Esempio n. 1
0
    def run(self):
        """Runs the task.

           Parameters
           ----------
           None

           Returns
           -------
           None
        """

        self._summary = {}
        dt = utils.Dtime("CubeStats")

        #maxvrms = 2.0      # maximum variation in rms allowed (hardcoded for now)
        #maxvrms = -1.0     # turn maximum variation in rms allowed off
        maxvrms = self.getkey("maxvrms")

        psample = -1
        psample = self.getkey("psample")        

        # BDP's used :
        #   b1 = input BDP
        #   b2 = output BDP

        b1 = self._bdp_in[0]
        fin = b1.getimagefile(bt.CASA)

        bdp_name = self.mkext(fin,'cst')
        b2 = CubeStats_BDP(bdp_name)
        self.addoutput(b2)

        # PeakPointPlot 
        use_ppp = self.getkey("ppp")

        # peakstats: not enabled for mortal users yet
        # peakstats = (psample=1, numsigma=4, minchan=3, maxgap=2, peakfit=False)
        pnumsigma = 4
        minchan   = 3
        maxgap    = 2
        peakfit   = False             # True will enable a true gaussian fit
        
        # numsigma:  adding all signal > numsigma ; not user enabled;   for peaksum.
        numsigma = -1.0
        numsigma = 3.0

        # grab the new robust statistics. If this is used, 'rms' will be the RMS,
        # else we will use RMS = 1.4826*MAD (MAD does a decent job on outliers as well)
        # and was the only method available before CASA 4.4 when robust was implemented
        robust = self.getkey("robust")
        rargs = casautil.parse_robust(robust)
        nrargs = len(rargs)

        if nrargs == 0:
           sumrargs = "medabsdevmed"      # for the summary, indicate the default robust
        else:
           sumrargs = str(rargs)

        self._summary["rmsmethd"] = SummaryEntry([sumrargs,fin],"CubeStats_AT",self.id(True))
        #@todo think about using this instead of putting 'fin' in all the SummaryEntry
        #self._summary["casaimage"] = SummaryEntry(fin,"CubeStats_AT",self.id(True))

        # extra CASA call to get the freq's in GHz, as these are not in imstat1{}
        # @todo what if the coordinates are not in FREQ ?
        # Note: CAS-7648 bug on 3D cubes
        if False:
            # csys method
            ia.open(self.dir(fin))
            csys = ia.coordsys() 
            spec_axis = csys.findaxisbyname("spectral") 
            # ieck, we need a valid position, or else it will come back and "Exception: All selected pixels are masked"
            #freqs = ia.getprofile(spec_axis, region=rg.box([0,0],[0,0]))['coords']/1e9
            #freqs = ia.getprofile(spec_axis)['coords']/1e9
            freqs = ia.getprofile(spec_axis,unit="GHz")['coords']
            dt.tag("getprofile")
        else:
            # old imval method 
            #imval0 = casa.imval(self.dir(fin),box='0,0,0,0')     # this fails on 3D
            imval0 = casa.imval(self.dir(fin))
            freqs = imval0['coords'].transpose()[2]/1e9
            dt.tag("imval")
        nchan = len(freqs)
        chans = np.arange(nchan)

        # call CASA to get what we want
        # imstat0 is the whole cube, imstat1 the plane based statistics
        # warning: certain robust stats (**rargs) on the whole cube are going to be very slow
        dt.tag("start")
        imstat0 = casa.imstat(self.dir(fin),           logfile=self.dir('imstat0.logfile'),append=False,**rargs)
        dt.tag("imstat0")
        imstat1 = casa.imstat(self.dir(fin),axes=[0,1],logfile=self.dir('imstat1.logfile'),append=False,**rargs)
        dt.tag("imstat1")
        # imm = casa.immoments(self.dir(fin),axis='spec', moments=8, outfile=self.dir('ppp.im'))
        if nrargs > 0:
            # need to get the peaks without rubust
            imstat10 = casa.imstat(self.dir(fin),           logfile=self.dir('imstat0.logfile'),append=True)
            dt.tag("imstat10")
            imstat11 = casa.imstat(self.dir(fin),axes=[0,1],logfile=self.dir('imstat1.logfile'),append=True)
            dt.tag("imstat11")

        # grab the relevant plane-based things from imstat1
        if nrargs == 0:
            mean    = imstat1["mean"]
            sigma   = imstat1["medabsdevmed"]*1.4826     # see also: astropy.stats.median_absolute_deviation()
            peakval = imstat1["max"]
            minval  = imstat1["min"]
        else:
            mean    = imstat1["mean"]
            sigma   = imstat1["rms"]
            peakval = imstat11["max"]
            minval  = imstat11["min"]

        if True:
            # work around a bug in imstat(axes=[0,1]) for last channel [CAS-7697]
            for i in range(len(sigma)):
                if sigma[i] == 0.0:
                    minval[i] = peakval[i] = 0.0

        # too many variations in the RMS ?
        sigma_pos = sigma[np.where(sigma>0)]
        smin = sigma_pos.min()
        smax = sigma_pos.max()
        logging.info("sigma varies from %f to %f; %d/%d channels ok" % (smin,smax,len(sigma_pos),len(sigma)))
        if maxvrms > 0:
            if smax/smin > maxvrms:
                cliprms = smin * maxvrms
                logging.warning("sigma varies too much, going to clip to %g (%g > %g)" % (cliprms, smax/smin, maxvrms))
                sigma = np.where(sigma < cliprms, sigma, cliprms)

        # @todo   (and check again) for foobar.fits all sigma's became 0 when robust was selected
        #         was this with mask=True/False?

        # PeakPointPlot (can be expensive, hence the option)
        if use_ppp:
            logging.info("Computing MaxPos for PeakPointPlot")
            xpos    = np.zeros(nchan)
            ypos    = np.zeros(nchan)
            peaksum = np.zeros(nchan)

            ia.open(self.dir(fin))
            for i in range(nchan):
                if sigma[i] > 0.0:
                    plane = ia.getchunk(blc=[0,0,i,-1],trc=[-1,-1,i,-1],dropdeg=True)
                    v = ma.masked_invalid(plane)
                    v_abs = np.absolute(v)
                    max = np.unravel_index(v_abs.argmax(), v_abs.shape)
                    xpos[i] = max[0]
                    ypos[i] = max[1]
                    if numsigma > 0.0:
                        peaksum[i] = ma.masked_less(v,numsigma * sigma[i]).sum()
            peaksum = np.nan_to_num(peaksum)    # put 0's where nan's are found
            ia.close()
            dt.tag("ppp")

        nzeros = len(np.where(sigma<=0.0))
        if nzeros > 0:
            zeroch = np.where(sigma<=0.0)
            logging.warning("There are %d fully masked channels (%s)" % (nzeros,str(zeroch)))

        # construct the admit Table for CubeStats_BDP
        # note data needs to be a tuple, later to be column_stack'd
        if use_ppp:
            labels = ["channel" ,"frequency" ,"mean"    ,"sigma"   ,"max"     ,"maxposx" ,"maxposy" ,"min",     "peaksum"]
            units  = ["number"  ,"GHz"       ,"Jy/beam" ,"Jy/beam" ,"Jy/beam" ,"number"  ,"number"  ,"Jy/beam", "Jy"]
            data   = (chans     ,freqs       ,mean      ,sigma     ,peakval   ,xpos      ,ypos      ,minval,    peaksum)

        else:
            labels = ["channel" ,"frequency" ,"mean"    ,"sigma"   ,"max"     ,"min"]
            units  = ["number"  ,"GHz"       ,"Jy/beam" ,"Jy/beam" ,"Jy/beam" ,"Jy/beam"]
            data   = (chans     ,freqs       ,mean      ,sigma     ,peakval   ,minval)

        table = Table(columns=labels,units=units,data=np.column_stack(data))
        b2.setkey("table",table)

        # get the full cube statistics, it depends if robust was pre-selected
        if nrargs == 0:
            mean0  = imstat0["mean"][0]
            sigma0 = imstat0["medabsdevmed"][0]*1.4826
            peak0  = imstat0["max"][0]
            b2.setkey("mean" , float(mean0))
            b2.setkey("sigma", float(sigma0))
            b2.setkey("minval",float(imstat0["min"][0]))
            b2.setkey("maxval",float(imstat0["max"][0]))
            b2.setkey("minpos",imstat0["minpos"][:3].tolist())     #? [] or array(..dtype=int32) ??
            b2.setkey("maxpos",imstat0["maxpos"][:3].tolist())     #? [] or array(..dtype=int32) ??
            logging.info("CubeMax: %f @ %s" % (imstat0["max"][0],str(imstat0["maxpos"])))
            logging.info("CubeMin: %f @ %s" % (imstat0["min"][0],str(imstat0["minpos"])))
            logging.info("CubeRMS: %f" % sigma0)
        else:
            mean0  = imstat0["mean"][0]
            sigma0 = imstat0["rms"][0]
            peak0  = imstat10["max"][0]
            b2.setkey("mean" , float(mean0))
            b2.setkey("sigma", float(sigma0))
            b2.setkey("minval",float(imstat10["min"][0]))
            b2.setkey("maxval",float(imstat10["max"][0]))
            b2.setkey("minpos",imstat10["minpos"][:3].tolist())     #? [] or array(..dtype=int32) ??
            b2.setkey("maxpos",imstat10["maxpos"][:3].tolist())     #? [] or array(..dtype=int32) ??
            logging.info("CubeMax: %f @ %s" % (imstat10["max"][0],str(imstat10["maxpos"])))
            logging.info("CubeMin: %f @ %s" % (imstat10["min"][0],str(imstat10["minpos"])))
            logging.info("CubeRMS: %f" % sigma0)
        b2.setkey("robust",robust)
        rms_ratio = imstat0["rms"][0]/sigma0
        logging.info("RMS Sanity check %f" % rms_ratio)
        if rms_ratio > 1.5:
            logging.warning("RMS sanity check = %f.  Either bad sidelobes, lotsa signal, or both" % rms_ratio)
        logging.regression("CST: %f %f" % (sigma0, rms_ratio))

        # plots: no plots need to be made when nchan=1 for continuum
        # however we could make a histogram, overlaying the "best" gauss so 
        # signal deviations are clear?

