Esempio n. 1
0
def _define_forest(ns, parent=None, **kw):
    if run_purr:
        Timba.TDL.GUI.purr(mssel.msname + ".purrlog", [mssel.msname, '.'])
    # create Purr pipe
    global purrpipe
    purrpipe = Purr.Pipe.Pipe(mssel.msname)

    # get antennas from MS
    ANTENNAS = mssel.get_antenna_set(list(range(1, 15)))
    array = Meow.IfrArray(ns, ANTENNAS, mirror_uvw=False)
    stas = array.stations()
    # get phase centre from MS, setup observation
    observation = Meow.Observation(ns,
                                   phase_centre=mssel.get_phase_dir(),
                                   linear=mssel.is_linear_pol(),
                                   circular=mssel.is_circular_pol())
    Meow.Context.set(array, observation)
    # get active correlations from MS
    Meow.Context.active_correlations = mssel.get_correlations()

    # make spigot nodes
    spigots = spigots0 = outputs = array.spigots(corr=mssel.get_corr_index())

    # ...and an inspector for them
    StdTrees.vis_inspector(ns.inspector('input'),
                           spigots,
                           bookmark="Inspect input visibilities")
    inspectors = [ns.inspector('input')]
    Bookmarks.make_node_folder("Input visibilities by baseline",
                               [spigots(p, q) for p, q in array.ifrs()],
                               sorted=True,
                               ncol=2,
                               nrow=2)

    inspect_ifrs = array.ifrs()
    if do_solve:
        # filter solvable baselines by baseline length
        solve_ifrs = []
        antpos = mssel.ms_antenna_positions
        if (min_baseline or max_baseline) and antpos is not None:
            for (ip, p), (iq, q) in array.ifr_index():
                baseline = math.sqrt(
                    ((antpos[ip, :] - antpos[iq, :])**2).sum())
                if (not min_baseline or baseline > min_baseline) and \
                   (not max_baseline or baseline < max_baseline):
                    solve_ifrs.append((p, q))
        else:
            solve_ifrs = array.ifrs()
        inspect_ifrs = solve_ifrs

    # make a predict tree using the MeqMaker
    if do_solve or do_subtract:
        predict = meqmaker.make_predict_tree(ns)
        # make a ParmGroup and solve jobs for source parameters, if we have any
        if do_solve:
            parms = {}
            for src in meqmaker.get_source_list(ns):
                parms.update([(p.name, p) for p in src.get_solvables()])
            if parms:
                pg_src = ParmGroup.ParmGroup("source",
                                             list(parms.values()),
                                             table_name="sources.fmep",
                                             individual=True,
                                             bookmark=True)
                # now make a solvejobs for the source
                ParmGroup.SolveJob("cal_source", "Calibrate source model",
                                   pg_src)

    # make nodes to compute residuals
    if do_subtract:
        residuals = ns.residuals
        for p, q in array.ifrs():
            residuals(p, q) << spigots(p, q) - predict(p, q)
        outputs = residuals

    # and now we may need to correct the outputs
    if do_correct:
        if do_correct_sky:
            srcs = meqmaker.get_source_list(ns)
            sky_correct = srcs and srcs[0]
        else:
            sky_correct = None
        outputs = meqmaker.correct_uv_data(ns,
                                           outputs,
                                           sky_correct=sky_correct,
                                           inspect_ifrs=inspect_ifrs)

    # make solve trees
    if do_solve:
        # inputs to the solver are based on calibration type
        # if calibrating visibilities, feed them to condeq directly
        if cal_type == CAL.VIS:
            observed = spigots
            model = predict
        # else take ampl/phase component
        else:
            model = ns.model
            observed = ns.observed
            if cal_type == CAL.AMPL:
                for p, q in array.ifrs():
                    observed(p, q) << Meq.Abs(spigots(p, q))
                    model(p, q) << Meq.Abs(predict(p, q))
            elif cal_type == CAL.LOGAMPL:
                for p, q in array.ifrs():
                    observed(p, q) << Meq.Log(Meq.Abs(spigots(p, q)))
                    model(p, q) << Meq.Log(Meq.Abs(predict(p, q)))
            elif cal_type == CAL.PHASE:
                for p, q in array.ifrs():
                    observed(p, q) << 0
                    model(p, q) << Meq.Abs(predict(p, q)) * Meq.FMod(
                        Meq.Arg(spigots(p, q)) - Meq.Arg(predict(p, q)),
                        2 * math.pi)
            else:
                raise ValueError("unknown cal_type setting: " + str(cal_type))
        # make a solve tree
        solve_tree = StdTrees.SolveTree(ns, model, solve_ifrs=solve_ifrs)
        # the output of the sequencer is either the residuals or the spigots,
        # according to what has been set above
        outputs = solve_tree.sequencers(inputs=observed, outputs=outputs)

