=int, doc= """Input data is sliced by time, and processed in chunks (tiles) of the indicated size. Larger tiles are faster, but use more memory.""" ), TDLJob(run_tree, name, job_id='generate_visibilities')) # very important -- insert meqmaker's runtime options properly # this should come last, since runtime options may be built up during compilation. TDLRuntimeOptions(*meqmaker.runtime_options(nest=False)) # insert solvejobs if do_solve: TDLRuntimeOptions(*ParmGroup.get_solvejob_options()) # finally, setup imaging options imsel = mssel.imaging_selector(npix=512, arcmin=meqmaker.estimate_image_size()) TDLRuntimeMenu("Make an image from this MS", *imsel.option_list()) # and close meqmaker -- this exports annotations, etc meqmaker.close()
def _define_forest(ns, parent=None, **kw): if not mssel.msname: raise RuntimeError("MS not set") if run_purr: Timba.TDL.GUI.purr(mssel.msname + ".purrlog", [mssel.msname, '.']) # create Purr pipe global purrpipe purrpipe = Purr.Pipe.Pipe(mssel.msname) # setup contexts from MS mssel.setup_observation_context(ns) array = Meow.Context.array # make spigot nodes for data mssel.enable_input_column(True) spigots = array.spigots(corr=mssel.get_corr_index()) meqmaker.make_per_ifr_bookmarks(spigots, "Input visibilities") # data tensor ns.DT << Meq.Composer( dims=[0], mt_polling=True, *[spigots(p, q) for p, q in array.ifrs()]) # list of model tensors models = [] if read_ms_model: mssel.enable_model_column(True) model_spigots = array.spigots(column="PREDICT", corr=mssel.get_corr_index()) meqmaker.make_per_ifr_bookmarks(model_spigots, "UV-model visibilities") mtuv = ns.MT("uv") << Meq.Composer( dims=[0], mt_polling=True, *[model_spigots(p, q) for p, q in array.ifrs()]) # predict tree using the MeqMaker all_sources = meqmaker.get_source_list(ns) dg_sources = deopts.enabled and dgsel.filter(all_sources) if dg_sources: # first group all sources without a diffgain on them groups = [[src for src in all_sources if not src in dg_sources]] # group diffgain-enabled sources by grouping tag clusters = set( [src.get_attr(diffgain_group, None) for src in dg_sources]) dg_groups = [(name, [ src for src in dg_sources if src.get_attr(diffgain_group) == name ]) for name in clusters if name] # add sources without a grouping tag individually, as single-source groups dg_groups += [(src.name, [src]) for src in dg_sources if not src.get_attr(diffgain_group, None)] # now sort by brightness flux_dgg = [(sum( [src.get_attr('Iapp', 0) or src.get_attr('I') for src in dgg[1]]), dgg) for dgg in dg_groups] from past.builtins import cmp from functools import cmp_to_key flux_dgg.sort(key=cmp_to_key(lambda a, b: cmp(b[0], a[0]))) diffgain_labels = [dgg[0] for flux, dgg in flux_dgg] groups += [dgg[1] for flux, dgg in flux_dgg] num_diffgains = len(flux_dgg) # now make predict trees for i, group in enumerate(groups): MT = ns.MT(group[0].name if i else "all") # first tensor is "MT", rest qualified by source names predict = meqmaker.make_predict_tree(MT.Subscope(), sources=group) MT << Meq.Composer(dims=[0], mt_polling=True, *[predict(p, q) for p, q in array.ifrs()]) # if reading an extra uv-model, add to first term if not i and read_ms_model: MT = ns.MT << Meq.Add(MT, mtuv) models.append(MT) print("Number