        logging.info('mean,rms,S/N=%f %f %f' % (mean0,sigma0,peak0/sigma0))

        if nchan == 1:
            # for a continuum/1-channel we only need to stuff some numbers into the _summary
            self._summary["chanrms"] = SummaryEntry([float(sigma0), fin], "CubeStats_AT", self.id(True))
            self._summary["dynrange"] = SummaryEntry([float(peak0)/float(sigma0), fin], "CubeStats_AT", self.id(True))
            self._summary["datamean"] = SummaryEntry([float(mean0), fin], "CubeStats_AT", self.id(True))
        else:
            y1 = np.log10(ma.masked_invalid(peakval))
            y2 = np.log10(ma.masked_invalid(sigma))
            y3 = y1-y2
            y4 = np.log10(ma.masked_invalid(-minval))
            y5 = y1-y4
            y = [y1,y2,y3,y4]
            title = 'CubeStats: ' + bdp_name+'_0'
            xlab  = 'Channel'
            ylab  = 'log(Peak,Noise,Peak/Noise)'
            labels = ['log(peak)','log(rms noise)','log(peak/noise)','log(|minval|)']
            myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())
            segp = [[chans[0],chans[nchan-1],math.log10(sigma0),math.log10(sigma0)]]
            myplot.plotter(chans,y,title,bdp_name+"_0",xlab=xlab,ylab=ylab,segments=segp,labels=labels,thumbnail=True)
            imfile = myplot.getFigure(figno=myplot.figno,relative=True)
            thumbfile = myplot.getThumbnail(figno=myplot.figno,relative=True)

            image0 = Image(images={bt.PNG:imfile},thumbnail=thumbfile,thumbnailtype=bt.PNG,description="CubeStats_0")
            b2.addimage(image0,"im0")

            if use_ppp:
                # new trial for Lee
                title = 'PeakSum: (numsigma=%.1f)' % (numsigma)
                ylab = 'Jy*N_ppb'
                myplot.plotter(chans,[peaksum],title,bdp_name+"_00",xlab=xlab,ylab=ylab,thumbnail=False)

            if True:
                # hack ascii table
                y30 = np.where(sigma > 0, np.log10(peakval/sigma), 0.0)
                table2 = Table(columns=["freq","log(P/N)"],data=np.column_stack((freqs,y30)))
                table2.exportTable(self.dir("testCubeStats.tab"))
                del table2

            # the "box" for the "spectrum" is all pixels.  Don't know how to 
            # get this except via shape.
            ia.open(self.dir(fin))
            s = ia.summary()
            ia.close()
            if 'shape' in s:
                specbox = (0,0,s['shape'][0],s['shape'][1])
            else:
                specbox = ()

            caption = "Emission characteristics as a function of channel, as derived by CubeStats_AT "
            caption += "(cyan: global rms,"
            caption += " green: noise per channel,"
            caption += " blue: peak value per channel,"
            caption += " red: peak/noise per channel)."
            self._summary["spectra"] = SummaryEntry([0, 0, str(specbox), 'Channel', imfile, thumbfile , caption, fin], "CubeStats_AT", self.id(True))
            self._summary["chanrms"] = SummaryEntry([float(sigma0), fin], "CubeStats_AT", self.id(True))

            # @todo Will imstat["max"][0] always be equal to s['datamax']?  If not, why not?
            if 'datamax' in s:
                self._summary["dynrange"] = SummaryEntry([float(s['datamax']/sigma0), fin], "CubeStats_AT", self.id(True))
            else:
                self._summary["dynrange"] = SummaryEntry([float(imstat0["max"][0]/sigma0), fin], "CubeStats_AT", self.id(True))
            self._summary["datamean"] = SummaryEntry([imstat0["mean"][0], fin], "CubeStats_AT", self.id(True))

            title = bdp_name + "_1"
            xlab =  'log(Peak,Noise,P/N)'
            myplot.histogram([y1,y2,y3],title,bdp_name+"_1",xlab=xlab,thumbnail=True)

            imfile = myplot.getFigure(figno=myplot.figno,relative=True)
            thumbfile = myplot.getThumbnail(figno=myplot.figno,relative=True)
            image1 = Image(images={bt.PNG:imfile},thumbnail=thumbfile,thumbnailtype=bt.PNG,description="CubeStats_1")
            b2.addimage(image1,"im1")

            # note that the 'y2' can have been clipped, which can throw off stats.robust()
            # @todo  should set a mask for those.

            title = bdp_name + "_2"
            xlab = 'log(Noise))'
            n = len(y2)
            ry2 = stats.robust(y2)
            y2_mean = ry2.mean()
            y2_std  = ry2.std()
            if n>9: logging.debug("NORMALTEST2: %s" % str(scipy.stats.normaltest(ry2)))
            myplot.hisplot(y2,title,bdp_name+"_2",xlab=xlab,gauss=[y2_mean,y2_std],thumbnail=True)

            title = bdp_name + "_3"
            xlab = 'log(diff[Noise])'
            n = len(y2)
            # dy2 = y2[0:-2] - y2[1:-1]
            dy2 = ma.masked_equal(y2[0:-2] - y2[1:-1],0.0).compressed()
            rdy2 = stats.robust(dy2)
            dy2_mean = rdy2.mean()
            dy2_std  = rdy2.std()
            if n>9: logging.debug("NORMALTEST3: %s" % str(scipy.stats.normaltest(rdy2)))
            myplot.hisplot(dy2,title,bdp_name+"_3",xlab=xlab,gauss=[dy2_mean,dy2_std],thumbnail=True)


            title = bdp_name + "_4"
            xlab = 'log(Signal/Noise))'
            n = len(y3)
            ry3 = stats.robust(y3)
            y3_mean = ry3.mean()
            y3_std  = ry3.std()
            if n>9: logging.debug("NORMALTEST4: %s" % str(scipy.stats.normaltest(ry3)))
            myplot.hisplot(y3,title,bdp_name+"_4",xlab=xlab,gauss=[y3_mean,y3_std],thumbnail=True)

            title = bdp_name + "_5"
            xlab = 'log(diff[Signal/Noise)])'
            n = len(y3)
            dy3 = y3[0:-2] - y3[1:-1]
            rdy3 = stats.robust(dy3)
            dy3_mean = rdy3.mean()
            dy3_std  = rdy3.std()
            if n>9: logging.debug("NORMALTEST5: %s" % str(scipy.stats.normaltest(rdy3)))
            myplot.hisplot(dy3,title,bdp_name+"_5",xlab=xlab,gauss=[dy3_mean,dy3_std],thumbnail=True)


            title = bdp_name + "_6"
            xlab = 'log(Peak+Min)'
            n = len(y1)
            ry5 = stats.robust(y5)
            y5_mean = ry5.mean()
            y5_std  = ry5.std()
            if n>9: logging.debug("NORMALTEST6: %s" % str(scipy.stats.normaltest(ry5)))
            myplot.hisplot(y5,title,bdp_name+"_6",xlab=xlab,gauss=[y5_mean,y5_std],thumbnail=True)

            logging.debug("LogPeak: m,s= %f %f min/max %f %f" % (y1.mean(),y1.std(),y1.min(),y1.max()))
            logging.debug("LogNoise: m,s= %f %f %f %f min/max %f %f" % (y2.mean(),y2.std(),y2_mean,y2_std,y2.min(),y2.max()))
            logging.debug("LogDeltaNoise: RMS/sqrt(2)= %f %f " % (dy2.std()/math.sqrt(2),dy2_std/math.sqrt(2)))
            logging.debug("LogDeltaP/N:   RMS/sqrt(2)= %f %f" % (dy3.std()/math.sqrt(2),dy3_std/math.sqrt(2)))
            logging.debug("LogPeak+Min: robust m,s= %f %f" % (y5_mean,y5_std))

            # compute two ratios that should both be near 1.0 if noise is 'normal'
            ratio  = y2.std()/(dy2.std()/math.sqrt(2))
            ratio2 = y2_std/(dy2_std/math.sqrt(2))
            logging.info("RMS BAD VARIATION RATIO: %f %f" % (ratio,ratio2))

        # making PPP plot
        if nchan > 1 and use_ppp:
            smax = 10
            gamma = 0.75

            z0 = peakval/peakval.max()
            # point sizes
            s = np.pi * ( smax * (z0**gamma) )**2
            cmds = ["grid", "axis equal"]
            title = "Peak Points per channel"
            pppimage = bdp_name + '_ppp'
            myplot.scatter(xpos,ypos,title=title,figname=pppimage,size=s,color=chans,cmds=cmds,thumbnail=True)
            pppimage     = myplot.getFigure(figno=myplot.figno,relative=True)
            pppthumbnail = myplot.getThumbnail(figno=myplot.figno,relative=True)
            caption = "Peak point plot: Locations of per-channel peaks in the image cube " + fin
            self._summary["peakpnt"] = SummaryEntry([pppimage, pppthumbnail, caption, fin], "CubeStats_AT", self.id(True))
        dt.tag("plotting")

        # making PeakStats plot
        if nchan > 1 and psample > 0:
            logging.info("Computing peakstats")
            # grab peak,mean and width values for all peaks
            (pval,mval,wval) = peakstats(self.dir(fin),freqs,sigma0,pnumsigma,minchan,maxgap,psample,peakfit)
            title = "PeakStats: cutoff = %g" % (sigma0*pnumsigma)
            xlab = 'Peak value'
            ylab = 'FWHM (channels)'
            pppimage = bdp_name + '_peakstats'
            cval = mval
            myplot.scatter(pval,wval,title=title,xlab=xlab,ylab=ylab,color=cval,figname=pppimage,thumbnail=False)
            dt.tag("peakstats")
            

        # myplot.final()    # pjt debug 
        # all done!
        dt.tag("done")

        taskargs = "robust=" + sumrargs 
        if use_ppp: 
            taskargs = taskargs + " ppp=True"
        else: 
            taskargs = taskargs + " ppp=False"
        for v in self._summary:
            self._summary[v].setTaskArgs(taskargs)

        dt.tag("summary")
        dt.end()
Esempio n. 2
0
    def run(self):
        """Runs the task.