    # make sinks and vdm.
    # The list of inspectors must be supplied here
    inspectors += meqmaker.get_inspectors() or []
    StdTrees.make_sinks(ns, outputs, spigots=spigots0, post=inspectors)
    Bookmarks.make_node_folder("Corrected/residual visibilities by baseline",
                               [outputs(p, q) for p, q in array.ifrs()],
                               sorted=True,
                               ncol=2,
                               nrow=2)

    if not do_solve:
        if do_subtract:
            name = "Generate residuals"
            comment = "Generated residual visibilities."
        elif do_correct:
            name = "Generate corrected data"
            comment = "Generated corrected visibilities."
        else:
            name = None
        if name:
            # make a TDL job to runsthe tree
            def run_tree(mqs, parent, **kw):
                global tile_size
                purrpipe.title("Calibrating").comment(comment)
                mqs.execute(Meow.Context.vdm.name,
                            mssel.create_io_request(tile_size),
                            wait=False)

            TDLRuntimeMenu(
                name,
                TDLOption(
                    'tile_size',
                    "Tile size, in timeslots", [10, 60, 120, 240],
                    more=int,
                    doc=
                    """Input data is sliced by time, and processed in chunks (tiles) of
                  the indicated size. Larger tiles are faster, but use more memory."""
                ), TDLRuntimeJob(run_tree, name))

    # very important -- insert meqmaker's runtime options properly
    # this should come last, since runtime options may be built up during compilation.
    TDLRuntimeOptions(*meqmaker.runtime_options(nest=False))
    # insert solvejobs
    if do_solve:
        TDLRuntimeOptions(*ParmGroup.get_solvejob_options())
    # finally, setup imaging options
    imsel = mssel.imaging_selector(npix=512,
                                   arcmin=meqmaker.estimate_image_size())
    TDLRuntimeMenu("Make an image from this MS", *imsel.option_list())

    # and close meqmaker -- this exports annotations, etc
    meqmaker.close()
Esempio n. 2
0
def _define_forest(ns,parent=None,**kw):
  if run_purr:
    Timba.TDL.GUI.purr(mssel.msname+".purrlog",[mssel.msname,'.']);
  # create Purr pipe
  global purrpipe;
  purrpipe = Purr.Pipe.Pipe(mssel.msname);
  
  # get antennas from MS
  ANTENNAS = mssel.get_antenna_set(list(range(1,15)));
  array = Meow.IfrArray(ns,ANTENNAS,mirror_uvw=False);
  stas = array.stations();
  # get phase centre from MS, setup observation
  observation = Meow.Observation(ns,phase_centre=mssel.get_phase_dir(),
          linear=mssel.is_linear_pol(),
          circular=mssel.is_circular_pol());
  Meow.Context.set(array,observation);
  # get active correlations from MS
  Meow.Context.active_correlations = mssel.get_correlations();
  
  # make spigot nodes
  spigots = spigots0 = outputs = array.spigots(corr=mssel.get_corr_index());

  # ...and an inspector for them
  StdTrees.vis_inspector(ns.inspector('input'),spigots,
                              bookmark="Inspect input visibilities");
  inspectors = [ ns.inspector('input') ];
  Bookmarks.make_node_folder("Input visibilities by baseline",
    [ spigots(p,q) for p,q in array.ifrs() ],sorted=True,ncol=2,nrow=2);

  inspect_ifrs = array.ifrs();
  if do_solve:
    # filter solvable baselines by baseline length
    solve_ifrs = [];
    antpos = mssel.ms_antenna_positions;
    if (min_baseline or max_baseline) and antpos is not None:
      for (ip,p),(iq,q) in array.ifr_index():
        baseline = math.sqrt(((antpos[ip,:]-antpos[iq,:])**2).sum());
        if (not min_baseline or baseline > min_baseline) and \
           (not max_baseline or baseline < max_baseline):
          solve_ifrs.append((p,q));
    else:
      solve_ifrs = array.ifrs();
    inspect_ifrs = solve_ifrs;