of diffgain predict groups:", len(groups)) else: diffgain_labels = [] num_diffgains = 0 predict = meqmaker.make_predict_tree(ns) MT = ns.MT("all") << Meq.Composer( dims=[0], mt_polling=True, *[predict(p, q) for p, q in array.ifrs()]) if read_ms_model: MT = ns.MT << Meq.Add(MT, mtuv) models.append(MT) solve_ifrs = array.subset(calibrate_ifrs, strict=False).ifrs() downsample_subtiling = [ stefcal_downsample_timeint, stefcal_downsample_freqint ] if stefcal_downsample else [1, 1] import Calico.OMS.StefCal.StefCal kwopts = {} gopts.set_stefcal_node_options(kwopts, visualize=stefcal_visualize) bopts.set_stefcal_node_options(kwopts, visualize=stefcal_visualize) deopts.set_stefcal_node_options(kwopts, visualize=stefcal_visualize) ns.stefcal << Meq.PyNode( class_name="StefCalNode", module_name=Calico.OMS.StefCal.StefCal.__file__, ifrs=["%s:%s" % (p, q) for p, q in array.ifrs()], baselines=[ array.baseline(ip, iq) for (ip, p), (iq, q) in array.ifr_index() ], solve_ifrs=["%s:%s" % (p, q) for p, q in solve_ifrs], noise_per_chan=stefcal_noise_per_chan, downsample_subtiling=downsample_subtiling, num_major_loops=stefcal_nmajor, regularization_factor=1e-6, # rescale=stefcal_rescale, init_from_previous=False, critical_flag_threshold=critical_flag_threshold, diffgain_labels=diffgain_labels, # flagging options output_flag_bit=Meow.MSUtils.FLAGMASK_OUTPUT, # IFR gain solution options apply_ifr_gains=stefcal_ifr_gains, solve_ifr_gains=(stefcal_ifr_gain_mode != MODE_SOLVE_APPLY), reset_ifr_gains=stefcal_ifr_gain_reset, save_ifr_gains=(stefcal_ifr_gain_mode == MODE_SOLVE_SAVE), ifr_gain_table=stefcal_ifr_gain_table, per_chan_ifr_gains=stefcal_per_chan_ifr_gains, diag_ifr_gains=(stefcal_diagonal_ifr_gains == DIAGONLY), residuals=(do_output == CORRECTED_RESIDUALS), subtract_dgsrc=(do_output == CORRECTED_DATA_SUB), verbose=stefcal_verbose, children=[ns.DT] + models, **kwopts) inspectors = meqmaker.get_inspectors() or [] # make output bookmarks nv = 0 for p, q in array.ifrs(): sel = ns.output_sel(p, q) << Meq.Selector( ns.stefcal, index=list(range(nv, nv + 4)), multi=True) ns.output(p, q) << Meq.Composer(sel, dims=[2, 2]) nv += 4 meqmaker.make_per_ifr_bookmarks(ns.output, "Output visibilities") Bookmarks.Page("StefCal outputs").add(ns.stefcal, viewer="Record Browser") if gopts.enabled and gopts.visualize and stefcal_visualize: ns.stefcal_vis_G << Meq.PyNode( class_name="StefCalVisualizer", module_name=Calico.OMS.StefCal.StefCal.__file__, label="G", flag_unity=visualize_flag_unity, norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations) ns.stefcal_vis_G_avg << Meq.PyNode( class_name="StefCalVisualizer", module_name=Calico.OMS.StefCal.StefCal.__file__, label="G", freq_average=True, flag_unity=visualize_flag_unity, norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations) Bookmarks.Page("StefCal G plotter").add(ns.stefcal_vis_G, viewer="Result Plotter") Bookmarks.Page("StefCal G inspector").add(ns.stefcal_vis_G_avg, viewer="Collections Plotter") inspectors += [ns.stefcal_vis_G, ns.stefcal_vis_G_avg] if bopts.enabled and bopts.visualize and stefcal_visualize: ns.stefcal_vis_B << Meq.PyNode( class_name="StefCalVisualizer", module_name=Calico.OMS.StefCal.StefCal.