           Parameters
           ----------
           None

           Returns
           -------
           None
        """

        self._summary = {}
        dt = utils.Dtime("CubeSpectrum")

        # our BDP's
        # b1  = input BDP
        # b1s = optional input CubeSpectrum
        # b1m = optional input Moment
        # b1p = optional input SourceList for positions
        # b2  = output BDP

        b1 = self._bdp_in[0]  # check input SpwCube (or LineCube)
        fin = b1.getimagefile(bt.CASA)
        if self._bdp_in[0]._type == bt.LINECUBE_BDP:
            use_vel = True
        else:
            use_vel = False

        sources = self.getkey("sources")
        pos = [
        ]  # blank it first, then try and grab it from the optional bdp_in's
        cmean = 0.0
        csigma = 0.0
        smax = []  # accumulate max in each spectrum for regression
        self.spec_description = []  # for summary()

        if self._bdp_in[1] != None:  # check if CubeStats_BDP
            #print "BDP[1] type: ",self._bdp_in[1]._type
            if self._bdp_in[1]._type != bt.CUBESTATS_BDP:
                raise Exception, "bdp_in[1] not a CubeStats_BDP, should never happen"
            # a table (cubestats)
            b1s = self._bdp_in[1]
            pos.append(b1s.maxpos[0])
            pos.append(b1s.maxpos[1])
            logging.info('CubeStats::maxpos,val=%s,%f' %
                         (str(b1s.maxpos), b1s.maxval))
            cmean = b1s.mean
            csigma = b1s.sigma
            dt.tag("CubeStats-pos")

        if self._bdp_in[
                2] != None:  # check if Moment_BDP (probably from CubeSum)
            #print "BDP[2] type: ",self._bdp_in[2]._type
            if self._bdp_in[2]._type != bt.MOMENT_BDP:
                raise Exception, "bdp_in[2] not a Moment_BDP, should never happen"
            b1m = self._bdp_in[2]
            fim = b1m.getimagefile(bt.CASA)
            pos1, maxval = self.maxpos_im(
                self.dir(fim))  # compute maxpos, since it is not in bdp (yet)
            logging.info('CubeSum::maxpos,val=%s,%f' % (str(pos1), maxval))
            pos.append(pos1[0])
            pos.append(pos1[1])
            dt.tag("Moment-pos")

        if self._bdp_in[3] != None:  # check if SourceList
            #print "BDP[3] type: ",self._bdp_in[3]._type
            # a table (SourceList)
            b1p = self._bdp_in[3]
            ra = b1p.table.getFullColumnByName("RA")
            dec = b1p.table.getFullColumnByName("DEC")
            peak = b1p.table.getFullColumnByName("Peak")
            if sources == []:
                # use the whole SourceList
                for (r, d, p) in zip(ra, dec, peak):
                    rdc = convert_sexa(r, d)
                    pos.append(rdc[0])
                    pos.append(rdc[1])
                    logging.info('SourceList::maxpos,val=%s,%f' %
                                 (str(rdc), p))
            else:
                # select specific ones from the source list
                for ipos in sources:
                    if ipos < len(ra):
                        radec = convert_sexa(ra[ipos], dec[ipos])
                        pos.append(radec[0])
                        pos.append(radec[1])
                        logging.info('SourceList::maxpos,val=%s,%f' %
                                     (str(radec), peak[ipos]))
                    else:
                        logging.warning('Skipping illegal source number %d' %
                                        ipos)

            dt.tag("SourceList-pos")

        # if pos[] still blank, use the AT keyword.
        if len(pos) == 0:
            pos = self.getkey("pos")

        # if still none, try the map center
        if len(pos) == 0:
            # @todo  this could result in a masked pixel and cause further havoc
            # @todo  could also take the reference pixel, but that could be outside image
            taskinit.ia.open(self.dir(fin))
            s = taskinit.ia.summary()
            pos = [int(s['shape'][0]) / 2, int(s['shape'][1]) / 2]
            logging.warning(
                "No input positions supplied, map center choosen: %s" %
                str(pos))
            dt.tag("map-center")

        # exhausted all sources where pos[] can be set; if still zero, bail out
        if len(pos) == 0:
            raise Exception, "No positions found from input BDP's or pos="

        # convert this regular list to a list of tuples with duplicates removed
        # sadly the order is lost.
        pos = list(set(zip(pos[0::2], pos[1::2])))
        npos = len(pos)

        dt.tag("open")

        bdp_name = self.mkext(fin, "csp")
        b2 = CubeSpectrum_BDP(bdp_name)
        self.addoutput(b2)

        imval = range(npos)  # spectra, one for each pos (placeholder)
        planes = range(npos)  # labels for the tables (placeholder)
        images = {}  # png's accumulated

        for i in range(npos):  # loop over pos, they can have mixed types now
            sd = []
            caption = "Spectrum"
            xpos = pos[i][0]
            ypos = pos[i][1]
            if type(xpos) != type(ypos):
                print "POS:", xpos, ypos
                raise Exception, "position pair not of the same type"
            if type(xpos) == int:
                # for integers, boxes are allowed, even multiple
                box = '%d,%d,%d,%d' % (xpos, ypos, xpos, ypos)
                # convention for summary is (box)
                cbox = '(%d,%d,%d,%d)' % (xpos, ypos, xpos, ypos)
                # use extend here, not append, we want individual values in a list
                sd.extend([xpos, ypos, cbox])
                caption = "Average Spectrum at %s" % cbox
                if False:
                    # this will fail on 3D cubes (see CAS-7648)
                    imval[i] = casa.imval(self.dir(fin), box=box)
                else:
                    # work around that CAS-7648 bug
                    # another approach is the ia.getprofile(), see CubeStats, this will
                    # also integrate over regions, imval will not (!!!)
                    region = 'centerbox[[%dpix,%dpix],[1pix,1pix]]' % (xpos,
                                                                       ypos)
                    caption = "Average Spectrum at %s" % region
                    imval[i] = casa.imval(self.dir(fin), region=region)
            elif type(xpos) == str:
                # this is tricky, to stay under 1 pixel , or you get a 2x2 back.
                region = 'centerbox[[%s,%s],[1pix,1pix]]' % (xpos, ypos)
                caption = "Average Spectrum at %s" % region
                sd.extend([xpos, ypos, region])
                imval[i] = casa.imval(self.dir(fin), region=region)
            else:
                print "Data type: ", type(xpos)
                raise Exception, "Data type for region not handled"
            dt.tag("imval")

            flux = imval[i]['data']
            if len(flux.shape
                   ) > 1:  # rare case if we step on a boundary between cells?
                logging.warning(
                    "source %d has spectrum shape %s: averaging the spectra" %
                    (i, repr(flux.shape)))
                flux = np.average(flux, axis=0)
            logging.debug('minmax: %f %f %d' %
                          (flux.min(), flux.max(), len(flux)))
            smax.append(flux.max())
            if i == 0:  # for first point record few extra things
                if len(imval[i]['coords'].shape) == 2:  # normal case: 1 pixel
                    freqs = imval[i]['coords'].transpose(
                    )[2] / 1e9  # convert to GHz  @todo: input units ok?
                elif len(imval[i]['coords'].shape
                         ) == 3:  # rare case if > 1 point in imval()
                    freqs = imval[i]['coords'][0].transpose(
                    )[2] / 1e9  # convert to GHz  @todo: input units ok?
                else:
                    logging.fatal(
                        "bad shape %s in freq return from imval - SHOULD NEVER HAPPEN"
                        % imval[i]['coords'].shape)
                chans = np.arange(len(freqs))  # channels 0..nchans-1
                unit = imval[i]['unit']
                restfreq = casa.imhead(
                    self.dir(fin), mode="get",
                    hdkey="restfreq")['value'] / 1e9  # in GHz
                dt.tag("imhead")
                vel = (
                    1 - freqs / restfreq
                ) * utils.c  #  @todo : use a function (and what about relativistic?)

            # construct the Table for CubeSpectrum_BDP
            # @todo note data needs to be a tuple, later to be column_stack'd
            labels = ["channel", "frequency", "flux"]
            units = ["number", "GHz", unit]
            data = (chans, freqs, flux)

            if i == 0:
                # plane 0 : we are allowing a multiplane table, so the first plane is special
                table = Table(columns=labels,
                              units=units,
                              data=np.column_stack(data),
                              planes=["0"])
            else:
                # planes 1,2,3.... are stacked onto the previous one
                table.addPlane(np.column_stack(data), "%d" % i)

            # example plot , one per position for now
            if use_vel:
                x = vel
                xlab = 'VLSR (km/s)'
            else:
                x = chans
                xlab = 'Channel'
            y = [flux]
            sd.append(xlab)
            if type(xpos) == int:
                # grab the RA/DEC... kludgy
                h = casa.imstat(self.dir(fin), box=box)
                ra = h['blcf'].split(',')[0]
                dec = h['blcf'].split(',')[1]
                title = '%s %d @ %d,%d = %s,%s' % (bdp_name, i, xpos, ypos, ra,
                                                   dec)
            else:
                title = '%s %d @ %s,%s' % (
                    bdp_name, i, xpos, ypos
                )  # or use box, once we allow non-points

            myplot = APlot(ptype=self._plot_type,
                           pmode=self._plot_mode,
                           abspath=self.dir())
            ylab = 'Flux (%s)' % unit
            p1 = "%s_%d" % (bdp_name, i)
            myplot.plotter(x,
                           y,
                           title,
                           p1,
                           xlab=xlab,
                           ylab=ylab,
                           thumbnail=True)
            # Why not use p1 as the key?
            ii = images["pos%d" % i] = myplot.getFigure(figno=myplot.figno,
                                                        relative=True)
            thumbname = myplot.getThumbnail(figno=myplot.figno, relative=True)
            sd.extend([ii, thumbname, caption, fin])
            self.spec_description.append(sd)

        logging.regression("CSP: %s" % str(smax))

        image = Image(images=images, description="CubeSpectrum")
        b2.setkey("image", image)
        b2.setkey("table", table)
        b2.setkey("sigma", csigma)  # TODO: not always available
        b2.setkey("mean", cmean)  # TODO: not always available

        if True:
            #       @todo     only first plane due to limitation in exportTable()
            islash = bdp_name.find('/')
            if islash < 0:
                tabname = self.dir("testCubeSpectrum.tab")
            else:
                tabname = self.dir(bdp_name[:islash] + "/testCubeSpectrum.tab")
            table.exportTable(tabname, cols=["frequency", "flux"])
        dt.tag("done")
        # For a single spectrum this is
        # SummaryEntry([[data for spec1]], "CubeSpectrum_AT",taskid)
        # For multiple spectra this is
        # SummaryEntry([[data for spec1],[data for spec2],...], "CubeSpectrum_AT",taskid)
        self._summary["spectra"] = SummaryEntry(self.spec_description,
                                                "CubeSpectrum_AT",
                                                self.id(True))
        taskargs = "pos=" + str(pos)
        taskargs += '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; <span style="background-color:white">&nbsp;' + fin.split(
            '/')[0] + '&nbsp;</span>'
        for v in self._summary:
            self._summary[v].setTaskArgs(taskargs)
        dt.tag("summary")
        dt.end()
Esempio n. 3
0
    def convert(self, chan=None, freq=None, velocity=None, spec=None, file=None, separator=None, 
                restfreq=None, vlsr=None):
        """ Method to convert input data (either files or arrays) into a CubeSpectrum_BDP. If files
            are used then then the columns containing the frequency and the intensity must be given
            (channel numbers are optional). Any number of files can be given, but all spectra must
            have the same length as they are assumed to come from the same data source. Blank lines
            and lines starting with a comment '#' will be skipped, additionally any line with too
            few columns will be skipped. If arrays are used an input then both the frequency and
            intensity must be specified (the channel numbers are optional). Both lists and numpy
            arrays are accepted as inputs. Multidimmensional arrays are supported with the following
            parameters:

            + A single frequency list can be given to cover all input spectra, otherwise the shape
              of the frequency array must match that of the spectra
            + A single channel list can be given to cover all input spectra, otherwise the shape
              of the channel array must match that of the spectra
            + All spectra must have the same length

            If a channel array is not specified then one will be constructed with the following
            parameters:

            + The channel numbers will start at 0 (casa convention)
            + The first entry in the spectrum will be considered the first channel, regardless of
              whether the frequency array increases or decreases.