  # make a predict tree using the MeqMaker
  if do_solve or do_subtract:
    predict = meqmaker.make_predict_tree(ns);
    # make a ParmGroup and solve jobs for source parameters, if we have any
    if do_solve:
      parms = {};
      for src in meqmaker.get_source_list(ns):
        parms.update([(p.name,p) for p in src.get_solvables()]);
      if parms:
        pg_src = ParmGroup.ParmGroup("source",list(parms.values()),
                    table_name="sources.fmep",
                    individual=True,bookmark=True);
        # now make a solvejobs for the source
        ParmGroup.SolveJob("cal_source","Calibrate source model",pg_src);

  # make nodes to compute residuals
  if do_subtract:
    residuals = ns.residuals;
    for p,q in array.ifrs():
      residuals(p,q) << spigots(p,q) - predict(p,q);
    outputs = residuals;

  # and now we may need to correct the outputs
  if do_correct:
    if do_correct_sky:
      srcs = meqmaker.get_source_list(ns);
      sky_correct = srcs and srcs[0];
    else:
      sky_correct = None;
    outputs = meqmaker.correct_uv_data(ns,outputs,sky_correct=sky_correct,inspect_ifrs=inspect_ifrs);

  # make solve trees
  if do_solve:
    # inputs to the solver are based on calibration type
    # if calibrating visibilities, feed them to condeq directly
    if cal_type == CAL.VIS:
      observed = spigots;
      model    = predict;
    # else take ampl/phase component
    else:
      model = ns.model;
      observed = ns.observed;
      if cal_type == CAL.AMPL:
        for p,q in array.ifrs():
          observed(p,q) << Meq.Abs(spigots(p,q));
          model(p,q)  << Meq.Abs(predict(p,q));
      elif cal_type == CAL.LOGAMPL:
        for p,q in array.ifrs():
          observed(p,q) << Meq.Log(Meq.Abs(spigots(p,q)));
          model(p,q)  << Meq.Log(Meq.Abs(predict(p,q)));
      elif cal_type == CAL.PHASE:
        for p,q in array.ifrs():
          observed(p,q) << 0;
          model(p,q)  << Meq.Abs(predict(p,q))*Meq.FMod(Meq.Arg(spigots(p,q))-Meq.Arg(predict(p,q)),2*math.pi);
      else:
        raise ValueError("unknown cal_type setting: "+str(cal_type));
    # make a solve tree
    solve_tree = StdTrees.SolveTree(ns,model,solve_ifrs=solve_ifrs);
    # the output of the sequencer is either the residuals or the spigots,
    # according to what has been set above
    outputs = solve_tree.sequencers(inputs=observed,outputs=outputs);

  # make sinks and vdm.
  # The list of inspectors must be supplied here
  inspectors += meqmaker.get_inspectors() or [];
  StdTrees.make_sinks(ns,outputs,spigots=spigots0,post=inspectors);
  Bookmarks.make_node_folder("Corrected/residual visibilities by baseline",
    [ outputs(p,q) for p,q in array.ifrs() ],sorted=True,ncol=2,nrow=2);

  if not do_solve:
    if do_subtract:
      name = "Generate residuals";
      comment = "Generated residual visibilities.";
    elif do_correct:
      name = "Generate corrected data";
      comment = "Generated corrected visibilities.";
    else:
      name = None;
    if name:
      # make a TDL job to runsthe tree
      def run_tree (mqs,parent,**kw):
        global tile_size;
        purrpipe.title("Calibrating").comment(comment);
        mqs.execute(Meow.Context.vdm.name,mssel.create_io_request(tile_size),wait=False);
      TDLRuntimeMenu(name,
        TDLOption('tile_size',"Tile size, in timeslots",[10,60,120,240],more=int,
                  doc="""Input data is sliced by time, and processed in chunks (tiles) of
                  the indicated size. Larger tiles are faster, but use more memory."""),
        TDLRuntimeJob(run_tree,name)
      );

  # very important -- insert meqmaker's runtime options properly
  # this should come last, since runtime options may be built up during compilation.
  TDLRuntimeOptions(*meqmaker.runtime_options(nest=False));
  # insert solvejobs
  if do_solve:
    TDLRuntimeOptions(*ParmGroup.get_solvejob_options());
  # finally, setup imaging options
  imsel = mssel.imaging_selector(npix=512,arcmin=meqmaker.estimate_image_size());
  TDLRuntimeMenu("Make an image from this MS",*imsel.option_list());
  
  # and close meqmaker -- this exports annotations, etc
  meqmaker.close();