__file__, label="B", flag_unity=visualize_flag_unity, norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations) ns.stefcal_vis_B_avg << Meq.PyNode( class_name="StefCalVisualizer", module_name=Calico.OMS.StefCal.StefCal.__file__, label="B", freq_average=True, flag_unity=visualize_flag_unity, norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations) Bookmarks.Page("StefCal B plotter").add(ns.stefcal_vis_B, viewer="Result Plotter") Bookmarks.Page("StefCal B inspector").add(ns.stefcal_vis_B_avg, viewer="Collections Plotter") inspectors += [ns.stefcal_vis_B, ns.stefcal_vis_B_avg] if deopts.enabled and deopts.visualize and stefcal_visualize: for i, label in enumerate(diffgain_labels): vde = ns.stefcal_vis_dE(label) << Meq.PyNode( class_name="StefCalVisualizer", module_name=Calico.OMS.StefCal.StefCal.__file__, label="dE:%s" % label, flag_unity=visualize_flag_unity, norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations) vde_avg = ns.stefcal_vis_dE_avg(label) << Meq.PyNode( class_name="StefCalVisualizer", module_name=Calico.OMS.StefCal.StefCal.__file__, label="dE:%s" % label, freq_average=True, flag_unity=visualize_flag_unity, norm_offdiag=visualize_norm_offdiag, vells_label=Context.correlations) Bookmarks.Page("StefCal dE:%s plotter" % label).add( vde, viewer="Result Plotter") Bookmarks.Page("StefCal dE:%s inspector" % label).add( vde_avg, viewer="Collections Plotter") inspectors += [vde, vde_avg] # make sinks StdTrees.make_sinks(ns, ns.output, spigots=spigots, post=inspectors, corr_index=mssel.get_corr_index()) # this should come last, since runtime options may be built up during compilation. TDLRuntimeOptions(*meqmaker.runtime_options(nest=False)) # finally, setup imaging options imsel = mssel.imaging_selector(npix=512, arcmin=meqmaker.estimate_image_size()) TDLRuntimeMenu("Make an image from this MS", *imsel.option_list()) # and close meqmaker -- this exports annotations, etc meqmaker.close() # add options to clear all solutions from Calico.OMS.StefCal import StefCal TDLRuntimeOption("stefcal_reset_all", "Remove all existing solutions", False) for opt in gopts, bopts, deopts: if opt.enabled: TDLRuntimeOption("reset", "Remove existing %s solutions (%s)" % (opt.label, os.path.basename(opt.table)), False, namespace=opt) if stefcal_ifr_gains: TDLRuntimeOption( "stefcal_reset_ifr_gains", "Remove existing interferometer errors (%s)" % (os.path.basename(stefcal_ifr_gain_table)), False) TDLRuntimeJob(_run_stefcal, "Run StefCal", job_id="stefcal")
def _define_forest(ns,parent=None,**kw): if not mssel.msname: raise RuntimeError,"MS not set"; if run_purr: Timba.TDL.GUI.purr(mssel.msname+".purrlog",[mssel.msname,'.']); # create Purr pipe global purrpipe; purrpipe = Purr.Pipe.Pipe(mssel.msname); # setup contexts from MS mssel.setup_observation_context(ns,prefer_baseline_uvw=True); array = Meow.Context.array; # make spigot nodes for data if do_solve or do_output not in [CORRUPTED_MODEL]: mssel.enable_input_column(True); spigots = spigots0 = outputs = array.spigots(corr=mssel.get_corr_index()); if enable_inspectors: meqmaker.make_per_ifr_bookmarks(spigots,"Input visibilities"); # add IFR-based errors, if any spigots = meqmaker.apply_visibility_processing(ns,spigots); else: mssel.enable_input_column(False); spigots = spigots0 = None; # make spigot nodes for model corrupt_uvdata = model_spigots = None; if read_ms_model: mssel.enable_model_column(True); model_spigots = array.spigots(column="PREDICT",corr=mssel.get_corr_index()); if enable_inspectors: meqmaker.make_per_ifr_bookmarks(model_spigots,"UV-model visibilities"); # if calibrating on (input-corrupt model), make corrupt model if do_solve and cal_type == CAL.DIFF: corrupt_uvdata = meqmaker.corrupt_uv_data(ns,model_spigots); # if needed, then make a predict tree using the MeqMaker if do_solve or do_output != CORRECTED_DATA: if model_spigots and not corrupt_uvdata: uvdata = model_spigots; else: uvdata = None; predict = meqmaker.make_predict_tree(ns,uvdata=uvdata); else: predict = None; output_title = "Uncorrected residuals"; # make nodes to compute residuals if do_output in [CORRECTED_RESIDUALS,RESIDUALS]: residuals = ns.residuals; for p,q in array.ifrs(): if corrupt_uvdata: residuals(p,q) << Meq.Subtract(spigots(p,q),corrupt_uvdata(p,q),predict(p,q)); else: residuals(p,q) << spigots(p,q) - predict(p,q); if enable_inspectors: meqmaker.make_per_ifr_bookmarks(residuals,"Uncorrected residuals"); outputs = residuals; # and now we may need to correct the outputs if do_output in [CORRECTED_DATA,CORRECTED_RESIDUALS]: if do_correct_sky: srcs = meqmaker.get_source_list(ns); if do_correct_sky is FIRST_SOURCE: sky_correct = srcs and srcs[0]; else: srcs = [ src for src in srcs if fnmatch.fnmatchcase(src.name,do_correct_sky) ]; sky_correct = srcs and srcs[0]; else: sky_correct = None; outputs = meqmaker.correct_uv_data(ns,outputs,sky_correct=sky_correct, flag_jones=flag_jones); output_title = "Corrected data" if do_output is CORRECTED_DATA else "Corrected residuals"; elif do_output == CORRUPTED_MODEL: outputs = predict; output_title = "Predict"; elif do_output == CORRUPTED_MODEL_ADD: outputs = ns.output; for p,q in array.ifrs(): outputs(p,q) << spigots(p,q) + predict(p,q); output_title = "Data+predict"; # make flaggers if flag_enable and do_output in [ CORRECTED_DATA,RESIDUALS,CORRECTED_RESIDUALS ]: flaggers = []; if flag_res is not None or flag_mean_res is not None: for p,q in array.ifrs(): ns.absres(p,q) << Meq.Abs(outputs(p,q)); # make flagger for residuals if flag_res is not None: for p,q in array.ifrs(): ns.flagres(p,q) << Meq.ZeroFlagger(ns.absres(p,q)-flag_res,oper='gt',flag_bit=Meow.MSUtils.FLAGMASK_OUTPUT); flaggers.append(ns.flagres); # ...and an inspector for them if enable_inspectors: meqmaker.make_per_ifr_bookmarks(ns.flagres,"Residual amplitude flags"); # make flagger for mean residuals if flag_mean_res is not None: ns.meanabsres << Meq.Mean(*[ns.absres(p,q) for p,q in array.ifrs()]); ns.flagmeanres << Meq.ZeroFlagger(ns.meanabsres-flag_mean_res,oper='gt',flag_bit=Meow.MSUtils.FLAGMASK_OUTPUT); Meow.Bookmarks.Page("Mean residual amplitude flags").add(ns.flagmeanres,viewer="Result Plotter"); flaggers.append(lambda p,q:ns.flagmeanres); # merge flags into output if flaggers: if enable_inspectors: meqmaker.make_per_ifr_bookmarks(outputs,output_title+" (unflagged)"); for p,q in array.ifrs(): ns.flagged(p,q) << Meq.MergeFlags(outputs(p,q),*[f(p,q) for f in flaggers]); outputs = ns.flagged; if enable_inspectors: meqmaker.make_per_ifr_bookmarks(outputs,output_title); abs_outputs = outputs('abs'); for p,q in array.ifrs(): abs_outputs(p,q) << Meq.Abs(outputs(p,q)); meqmaker.make_per_ifr_bookmarks(abs_outputs,output_title+" (mean amplitudes)"); # make solve trees if do_solve: # parse ifr specification solve_ifrs = array.subset(calibrate_ifrs,strict=False).ifrs(); if not solve_ifrs: raise RuntimeError,"No interferometers selected for calibration. Check your ifr specification (under calibration options)."; # inputs to the solver are based on calibration type if corrupt_uvdata: [ ns.diff(p,q) << spigots(p,q) - corrupt_uvdata(p,q) for p,q in solve_ifrs ]; rhs = ns.diff; else: rhs = spigots; lhs = predict; weights = modulo = None; # if calibrating visibilities, feed them to condeq directly, else take ampl/phase if cal_what == CAL.VIS: pass; elif cal_what == CAL.AMPL: [ x('ampl',p,q) << Meq.Abs(x(p,q)) for p,q in ifrs for x in rhs,lhs ]; lhs = lhs('ampl'); rhs = rhs('ampl'); elif cal_what == CAL.LOGAMPL: [ x('logampl',p,q) << Meq.Log(Meq.Abs(x(p,q))) for p,q in ifrs for x in rhs,lhs ]; lhs = lhs('logampl'); rhs = rhs('logampl'); elif cal_what == CAL.PHASE: [ x('phase',p,q) << Meq.Arg(x(p,q)) for p,q in ifrs for x in rhs,lhs ]; [ rhs('ampl',p,q) << Meq.Abs(rhs(p,q)) for p,q in ifrs ]; lhs = lhs('phase'); rhs = rhs('phase'); weights = rhs('ampl'); modulo = 2*math.pi; else: raise ValueError,"unknown cal_what setting: "+str(cal_what); # make a solve tree solve_tree = StdTrees.SolveTree(ns,lhs,solve_ifrs=solve_ifrs,weights=weights,modulo=modulo); # the output of the sequencer is either the residuals or the spigots, # according to what has been set above outputs = solve_tree.sequencers(inputs=rhs,outputs=outputs); post = ( ( enable_inspectors and meqmaker.get_inspectors() ) or [] ); StdTrees.make_sinks(ns,outputs,spigots=spigots0,post=post,corr_index=mssel.get_corr_index()); if not do_solve: name = "Generate "+output_title.lower(); comment = "Generated "+output_title.lower(); if name: # make a TDL job to run the tree def run_tree (mqs,parent,wait=False,**kw): global tile_size; purrpipe.title("Calibrating").comment(comment); return mqs.execute(Meow.Context.vdm.name,mssel.create_io_request(tile_size),wait=wait); TDLRuntimeMenu(name, TDLOption('tile_size',"Tile size, in timeslots",[10,60,120,240],more=int, doc="""Input data is sliced by time, and processed in chunks (tiles) of the indicated size. Larger tiles are faster, but use more memory."""), TDLJob(run_tree,name,job_id='generate_visibilities') ); # very important -- insert meqmaker's runtime options properly # this should come last, since runtime options may be built up during compilation. TDLRuntimeOptions(*meqmaker.runtime_options(nest=False)); # insert solvejobs if do_solve: TDLRuntimeOptions(*ParmGroup.get_solvejob_options()); # finally, setup imaging options imsel = mssel.imaging_selector(npix=512,arcmin=meqmaker.estimate_image_size()); TDLRuntimeMenu("Make an image from this MS",*imsel.option_list()); # and close meqmaker -- this exports annotations, etc meqmaker.close();