            Additionally, if there is velocity axis, but no frequency axis, a frequency axis can
            be constructed by specifying a rest frequency (restfreq), and vlsr.

            The convert method will return a single CubeSpectrum_BDP instance holding all input spectra
            along with an image of each.

            Parameters
            ----------
            chan : array or int
                An array holding the channel numbers for the data, multidimmensional arrays are
                supported. If an integer is specified then it is the number of the column
                in the file which contains the channel numbers, column numbers are 1 based.
                Default: None

            freq : array
                An array holding the frequencies for the data, multidimmensional arrays are
                supported. If an integer is specified then it is the number of the column
                in the file which contains the frequencies, column numbers are 1 based.
                Default: None

            velocity : array
                An array holding the velocity for the data, multidimmensional arrays are
                supported. If an integer is specified then it is the number of the column
                in the file which contains the velcoties, column numbers are 1 based. If this
                parameter is specified then restfreq and vlsr must also be specified.
                Default: None

            spec : array
                An array holding the intesities of the data, multidimmensional arrays are supported.
                If an integer is specified then it is the number of the column in the file which
                contains the intensities, column numbers are 1 based.
                Default: None

            file : list or str
                A single file name or a list of file names to be read in for spectra.
                Default: None

            separator : str
                The column separator for reading in the data files.
                Default: None (any whitespace)

            restfreq : float
                The rest frequency to use to convert the spectra from velocity to frequency units.
                The rest frequency is in GHz.
                Default: None (no conversion done)

            vlsr : float
                The reference velocity for converting a velocity axis to frequency. The units are
                km/s. If this is not set then it is assumed that the vlsr is 0.0.
                Default: None

            Returns
            -------
            CubeSpectrum_BDP instance containing all of the inpur spectra.

        """
        self.restfreq = restfreq
        self.vlsr = vlsr

        # if a string was given as the file name then turn it into a list so it can be iterated over
        if isinstance(file, str):
            self.file = [file]
        else:
            self.file = file
        # do some error checking
        if isinstance(chan, np.ndarray) or isinstance(chan, list):
            if isinstance(chan, list):
                self.chan = np.array(chan)
            else:
                self.chan = copy.deepcopy(chan)
            self.chancol = -1
        elif isinstance(chan, int):
            self.chancol = chan
            self.chan = None
        else:
            self.chancol = -1
            self.chan = None
        if isinstance(freq, np.ndarray) or isinstance(freq, list):
            if isinstance(freq, list):
                self.freq = np.array(freq)
            else:
                self.freq = copy.deepcopy(freq)
            self.freqcol = -1
        elif isinstance(freq, int):
            self.freqcol = freq
            self.freq = None
        else:
            self.freqcol = -1
            self.freq = None
        if isinstance(velocity, np.ndarray) or isinstance(velocity, list):
            if isinstance(velocity, list):
                self.freq = np.array(velocity, dtype=np.float)
            else:
                self.freq = velocity.astype(np.float)
            for i, frq in enumerate(self.freq):
                self.freq[i] = self.restfreq + utils.veltofreq(frq - self.vlsr, self.restfreq)
            self.freqcol = -1
        elif isinstance(velocity, int):
            self.velcol = velocity
            self.velocity = None
        else:
            self.velcol = -1
            self.velocity = None
        if isinstance(spec, np.ndarray) or isinstance(spec, list):
            if isinstance(spec, list):
                self.spec = np.array(spec)
            else:
                self.spec = copy.deepcopy(spec)
            self.speccol = -1
        elif isinstance(spec, int):
            self.speccol = spec
            self.spec = None
        else:
            self.speccol = -1
            self.spec = None
        if isinstance(separator, str):
            self.separator = separator
        spectra = []
        # read in the data from any files
        if self.file:
            for fl in self.file:
                spectra.append(self.getfile(fl))
        else:
            # convert the input arrays
            singlefreq = False
            singlechan = False
            havechan = False
            # make sure they have the same shape or that the frequency array is 1D
            if self.spec.shape != self.freq.shape:
                if len(self.spec.shape) == 1 and len(self.freq.shape) != 1:
                    raise Exception("Frequency axis and spectral axis do not have the same shape.")
                else:
                    singlefreq = True
            # make sure they have the same shape or that the channel array is 1D
            if self.chan:
                havechan = True
                if self.spec.shape != self.chan.shape:
                    if len(spec.shape) == 1 and len(self.chan.shape) != 1:
                        raise Exception("Channel axis and spectral axis do not have the same shape.")
                    else:
                        singlechan = True
            # if the arrays are more than 1D, then go through each
            if len(self.spec.shape) > 1:
                for i in range(self.spec.shape[0]):
                    spec = self.spec[i]
                    if not havechan:
                        chan = np.arange(len(spec))
                    elif singlechan:
                        chan = self.chan
                    else:
                        chan = self.chan[i]
                    if singlefreq:
                        freq = self.freq
                    else:
                        freq = self.freq[i]
                    spectra.append(Spectrum(spec=spec, freq=freq, chans=chan))
            else:
                # construct the channel array if needed
                if not havechan:
                    self.chan = np.arange(len(self.spec))
                spectra.append(Spectrum(spec=self.spec, freq=self.freq, chans=self.chan))

        first = True
        images = {}

        # make images from the spectra
        for i, spec in enumerate(spectra):
            data = (spec.chans(masked=False), spec.freq(masked=False),
                    spec.spec(csub=False, masked=False))
            if first:
                table = Table(columns=["channel", "frequency", "flux"],
                              units=["number", "GHz", "Unknown"], data=np.column_stack(data),
                              planes=["0"])
                first = False
            else:
                table.addPlane(np.column_stack(data), "%i" % i)
            myplot = APlot(ptype=admit.PlotControl.PNG, pmode=admit.PlotControl.BATCH,
                                 abspath=os.getcwd())
            myplot.plotter(spec.freq(masked=False), [spec.spec(csub=False, masked=False)],
                           title="Spectrum %i" % i, figname="fig_%i" % i, xlab="Frequency",
                           ylab="Intensity", thumbnail=True)
            # Why not use p1 as the key?
            images["fig%i" % i] = myplot.getFigure(figno=myplot.figno, relative=True)
        image = Image(images=images, description="Spectra")
        # construct the BDP
        bdp = CubeSpectrum_BDP(image=image, table=table)

        return bdp
Esempio n. 4
0
    def run(self):
        """Runs the task.

           Parameters
           ----------
           None

           Returns
           -------
           None
        """

        self._summary = {}
        dt = utils.Dtime("CubeSpectrum")
        seed = self.getkey("seed")
        if seed <= 0:
            np.random.seed()
        else:
            np.random.seed(seed)
        #print "RANDOM.GET_STATE:",np.random.get_state()
        contin = self.getkey("contin")
        rms = 1.0  # not a user parameter, we do all spectra in S/N space
        f0 = self.getkey("freq")  # central frequency in band
        df = self.getkey("delta") / 1000.0  # channel width (in GHz)
        nspectra = self.getkey("nspectra")
        taskargs = " contin=%f freq=%f delta=%f nspectra=%f " % (contin, f0,
                                                                 df, nspectra)
        spec = range(nspectra)
        dt.tag("start")
        if self.getkey("file") != "":
            print "READING spectrum from", self.getkey("file")
            (freq, spec[0]) = getspec(self.getkey("file"))
            nchan = len(freq)
            print "Spectrum %d chans from %f to %f: min/max = %f %f" % (
                nchan, freq.min(), freq.max(), spec[0].min(), spec[0].max())
            # @todo nspectra>1 not tested
            for i in range(1, nspectra):
                spec[i] = deepcopy(spec[0])
            dt.tag("getspec")
        else:
            nchan = self.getkey("nchan")
            freq = np.arange(nchan, dtype=np.float64)
            center = int(nchan / 2)
            for i in range(nchan):
                freq[i] = f0 + (float((i - center)) * df)
            for i in range(nspectra):
                spec[i] = np.zeros(nchan)
        chans = np.arange(nchan)
        taskargs += " nchan = %d" % nchan
        for i in range(nspectra):
            if seed >= 0:
                spec[i] += np.random.normal(contin, rms, nchan)
#            print "MEAN/STD",spec[i].mean(),spec[i].std()
        lines = self.getkey("lines")
        sls = SpectralLineSearch(False)
        for item in self.getkey("transitions"):
            kw = {
                "include_only_nrao": True,
                "line_strengths": ["ls1", "ls2"],
                "energy_levels": ["el2", "el4"],
                "fel": True,
                "species": item[0]
            }
            results = sls.search(item[1][0], item[1][1], "off", **kw)
            # look at line strengths
            if len(results) > 0:
                mx = 0.0
                indx = -1
                for i in range(len(results)):
                    if results[i].getkey("linestrength") > mx:
                        indx = i
                        mx = results[i].getkey("linestrength")
                for res in results:
                    if mx > 0.0:
                        lines.append([
                            item[2] * res.getkey("linestrength") / mx,
                            res.getkey("frequency") +
                            utils.veltofreq(item[4], res.getkey("frequency")),
                            item[3]
                        ])
                    else:
                        lines.append([
                            item[2],
                            res.getkey("frequency") +
                            utils.veltofreq(item[4], res.getkey("frequency")),
                            item[3]
                        ])
        for item in lines:
            for i in range(nspectra):
                spec[i] += utils.gaussian1D(freq, item[0], item[1],
                                            utils.veltofreq(item[2], item[1]))

        if self.getkey("hanning"):
            for i in range(nspectra):
                filter = Filter1D.Filter1D(spec[i], "hanning", **{"width": 3})
                spec[i] = filter.run()
            dt.tag("hanning")
        center = int(nchan / 2)
        dt.tag("open")
        bdp_name = self.mkext("Genspec", "csp")
        b2 = CubeSpectrum_BDP(bdp_name)
        self.addoutput(b2)
        images = {}  # png's accumulated
        for i in range(nspectra):
            sd = []
            caption = "Generated Spectrum %d" % i
            # construct the Table for CubeSpectrum_BDP
            # @todo note data needs to be a tuple, later to be column_stack'd
            labels = ["channel", "frequency", "flux"]
            units = ["number", "GHz", ""]
            data = (chans, freq, spec[i])

            # plane 0 : we are allowing a multiplane table, so the first plane is special
            if i == 0:
                table = Table(columns=labels,
                              units=units,
                              data=np.column_stack(data),
                              planes=["0"])
            else:
                table.addPlane(np.column_stack(data), "%d" % i)
            # example plot , one per position for now
            x = chans
            xlab = 'Channel'
            y = [spec[i]]
            sd.append(xlab)

            myplot = APlot(ptype=self._plot_type,
                           pmode=self._plot_mode,
                           abspath=self.dir())
            ylab = 'Flux'
            p1 = "%s_%d" % (bdp_name, i)
            myplot.plotter(x, y, "", p1, xlab=xlab, ylab=ylab, thumbnail=True)
            # Why not use p1 as the key?
            ii = images["pos%d" % i] = myplot.getFigure(figno=myplot.figno,
                                                        relative=True)
            thumbname = myplot.getThumbnail(figno=myplot.figno, relative=True)

            image = Image(images=images, description="CubeSpectrum")
            sd.extend([ii, thumbname, caption])
            self.spec_description.append(sd)

        self._summary["spectra"] = SummaryEntry(self.spec_description,
                                                "GenerateSpectrum_AT",
                                                self.id(True), taskargs)

        dt.tag("table")
        b2.setkey("image", image)
        b2.setkey("table", table)
        b2.setkey("sigma", rms)
        b2.setkey("mean", contin)

        dt.tag("done")
        dt.end()
Esempio n. 5
0
    def convert(self,
                chan=None,
                freq=None,
                velocity=None,
                spec=None,
                file=None,
                separator=None,
                restfreq=None,
                vlsr=None):
        """ Method to convert input data (either files or arrays) into a CubeSpectrum_BDP. If files
            are used then then the columns containing the frequency and the intensity must be given
            (channel numbers are optional). Any number of files can be given, but all spectra must
            have the same length as they are assumed to come from the same data source. Blank lines
            and lines starting with a comment '#' will be skipped, additionally any line with too
            few columns will be skipped. If arrays are used an input then both the frequency and
            intensity must be specified (the channel numbers are optional). Both lists and numpy
            arrays are accepted as inputs. Multidimmensional arrays are supported with the following
            parameters:

            + A single frequency list can be given to cover all input spectra, otherwise the shape
              of the frequency array must match that of the spectra
            + A single channel list can be given to cover all input spectra, otherwise the shape
              of the channel array must match that of the spectra
            + All spectra must have the same length

            If a channel array is not specified then one will be constructed with the following
            parameters:

            + The channel numbers will start at 0 (casa convention)
            + The first entry in the spectrum will be considered the first channel, regardless of
              whether the frequency array increases or decreases.

            Additionally, if there is velocity axis, but no frequency axis, a frequency axis can
            be constructed by specifying a rest frequency (restfreq), and vlsr.

            The convert method will return a single CubeSpectrum_BDP instance holding all input spectra
            along with an image of each.

            Parameters
            ----------
            chan : array or int
                An array holding the channel numbers for the data, multidimmensional arrays are
                supported. If an integer is specified then it is the number of the column
                in the file which contains the channel numbers, column numbers are 1 based.
                Default: None

            freq : array
                An array holding the frequencies for the data, multidimmensional arrays are
                supported. If an integer is specified then it is the number of the column
                in the file which contains the frequencies, column numbers are 1 based.
                Default: None

            velocity : array
                An array holding the velocity for the data, multidimmensional arrays are
                supported. If an integer is specified then it is the number of the column
                in the file which contains the velcoties, column numbers are 1 based. If this
                parameter is specified then restfreq and vlsr must also be specified.
                Default: None

            spec : array
                An array holding the intesities of the data, multidimmensional arrays are supported.
                If an integer is specified then it is the number of the column in the file which
                contains the intensities, column numbers are 1 based.
                Default: None

            file : list or str
                A single file name or a list of file names to be read in for spectra.
                Default: None

            separator : str
                The column separator for reading in the data files.
                Default: None (any whitespace)

            restfreq : float
                The rest frequency to use to convert the spectra from velocity to frequency units.
                The rest frequency is in GHz.
                Default: None (no conversion done)

            vlsr : float
                The reference velocity for converting a velocity axis to frequency. The units are
                km/s. If this is not set then it is assumed that the vlsr is 0.0.
                Default: None

            Returns
            -------
            CubeSpectrum_BDP instance containing all of the inpur spectra.

        """
        self.restfreq = restfreq
        self.vlsr = vlsr

        # if a string was given as the file name then turn it into a list so it can be iterated over
        if isinstance(file, str):
            self.file = [file]
        else:
            self.file = file
        # do some error checking
        if isinstance(chan, np.ndarray) or isinstance(chan, list):
            if isinstance(chan, list):
                self.chan = np.array(chan)
            else:
                self.chan = copy.deepcopy(chan)
            self.chancol = -1
        elif isinstance(chan, int):
            self.chancol = chan
            self.chan = None
        else:
            self.chancol = -1
            self.chan = None
        if isinstance(freq, np.ndarray) or isinstance(freq, list):
            if isinstance(freq, list):
                self.freq = np.array(freq)
            else:
                self.freq = copy.deepcopy(freq)
            self.freqcol = -1
        elif isinstance(freq, int):
            self.freqcol = freq
            self.freq = None
        else:
            self.freqcol = -1
            self.freq = None
        if isinstance(velocity, np.ndarray) or isinstance(velocity, list):
            if isinstance(velocity, list):
                self.freq = np.array(velocity, dtype=np.float)
            else:
                self.freq = velocity.astype(np.float)
            for i, frq in enumerate(self.freq):
                self.freq[i] = self.restfreq + utils.veltofreq(
                    frq - self.vlsr, self.restfreq)
            self.freqcol = -1
        elif isinstance(velocity, int):
            self.velcol = velocity
            self.velocity = None
        else:
            self.velcol = -1
            self.velocity = None
        if isinstance(spec, np.ndarray) or isinstance(spec, list):
            if isinstance(spec, list):
                self.spec = np.array(spec)
            else:
                self.spec = copy.deepcopy(spec)
            self.speccol = -1
        elif isinstance(spec, int):
            self.speccol = spec
            self.spec = None
        else:
            self.speccol = -1
            self.spec = None
        if isinstance(separator, str):
            self.separator = separator
        spectra = []
        # read in the data from any files
        if self.file:
            for fl in self.file:
                spectra.append(self.getfile(fl))
        else:
            # convert the input arrays
            singlefreq = False
            singlechan = False
            havechan = False
            # make sure they have the same shape or that the frequency array is 1D
            if self.spec.shape != self.freq.shape:
                if len(self.spec.shape) == 1 and len(self.freq.shape) != 1:
                    raise Exception(
                        "Frequency axis and spectral axis do not have the same shape."
                    )
                else:
                    singlefreq = True
            # make sure they have the same shape or that the channel array is 1D
            if self.chan:
                havechan = True
                if self.spec.shape != self.chan.shape:
                    if len(spec.shape) == 1 and len(self.chan.shape) != 1:
                        raise Exception(
                            "Channel axis and spectral axis do not have the same shape."
                        )
                    else:
                        singlechan = True
            # if the arrays are more than 1D, then go through each
            if len(self.spec.shape) > 1:
                for i in range(self.spec.shape[0]):
                    spec = self.spec[i]
                    if not havechan:
                        chan = np.arange(len(spec))
                    elif singlechan:
                        chan = self.chan
                    else:
                        chan = self.chan[i]
                    if singlefreq:
                        freq = self.freq
                    else:
                        freq = self.freq[i]
                    spectra.append(Spectrum(spec=spec, freq=freq, chans=chan))
            else:
                # construct the channel array if needed
                if not havechan:
                    self.chan = np.arange(len(self.spec))
                spectra.append(
                    Spectrum(spec=self.spec, freq=self.freq, chans=self.chan))

        first = True
        images = {}

        # make images from the spectra
        for i, spec in enumerate(spectra):
            data = (spec.chans(masked=False), spec.freq(masked=False),
                    spec.spec(csub=False, masked=False))
            if first:
                table = Table(columns=["channel", "frequency", "flux"],
                              units=["number", "GHz", "Unknown"],
                              data=np.column_stack(data),
                              planes=["0"])
                first = False
            else:
                table.addPlane(np.column_stack(data), "%i" % i)
            myplot = APlot(ptype=admit.PlotControl.PNG,
                           pmode=admit.PlotControl.BATCH,
                           abspath=os.getcwd())
            myplot.plotter(spec.freq(masked=False),
                           [spec.spec(csub=False, masked=False)],
                           title="Spectrum %i" % i,
                           figname="fig_%i" % i,
                           xlab="Frequency",
                           ylab="Intensity",
                           thumbnail=True)
            # Why not use p1 as the key?
            images["fig%i" % i] = myplot.getFigure(figno=myplot.figno,
                                                   relative=True)
        image = Image(images=images, description="Spectra")
        # construct the BDP
        bdp = CubeSpectrum_BDP(image=image, table=table)

        return bdp
Esempio n. 6
0
    def run(self):
        """ The run method creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        dt = utils.Dtime("SFind2D")               # tagging time
        self._summary = {}
        # get key words that user input
        nsigma = self.getkey("numsigma")
        sigma  = self.getkey("sigma")
        region = self.getkey("region")
        robust = self.getkey("robust")
        snmax  = self.getkey("snmax")
        ds9 = True                                     # writes a "ds9.reg" file
        mpl = True                                     # aplot.map1() plot
        dynlog = 20.0                                  # above this value of dyn range finder chart is log I-scaled
        bpatch = True                                  # patch units to Jy/beam for ia.findsources()
        
        # get the input casa image from bdp[0]
        bdpin = self._bdp_in[0]
        infile = bdpin.getimagefile(bt.CASA)
        if mpl:
            data = np.flipud(np.rot90(casautil.getdata(self.dir(infile)).data))

        # check if there is a 2nd image (which will be a PB)
        for i in range(len(self._bdp_in)):
            print 'BDP',i,type(self._bdp_in[i])

        if self._bdp_in[2] != None:
            bdpin_pb  = self._bdp_in[1]            
            bdpin_cst = self._bdp_in[2]
            print "Need to process PB"
        else:
            bdpin_pb  = None
            bdpin_cst = self._bdp_in[1]
            print "No PB given"
            

        # get the output bdp basename
        slbase = self.mkext(infile,'sl')

        # make sure it's a 2D map
        if not casautil.mapdim(self.dir(infile),2):
            raise Exception,"Input map dimension not 2: %s" % infile

        # arguments for imstat call if required
        args = {"imagename" : self.dir(infile)}
        if region != "":
            args["region"] = region
        dt.tag("start")