def _define_forest(ns, parent=None, **kw): if not mssel.msname: raise RuntimeError('MS name not set') mssel.setup_observation_context(ns) array = Context.array # Data and model input if do_solve or output_type.need_data: mssel.enable_input_column(True) spigots = array.spigots(corr=mssel.get_corr_index()) meqmaker.make_per_ifr_bookmarks(spigots, 'Input visibilities') else: mssel.enable_input_column(False) spigots = None if do_solve or output_type.need_model: predict = meqmaker.make_predict_tree(ns, uvdata=None) else: predict = None # Data output outputs = output_type.apply(ns, meqmaker, array.ifrs(), spigots, predict) # Flagging if flag_enable and output_type.flag_data: flaggers = [] if flag_res is not None or flag_mean_res is not None: for p, q in array.ifrs(): ns.absres(p, q) << Meq.Abs(outputs(p, q)) if flag_res is not None: for p, q in array.ifrs(): ns.flagres(p, q) << Meq.ZeroFlagger( ns.absres(p, q) - flag_res, oper='gt', flag_bit=MSUtils.FLAGMASK_OUTPUT) flaggers.append(ns.flagres) meqmaker.make_per_ifr_bookmarks(ns.flagres, 'Residual amplitude flags') if flag_mean_res is not None: ns.meanabsres << Meq.Mean( *[ns.absres(p, q) for p, q in array.ifrs()]) ns.flagmeanres << Meq.ZeroFlagger(ns.meanabsres - flag_mean_res, oper='gt', flag_bit=MSUtils.FLAGMASK_OUTPUT) Bookmarks.Page('Mean residual amplitude flags').add( ns.flagmeanres, viewer='Result Plotter') flaggers.append(lambda p, q: ns.flagmeanres) if flaggers: meqmaker.make_per_ifr_bookmarks(outputs, output_type.desc + ' (unflagged)') for p, q in array.ifrs(): ns.flagged(p, q) << Meq.MergeFlags( outputs(p, q), *[f(p, q) for f in flaggers]) outputs = ns.flagged meqmaker.make_per_ifr_bookmarks(outputs, output_type.desc) # Solve trees if do_solve: # parse ifr specification solve_ifrs = array.subset(calibrate_ifrs, strict=False).ifrs() if not solve_ifrs: raise RuntimeError( 'No interferometers selected for calibration. ' 'Check your ifr specification (under calibration options).') lhs, rhs, weights, modulo = cal_quant.apply(solve_ifrs, predict, spigots) solve_tree = StdTrees.SolveTree(ns, lhs, solve_ifrs=solve_ifrs, weights=weights, modulo=modulo) outputs = solve_tree.sequencers(inputs=rhs, outputs=outputs) StdTrees.make_sinks(ns, outputs, spigots=spigots, post=meqmaker.get_inspectors() or [], corr_index=mssel.get_corr_index()) if not do_solve: name = 'Generate ' + output_type.desc.lower() comment = 'Generated ' + output_type.desc.lower() def run_tree(mqs, parent, wait=False, **kw): return mqs.execute(Context.vdm.name, mssel.create_io_request(tile_size), wait=wait) doc = """Input data are sliced by time, and processed in chunks (tiles) of the indicated size. Larger tiles are faster, but use more memory.""" TDLRuntimeMenu( name, TDLOption('tile_size', 'Tile size, in timeslots', [10, 60, 120, 240], more=int, doc=doc), TDLJob(run_tree, name, job_id='generate_visibilities')) # very important -- insert meqmaker's runtime options properly # this should come last, since runtime options may be built up # during compilation. TDLRuntimeOptions(*meqmaker.runtime_options(nest=False)) if do_solve: TDLRuntimeOptions(*ParmGroup.get_solvejob_options()) imsel = mssel.imaging_selector(npix=512, arcmin=meqmaker.estimate_image_size()) TDLRuntimeMenu('Make an image', *imsel.option_list()) meqmaker.close()