        # The following code sets the sigma level for searching for sources using
        # the sigma and snmax keyword as appropriate
        # if no CubeStats BDP was given and no sigma was specified:
        # find a noise level via casa.imstat()
        # if a CubeStat_BDP is given get it from there.
        if bdpin_cst == None:
            # get statistics from input image with imstat because no CubeStat_BDP
            stat  = casa.imstat(**args)
            dmin  = float(stat["min"][0])                 # these would be wrong if robust were used already
            dmax  = float(stat["max"][0])
            args.update(casautil.parse_robust(robust))    # only now add robust keywords for the sigma
            stat  = casa.imstat(**args)            
            if sigma <= 0.0 :
                sigma = float(stat["sigma"][0])
            dt.tag("imstat")
        else:
            # get statistics from CubeStat_BDP 
            sigma = bdpin_cst.get("sigma")
            dmin  = bdpin_cst.get("minval")
            dmax  = bdpin_cst.get("maxval")

        self.setkey("sigma",sigma)
        # calculate cutoff based either on RMS or dynamic range limitation
        drange = dmax/(nsigma*sigma)
        if snmax < 0.0 :
            snmax = drange
        if drange > snmax :
            cutoff = 1.0/snmax
        else:
            cutoff = 1.0/drange
        logging.info("sigma, dmin, dmax, snmax, cutoff %g %g %g %g %g" % (sigma, dmin, dmax, snmax, cutoff))
        # define arguments for call to findsources
        args2 = {"cutoff" : cutoff}
        args2["nmax"] = 30
        if region != "" :
            args2["region"] = region
        #args2["mask"] = ""
        args2["point"] = False
        args2["width"] = 5
        args2["negfind"] = False
        # set-up for SourceList_BDP
        slbdp = SourceList_BDP(slbase)

        # connect to casa image and call casa ia.findsources tool
        taskinit.ia.open(self.dir(infile))

        # findsources() cannot deal with  'Jy/beam.km/s' ???
        # so for the duration of findsources() we patch it
        bunit = taskinit.ia.brightnessunit()
        if bpatch and bunit != 'Jy/beam':
            logging.warning("Temporarely patching your %s units to Jy/beam for ia.findsources()" % bunit) 
            taskinit.ia.setbrightnessunit('Jy/beam')
        else:
            bpatch = False
        atab = taskinit.ia.findsources(**args2)
        if bpatch:
            taskinit.ia.setbrightnessunit(bunit)
        
        taskargs = "nsigma=%4.1f sigma=%g region=%s robust=%s snmax=%5.1f" % (nsigma,sigma,str(region),str(robust),snmax)
        dt.tag("findsources")
        nsources = atab["nelements"] 
        xtab = []
        ytab = []
        logscale = False
        sumflux = 0.0
        if nsources > 0:
            # @TODO: Why are Xpix, YPix not stored in the table?
            #        -> PJT: I left them out since they are connected to an image which may not be available here
            #                but we should store the frequency of the observation here for later bandmerging
            logging.debug("%s" % str(atab['component0']['shape']))
            logging.info("Right Ascen.  Declination   X(pix)   Y(pix)      Peak       Flux    Major   Minor    PA    SNR")
            funits = atab['component0']['flux']['unit']
            if atab['component0']['shape'].has_key('majoraxis'):
                sunits = atab['component0']['shape']['majoraxis']['unit']
                aunits = atab['component0']['shape']['positionangle']['unit']
            else:
                sunits = "n/a"
                aunits = "n/a"
            punits = taskinit.ia.summary()['unit']
            logging.info("                                               %s       %s    %s   %s   %s" % (punits,funits,sunits,sunits,aunits))
            #
            # @todo future improvement is to look at image coordinates and control output appropriately
            #
            if ds9:
                # @todo variable name
                regname = self.mkext(infile,'ds9.reg')
                fp9 = open(self.dir(regname),"w!")
            for i in range(nsources):
                c = "component%d" % i
                name = "%d" % (i+1)
                r = atab[c]['shape']['direction']['m0']['value']
                d = atab[c]['shape']['direction']['m1']['value']
                pixel = taskinit.ia.topixel([r,d])
                xpos = pixel['numeric'][0]
                ypos = pixel['numeric'][1]
                rd = taskinit.ia.toworld([xpos,ypos],'s')
                ra = rd['string'][0][:12]
                dec = rd['string'][1][:12]
                flux = atab[c]['flux']['value'][0]
                sumflux = sumflux + flux
                if atab[c]['shape'].has_key('majoraxis'):
                    smajor = atab[c]['shape']['majoraxis']['value']
                    sminor = atab[c]['shape']['minoraxis']['value']
                    sangle = atab[c]['shape']['positionangle']['value']
                else:
                    smajor = 0.0
                    sminor = 0.0
                    sangle = 0.0
                peakstr = taskinit.ia.pixelvalue([xpos,ypos,0,0])
                if len(peakstr) == 0:
                    logging.warning("Problem with source %d @ %d,%d" % (i,xpos,ypos))
                    continue
                peakf = peakstr['value']['value']
                snr = peakf/sigma
                if snr > dynlog:
                    logscale = True
                logging.info("%s %s %8.2f %8.2f %10.3g %10.3g %7.3f %7.3f %6.1f %6.1f" % (ra,dec,xpos,ypos,peakf,flux,smajor,sminor,sangle,snr))
                
                xtab.append(xpos)
                ytab.append(ypos)
                slbdp.addRow([name,ra,dec,flux,peakf,smajor,sminor,sangle])
                if ds9:
                    ras = ra
                    des = dec.replace('.',':',2)
                    msg = 'ellipse(%s,%s,%g",%g",%g) # text={%s}' % (ras,des,smajor,sminor,sangle+90.0,i+1)
                    fp9.write("%s\n" % msg)
            if ds9:
                fp9.close()
                logging.info("Wrote ds9.reg")
            dt.tag("table")
        logging.regression("CONTFLUX: %d %g" % (nsources,sumflux))
        

        summary = taskinit.ia.summary()
        beammaj = summary['restoringbeam']['major']['value']
        beammin = summary['restoringbeam']['minor']['value']
        beamunit = summary['restoringbeam']['minor']['unit']
        beamang = summary['restoringbeam']['positionangle']['value']
        angunit = summary['restoringbeam']['positionangle']['unit']
        # @todo add to table comments?
        logging.info(" Fitted Gaussian size; NOT deconvolved source size.")
        logging.info(" Restoring Beam: Major axis: %10.3g %s , Minor axis: %10.3g %s , PA: %5.1f %s" % (beammaj, beamunit, beammin, beamunit, beamang, angunit))
        # form into a xml table
        
        # output is a table_bdp
        self.addoutput(slbdp)

        # instantiate a plotter for all plots made herein
        myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())

        # make output png with circles marking sources found
        if mpl:
            circles=[]
            nx = data.shape[1]             # data[] array was already flipud(rot90)'d
            ny = data.shape[0]             # 
            for (x,y) in zip(xtab,ytab):
                circles.append([x,y,1])
            # @todo variable name
            if logscale:
                logging.warning("LogScaling applied")
                data = data/sigma
                data = np.where(data<0,-np.log10(1-data),+np.log10(1+data))
            title = "SFind2D: %d sources" % nsources
            myplot.map1(data,title,slbase,thumbnail=True,circles=circles)

        #---------------------------------------------------------
        # Get the figure and thumbmail names and create a caption
        #---------------------------------------------------------
        imname = myplot.getFigure(figno=myplot.figno,relative=True)
        thumbnailname = myplot.getThumbnail(figno=myplot.figno,relative=True)
        caption = "Image of input map with sources found by SFind2D overlayed in green."
        slbdp.table.description="Table of source locations and sizes (not deconvolved)"
 
        #---------------------------------------------------------
        # Add finder image to the BDP
        #---------------------------------------------------------
        image = Image(images={bt.PNG: imname}, 
                      thumbnail=thumbnailname, 
                      thumbnailtype=bt.PNG, description=caption)
        slbdp.image.addimage(image, "finderimage")

        #-------------------------------------------------------------
        # Create the summary entry for the table and image
        #-------------------------------------------------------------
        self._summary["sources"] = SummaryEntry([slbdp.table.serialize(),
                                                 slbdp.image.serialize()],
                                                "SFind2D_AT", 
                                                self.id(True), taskargs)
        
        dt.tag("done")
        dt.end()
Esempio n. 7
0
    def run(self):
        """ The run method, locates lines, attempts to identify them, and
            creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        if not self.boxcar:
            logging.info("Boxcar smoothing turned off.")
        self._summary = {}
        self.freq = []
        self.chan = []
        dt = utils.Dtime("LineSegment")  # timer for debugging
        spec_description = []
        taskargs = self._taskargs()
        statbdp = None  # for the CubeStats BDP
        specbdp = None  # for the CubeSpectrum BDP
        specs = []  # to hold the input CubeSpectrum based spectra
        statspec = []  # to hold the input CubeStats based spectrum
        statseg = []  # to hold the detected segments from statspec
        specseg = []  # to hold the detected segments from specs
        #statcutoff = []           # cutoff for statspec line finding
        #speccutoff = []             # cutoff for specs line finding
        infile = ""
        if self.getkey("minchan") < 1:
            raise Exception("minchan must eb a positive value.")
        elif self.getkey("minchan") == 1 and self.getkey("iterate"):
            logging.info(
                "iterate=True is not allowed for minchan=1, setting iterate to False"
            )
            self.setkey("iterate", False)

        vlsr = 0.0
        # get the input bdp
        if self._bdp_in[0] is not None:
            specbdp = self._bdp_in[0]
            infile = specbdp.xmlFile
        if self._bdp_in[1] is not None:
            statbdp = self._bdp_in[1]
            infile = statbdp.xmlFile
        # still need to do this check since all are optional inputs
        if specbdp == statbdp is None:
            raise Exception("No input BDP's found.")
        imbase = self.mkext(infile, 'lseg')

        # grab any optional references overplotted on the "ll" plots

        # instantiate a plotter for all plots made herein
        self._plot_type = admit.util.PlotControl.SVG
        myplot = APlot(ptype=self._plot_type,
                       pmode=self._plot_mode,
                       abspath=self.dir())
        dt.tag("start")

        ############################################################################
        #  Smoothing and continuum (baseline) subtraction of input spectra         #
        ############################################################################

        # get and smooth all input spectra
        basicsegment = {
            "method": self.getkey("segment"),
            "minchan": self.getkey("minchan"),
            "maxgap": self.getkey("maxgap"),
            "numsigma": self.getkey("numsigma"),
            "iterate": self.getkey("iterate"),
            "nomean": True
        }

        segargsforcont = {
            "name": "Line_Segment.%i.asap" % self.id(True),
            "pmin": self.getkey("numsigma"),
            "minchan": self.getkey("minchan"),
            "maxgap": self.getkey("maxgap")
        }

        if specbdp is not None:
            # get the spectrum
            specs = specutil.getspectrum(specbdp, vlsr, self.getkey("smooth"),
                                         self.getkey("recalcnoise"),
                                         basicsegment)
            # remove the continuum, if requested
            if self.getkey("csub")[1] is not None:
                logging.info(
                    "Attempting Continuum Subtraction for Input Spectra")
                order = self.getkey("csub")[1]
                specutil.contsub(self.id(True),
                                 specs,
                                 self.getkey("segment"),
                                 segargsforcont,
                                 algorithm="PolyFit",
                                 **{"deg": order})
            else:
                for spec in specs:
                    spec.set_contin(np.zeros(len(spec)))

            for spec in specs:
                self.freq, self.chan = specutil.mergefreq(
                    self.freq, self.chan, spec.freq(False), spec.chans(False))

        # get any input cubestats
        if statbdp is not None:
            statspec = specutil.getspectrum(statbdp, vlsr,
                                            self.getkey("smooth"),
                                            self.getkey("recalcnoise"),
                                            basicsegment)
            # remove the continuum
            if self.getkey("csub")[0] is not None:
                logging.info(
                    "Attempting Continuum Subtraction for Input CubeStats Spectra"
                )
                order = self.getkey("csub")[0]
                specutil.contsub(self.id(True),
                                 statspec,
                                 self.getkey("segment"),
                                 segargsforcont,
                                 algorithm="PolyFit",
                                 **{"deg": order})

            # The 'min' spectrum is inverted for segment finding.
            # Doesn't this mean it will also be plotted upside down?
            if len(statspec) > 0: statspec[1].invert()

            for spec in statspec:
                self.freq, self.chan = specutil.mergefreq(
                    self.freq, self.chan, spec.freq(False), spec.chans(False))

        dt.tag("getspectrum")

        if isinstance(self.freq, np.ndarray):
            self.freq = self.freq.tolist()
        if isinstance(self.chan, np.ndarray):
            self.chan = self.chan.tolist()

        # search for segments of spectral line emission

        #NB: this is repetitive with basicsegment above.
        method = self.getkey("segment")
        minchan = self.getkey("minchan")
        maxgap = self.getkey("maxgap")
        numsigma = self.getkey("numsigma")
        iterate = self.getkey("iterate")

        if specbdp is not None:
            logging.info("Detecting segments in CubeSpectrum based data")
            values = specutil.findsegments(specs, method, minchan, maxgap,
                                           numsigma, iterate)
            for i, t in enumerate(values):
                specseg.append(t[0])
                specs[i].set_noise(t[2])

        if statbdp is not None:
            logging.info("Detecting segments in CubeStats based data")
            values = specutil.findsegments(statspec, method, minchan, maxgap,
                                           numsigma, iterate)
            for i, t in enumerate(values):
                statseg.append(t[0])
                # print ("MWP LINESEGMENT %d Setting noise=%f minchan=%d",(i,t[2],minchan))
                statspec[i].set_noise(t[2])
                #statcutoff.append(t[1])

        dt.tag("segment finder")
        lsbdp = LineSegment_BDP(imbase)

        finalsegs = utils.mergesegments([statseg, specseg], len(self.freq))
        lines = specutil.linedatafromsegments(self.freq, self.chan, finalsegs,
                                              specs, statspec)
        llist = []
        for l in lines:
            lsbdp.addRow(l)
            llist.append(l)

        rdata = []

        # create the output
        label = ["Peak/Noise", "Minimum/Noise"]
        caption = [
            "Potential lines overlaid on peak intensity plot from CubeStats_BDP.",
            "Potential lines overlaid on minimum intensity plot from CubeStats_BDP."
        ]

        xlabel = "Frequency (GHz)"
        for i, spec in enumerate(statspec):
            freqs = []
            for ch in statseg[i]:
                frq = [
                    min(spec.freq()[ch[0]],
                        spec.freq()[ch[1]]),
                    max(spec.freq()[ch[0]],
                        spec.freq()[ch[1]])
                ]
                freqs.append(frq)
                rdata.append(frq)
                #print("Stats segment, peak, ratio, fwhm ",lname,peak,ratio,fwhm)
            mult = 1.
            if i == 1:
                mult = -1.
#            print("MWP statspec plot cutoff[%d] = %f, contin=%f" % (i, (statspec[i].contin() + mult*(statspec[i].noise() * self.getkey("numsigma")))[0], statspec[i].contin()[0] ) )
            myplot.segplotter(
                spec.freq(),
                spec.spec(csub=False),
                title="Detected Line Segments",
                xlab=xlabel,
                ylab=label[i],
                figname=imbase + "_statspec%i" % i,
                segments=freqs,
                cutoff=(spec.contin() + mult *
                        (spec.noise() * self.getkey("numsigma"))),
                continuum=spec.contin(),
                thumbnail=True)
            imname = myplot.getFigure(figno=myplot.figno, relative=True)
            thumbnailname = myplot.getThumbnail(figno=myplot.figno,
                                                relative=True)
            image = Image(images={bt.SVG: imname},
                          thumbnail=thumbnailname,
                          thumbnailtype=bt.PNG,
                          description=caption[i])
            lsbdp.image.addimage(image, "statspec%i" % i)
            spec_description.append([
                lsbdp.ra, lsbdp.dec, "", xlabel, imname, thumbnailname,
                caption[i], infile
            ])

        for i in range(len(specs)):
            freqs = []
            for ch in specseg[i]:
                frq = [
                    min(specs[i].freq()[ch[0]], specs[i].freq()[ch[1]]),
                    max(specs[i].freq()[ch[0]], specs[i].freq()[ch[1]])
                ]
                freqs.append(frq)
                rdata.append(frq)
            myplot.segplotter(specs[i].freq(),
                              specs[i].spec(csub=False),
                              title="Detected Line Segments",
                              xlab=xlabel,
                              ylab="Intensity",
                              figname=imbase + "_spec%03d" % i,
                              segments=freqs,
                              cutoff=specs[i].contin() +
                              (specs[i].noise() * self.getkey("numsigma")),
                              continuum=specs[i].contin(),
                              thumbnail=True)
            imname = myplot.getFigure(figno=myplot.figno, relative=True)
            thumbnailname = myplot.getThumbnail(figno=myplot.figno,
                                                relative=True)
            caption = "Detected line segments from input spectrum #%i." % (i)
            image = Image(images={bt.SVG: imname},
                          thumbnail=thumbnailname,
                          thumbnailtype=bt.PNG,
                          description=caption)
            lsbdp.image.addimage(image, "spec%03d" % i)
            spec_description.append([
                lsbdp.ra, lsbdp.dec, "", xlabel, imname, thumbnailname,
                caption, infile
            ])

        caption = "Merged segments overlaid on CubeStats spectrum"

        myplot.summaryspec(statspec, specs, None, imbase + "_summary", llist)
        imname = myplot.getFigure(figno=myplot.figno, relative=True)
        thumbnailname = myplot.getThumbnail(figno=myplot.figno, relative=True)
        caption = "Identified segments overlaid on Signal/Noise plot of all spectra."

        image = Image(images={bt.SVG: imname},
                      thumbnail=thumbnailname,
                      thumbnailtype=bt.PNG,
                      description=caption)

        lsbdp.image.addimage(image, "summary")
        spec_description.append([
            lsbdp.ra, lsbdp.dec, "", "Signal/Noise", imname, thumbnailname,
            caption, infile
        ])

        self._summary["segments"] = SummaryEntry(lsbdp.table.serialize(),
                                                 "LineSegment_AT",
                                                 self.id(True), taskargs)
        self._summary["spectra"] = [
            SummaryEntry(spec_description, "LineSegment_AT", self.id(True),
                         taskargs)
        ]

        self.addoutput(lsbdp)
        logging.regression("LINESEG: %s" % str(rdata))
        dt.tag("done")
        dt.end()
Esempio n. 8
0
    def run(self):
        """ The run method, calculates the moments and creates the BDP(s)

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        self._summary = {}
        momentsummary = []
        dt = utils.Dtime("Moment")

        # variable to track if we are using a single cutoff for all moment maps
        allsame = False
        moments = self.getkey("moments")
        numsigma = self.getkey("numsigma")
        mom0clip = self.getkey("mom0clip")
        # determine if there is only 1 cutoff or if there is a cutoff for each moment
        if len(moments) != len(numsigma):
            if len(numsigma) != 1:
                raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.")
            allsame = True
        # default moment file extensions, this is information copied from casa.immoments()
        momentFileExtensions = {-1: ".average",
                                 0: ".integrated",
                                 1: ".weighted_coord",
                                 2: ".weighted_dispersion_coord",
                                 3: ".median",
                                 4: "",
                                 5: ".standard_deviation",
                                 6: ".rms",
                                 7: ".abs_mean_dev",
                                 8: ".maximum",
                                 9: ".maximum_coord",
                                10: ".minimum",
                                11: ".minimum_coord",
                                }

        logging.debug("MOMENT: %s %s %s" %  (str(moments), str(numsigma), str(allsame)))

        # get the input casa image from bdp[0]
        # also get the channels the line actually covers (if any)
        bdpin = self._bdp_in[0]
        infile = bdpin.getimagefile(bt.CASA)
        chans = self.getkey("chans")
        # the basename of the moments, we will append _0, _1, etc.
        basename = self.mkext(infile, "mom")
        fluxname = self.mkext(infile, "flux")
        # beamarea = nppb(self.dir(infile))
        beamarea = 1.0  # until we have it from the MOM0 map

        sigma0 = self.getkey("sigma")
        sigma  = sigma0

        ia = taskinit.iatool()

        dt.tag("open")

        # if no CubseStats BDP was given and no sigma was specified, find a 
        # noise level via casa.imstat()
        if self._bdp_in[1] is None and sigma <= 0.0:
            raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff")
        elif self._bdp_in[1] is not None:
            sigma = self._bdp_in[1].get("sigma")

        # immoments is a bit peculiar. If you give one moment, it will use 
        # exactly the outfile you picked for multiple moments, it will pick
        # extensions such as .integrated [0], .weighted_coord [1] etc.
        # we loop over the moments and will use the numeric extension instead. 
        # Might be laborious loop for big input cubes
        #
        # arguments for immoments
        args = {"imagename" : self.dir(infile),
                "moments"   : moments,
                "outfile"   : self.dir(basename)}

        # set the channels if given
        if chans != "":
            args["chans"] = chans
        # error check the mom0clip input
        if mom0clip > 0.0 and not 0 in moments:
            logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.")
            # add moment0 to the list of computed moments, but it has to be first
            moments.insert(0,0)
            if not allsame:
                numsigma.insert(0, 2.0*sigma)

        if allsame:
            # this is only executed now if len(moments) > 1 and len(cutoff)==1
            args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma]
            casa.immoments(**args)
            dt.tag("immoments-all")
        else:
            # this is execute if len(moments)==len(cutoff) , even when len=1
            for i in range(len(moments)):
                args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma]
                args["moments"] = moments[i]
                args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]])
                casa.immoments(**args)
                dt.tag("immoments-%d" % moments[i])

        taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) 
        if sigma0 > 0:
            taskargs = taskargs + " sigma=%.2f" % sigma0
        if mom0clip > 0:
            taskargs = taskargs + " mom0clip=%g" % mom0clip
        if chans == "": 
            taskargs = taskargs + " chans=all"
        else:
            taskargs = taskargs + " chans=%s" % str(chans)
        taskargs += '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; <span style="background-color:white">&nbsp;' + basename.split('/')[0] + '&nbsp;</span>'