def _define_forest (ns, parent=None, **kw): if not mssel.msname: raise RuntimeError ('MS name not set') mssel.setup_observation_context (ns) array = Context.array # Data and model input if do_solve or output_type.need_data: mssel.enable_input_column (True) spigots = array.spigots (corr=mssel.get_corr_index ()) meqmaker.make_per_ifr_bookmarks (spigots, 'Input visibilities') else: mssel.enable_input_column (False) spigots = None if do_solve or output_type.need_model: predict = meqmaker.make_predict_tree (ns, uvdata=None) else: predict = None # Data output outputs = output_type.apply (ns, meqmaker, array.ifrs (), spigots, predict) # Flagging if flag_enable and output_type.flag_data: flaggers = [] if flag_res is not None or flag_mean_res is not None: for p, q in array.ifrs (): ns.absres(p,q) << Meq.Abs (outputs(p,q)) if flag_res is not None: for p, q in array.ifrs (): ns.flagres(p,q) << Meq.ZeroFlagger (ns.absres(p,q) - flag_res, oper='gt', flag_bit=MSUtils.FLAGMASK_OUTPUT) flaggers.append (ns.flagres) meqmaker.make_per_ifr_bookmarks (ns.flagres, 'Residual amplitude flags') if flag_mean_res is not None: ns.meanabsres << Meq.Mean (*[ns.absres(p,q) for p, q in array.ifrs()]) ns.flagmeanres << Meq.ZeroFlagger (ns.meanabsres - flag_mean_res, oper='gt', flag_bit=MSUtils.FLAGMASK_OUTPUT) Bookmarks.Page ('Mean residual amplitude flags').add (ns.flagmeanres, viewer='Result Plotter') flaggers.append (lambda p, q: ns.flagmeanres) if flaggers: meqmaker.make_per_ifr_bookmarks (outputs, output_type.desc + ' (unflagged)') for p, q in array.ifrs (): ns.flagged(p,q) << Meq.MergeFlags (outputs(p,q), *[f(p,q) for f in flaggers]) outputs = ns.flagged meqmaker.make_per_ifr_bookmarks (outputs, output_type.desc) # Solve trees if do_solve: # parse ifr specification solve_ifrs = array.subset (calibrate_ifrs, strict=False).ifrs() if not solve_ifrs: raise RuntimeError ('No interferometers selected for calibration. ' 'Check your ifr specification (under calibration options).') lhs, rhs, weights, modulo = cal_quant.apply (solve_ifrs, predict, spigots) solve_tree = StdTrees.SolveTree (ns, lhs, solve_ifrs=solve_ifrs, weights=weights, modulo=modulo) outputs = solve_tree.sequencers (inputs=rhs, outputs=outputs) StdTrees.make_sinks (ns, outputs, spigots=spigots, post=meqmaker.get_inspectors () or [], corr_index=mssel.get_corr_index ()) if not do_solve: name = 'Generate ' + output_type.desc.lower () comment = 'Generated ' + output_type.desc.lower () def run_tree (mqs, parent, wait=False, **kw): return mqs.execute (Context.vdm.name, mssel.create_io_request (tile_size), wait=wait) doc = """Input data are sliced by time, and processed in chunks (tiles) of the indicated size. Larger tiles are faster, but use more memory.""" TDLRuntimeMenu(name, TDLOption ('tile_size', 'Tile size, in timeslots', [10, 60, 120, 240], more=int, doc=doc), TDLJob (run_tree, name, job_id='generate_visibilities')) # very important -- insert meqmaker's runtime options properly # this should come last, since runtime options may be built up # during compilation. TDLRuntimeOptions (*meqmaker.runtime_options (nest=False)) if do_solve: TDLRuntimeOptions (*ParmGroup.get_solvejob_options ()) imsel = mssel.imaging_selector (npix=512, arcmin=meqmaker.estimate_image_size ()) TDLRuntimeMenu ('Make an image', *imsel.option_list ()) meqmaker.close()