        # generate the mask to be applied to all but moment 0
        if mom0clip > 0.0:
            # get the statistics from mom0 map
            # this is usually a very biased map, so unclear if mom0sigma is all that reliable
            args = {"imagename": self.dir(infile)}
            stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0]))
            mom0sigma = float(stat["sigma"][0])
            # generate a temporary masked file, mask will be copied to other moments
            args = {"imagename" : self.dir(basename + momentFileExtensions[0]),
                    "expr"      : 'IM0[IM0>%f]' % (mom0clip * mom0sigma),
                    "outfile"   : self.dir("mom0.masked")
                    }
            casa.immath(**args)
            # get the default mask name
            ia.open(self.dir("mom0.masked"))
            defmask = ia.maskhandler('default')
            ia.close()
            dt.tag("mom0clip")

        # loop over moments to rename them to _0, _1, _2 etc.
        # apply a mask as well for proper histogram creation
        map = {}
        myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
        implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())

        for mom in moments:
            figname = imagename = "%s_%i" % (basename, mom)
            tempname = basename + momentFileExtensions[mom]
            # rename and remove the old one if there is one
            utils.rename(self.dir(tempname), self.dir(imagename))
            # copy the moment0 mask if requested; this depends on that mom0 was done before
            if mom0clip > 0.0 and mom != 0:
                #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0])
                #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0])
                makemask(mode="copy", inpimage=self.dir("mom0.masked"),
                         output="%s:%s" % (self.dir(imagename), defmask[0]),
                         overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"),
                                                            defmask[0]))
                ia.open(self.dir(imagename))
                ia.maskhandler('set', defmask)
                ia.close()
                dt.tag("makemask")
            if mom == 0:
                beamarea = nppb(self.dir(imagename))
            implot.plotter(rasterfile=imagename,figname=figname,
                           colorwedge=True,zoom=self.getkey("zoom"))
            imagepng  = implot.getFigure(figno=implot.figno,relative=True)
            thumbname = implot.getThumbnail(figno=implot.figno,relative=True)
            images = {bt.CASA : imagename, bt.PNG  : imagepng}
            thumbtype=bt.PNG
            dt.tag("implot")

            # get the data for a histogram (ia access is about 1000-2000 faster than imval())
            map[mom] = casautil.getdata(self.dir(imagename))
            data = map[mom].compressed()
            dt.tag("getdata")

            # make the histogram plot

            # get the label for the x axis
            bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit")
            # object for the caption
            objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object")

            # Make the histogram plot
            # Since we give abspath in the constructor, figname should be relative
            auxname = imagename + '_histo'
            auxtype = bt.PNG
            myplot.histogram(columns = data,
                             figname = auxname,
                             xlab    = bunit,
                             ylab    = "Count",
                             title   = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True)

            casaimage = Image(images    = images,
                                    auxiliary = auxname,
                                    auxtype   = auxtype,
                                    thumbnail = thumbname,
                                    thumbnailtype = thumbtype)
            auxname = myplot.getFigure(figno=myplot.figno,relative=True)
            auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True)

            if hasattr(self._bdp_in[0], "line"):   # SpwCube doesn't have Line
                line = deepcopy(getattr(self._bdp_in[0], "line"))
                if not isinstance(line, Line):
                    line = Line(name="Unidentified")
            else:
                # fake a Line if there wasn't one
                line = Line(name="Unidentified")
            # add the BDP to the output array
            self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom,
                           image=deepcopy(casaimage), line=line))
            dt.tag("ren+mask_%d" % mom)

            imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname)
            auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname)
            thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption,
                                 auxname, auxthumb, auxcaption, infile]
            momentsummary.append(thismomentsummary)

        if map.has_key(0) and map.has_key(1) and map.has_key(2):
            logging.debug("MAPs present: %s" % (map.keys()))

            # m0 needs a new mask, inherited from the more restricted m1 (and m2)
            m0 = ma.masked_where(map[1].mask,map[0])
            m1 = map[1]
            m2 = map[2]
            m01 = m0*m1
            m02 = m0*m1*m1
            m22 = m0*m2*m2
            sum0 = m0.sum()
            vmean = m01.sum()/sum0
            # lacking the full 3D cube, get two estimates and take the max
            sig1  = math.sqrt(m02.sum()/sum0 - vmean*vmean)
            sig2  = m2.max()
            #vsig = max(sig1,sig2)
            vsig = sig1
            
            # consider clipping in the masked array (mom0clip)
            # @todo   i can't use info from line, so just borrow basename for now for grepping
            #         this also isn't really the flux, the points per beam is still in there
            loc = basename.rfind('/')
            sum1 = ma.masked_less(map[0],0.0).sum()   # mom0clip
            # print out:   LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression
            # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube
            s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0]
            s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9
            s_line = line.frequency
            if loc>0:
                if basename[:loc][0:2] == 'U_':
                    # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band
                    if abs(vmean) > vsig:
                        vwarn = '*'
                    else:
                        vwarn = ''
                    vlsr = vmean + (1.0-s_line/s_rest)*utils.c
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig)
                else:
                    # for identified lines we'll assume the ID was correct and not bother with RESTFREQ
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            else:
                msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL"    ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            logging.regression(msg)
            dt.tag("mom0flux")

            # create a histogram of flux per channel

            # grab the X coordinates for the histogram, we want them in km/s
            # restfreq should also be in summary
            restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9    # in GHz
            # print "PJT  %.10f %.10f" % (restfreq,s_rest)
            imval0 = casa.imval(self.dir(infile))
            freqs = imval0['coords'].transpose()[2]/1e9
            x = (1-freqs/restfreq)*utils.c
            # 
            h = casa.imstat(self.dir(infile), axes=[0,1])
            if h.has_key('flux'):
                flux0 = h['flux']
            else:
                flux0 = h['sum']/beamarea
            flux0sum = flux0.sum() * abs(x[1]-x[0])
            # @todo   make a flux1 with fluxes derived from a good mask
            flux1 = flux0 
            # construct histogram
            title = 'Flux Spectrum (%g)' % flux0sum
            xlab = 'VLSR (km/s)'
            ylab = 'Flux (Jy)'
            myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True)
            dt.tag("flux-spectrum")
            
        self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", 
                                                self.id(True), taskargs)
        # get rid of the temporary mask
        if mom0clip > 0.0: 
            utils.rmdir(self.dir("mom0.masked"))

        dt.tag("done")
        dt.end()
Esempio n. 9
0
    def run(self):
        """ The run method creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        dt = utils.Dtime("SFind2D")  # tagging time
        self._summary = {}
        # get key words that user input
        nsigma = self.getkey("numsigma")
        sigma = self.getkey("sigma")
        region = self.getkey("region")
        robust = self.getkey("robust")
        snmax = self.getkey("snmax")
        nmax = self.getkey("nmax")
        ds9 = True  # writes a "ds9.reg" file
        mpl = True  # aplot.map1() plot
        dynlog = 20.0  # above this value of dyn range finder chart is log I-scaled
        bpatch = True  # patch units to Jy/beam for ia.findsources()

        # get the input casa image from bdp[0]
        bdpin = self._bdp_in[0]
        infile = bdpin.getimagefile(bt.CASA)
        if mpl:
            data = np.flipud(np.rot90(casautil.getdata(self.dir(infile)).data))

        # check if there is a 2nd image (which will be a PB)
        for i in range(len(self._bdp_in)):
            print 'BDP', i, type(self._bdp_in[i])

        if self._bdp_in[2] != None:
            bdpin_pb = self._bdp_in[1]
            bdpin_cst = self._bdp_in[2]
            print "Need to process PB"
        else:
            bdpin_pb = None
            bdpin_cst = self._bdp_in[1]
            print "No PB given"

        # get the output bdp basename
        slbase = self.mkext(infile, 'sl')

        # make sure it's a 2D map
        if not casautil.mapdim(self.dir(infile), 2):
            raise Exception, "Input map dimension not 2: %s" % infile

        # arguments for imstat call if required
        args = {"imagename": self.dir(infile)}
        if region != "":
            args["region"] = region
        dt.tag("start")

        # The following code sets the sigma level for searching for sources using
        # the sigma and snmax keyword as appropriate
        # if no CubeStats BDP was given and no sigma was specified:
        # find a noise level via casa.imstat()
        # if a CubeStat_BDP is given get it from there.
        if bdpin_cst == None:
            # get statistics from input image with imstat because no CubeStat_BDP
            stat = casa.imstat(**args)
            dmin = float(
                stat["min"]
                [0])  # these would be wrong if robust were used already
            dmax = float(stat["max"][0])
            args.update(casautil.parse_robust(
                robust))  # only now add robust keywords for the sigma
            stat = casa.imstat(**args)
            if sigma <= 0.0:
                sigma = float(stat["sigma"][0])
            dt.tag("imstat")
        else:
            # get statistics from CubeStat_BDP
            sigma = bdpin_cst.get("sigma")
            dmin = bdpin_cst.get("minval")
            dmax = bdpin_cst.get("maxval")

        self.setkey("sigma", sigma)
        # calculate cutoff based either on RMS or dynamic range limitation
        drange = dmax / (nsigma * sigma)
        if snmax < 0.0:
            snmax = drange
        if drange > snmax:
            cutoff = 1.0 / snmax
        else:
            cutoff = 1.0 / drange
        logging.info("sigma, dmin, dmax, snmax, cutoff %g %g %g %g %g" %
                     (sigma, dmin, dmax, snmax, cutoff))
        # define arguments for call to findsources
        args2 = {"cutoff": cutoff}
        args2["nmax"] = nmax
        if region != "":
            args2["region"] = region
        #args2["mask"] = ""
        args2["point"] = False
        args2["width"] = 5
        args2["negfind"] = False
        # set-up for SourceList_BDP
        slbdp = SourceList_BDP(slbase)

        # connect to casa image and call casa ia.findsources tool
        ia = taskinit.iatool()
        ia.open(self.dir(infile))

        # findsources() cannot deal with  'Jy/beam.km/s' ???
        # so for the duration of findsources() we patch it
        bunit = ia.brightnessunit()
        if bpatch and bunit != 'Jy/beam':
            logging.warning(
                "Temporarely patching your %s units to Jy/beam for ia.findsources()"
                % bunit)
            ia.setbrightnessunit('Jy/beam')
        else:
            bpatch = False
        atab = ia.findsources(**args2)
        if bpatch:
            ia.setbrightnessunit(bunit)

        taskargs = "nsigma=%4.1f sigma=%g region=%s robust=%s snmax=%5.1f nmax=%d" % (
            nsigma, sigma, str(region), str(robust), snmax, nmax)
        dt.tag("findsources")
        nsources = atab["nelements"]
        xtab = []
        ytab = []
        logscale = False
        sumflux = 0.0
        if nsources > 0:
            # @TODO: Why are Xpix, YPix not stored in the table?
            #        -> PJT: I left them out since they are connected to an image which may not be available here
            #                but we should store the frequency of the observation here for later bandmerging
            logging.debug("%s" % str(atab['component0']['shape']))
            logging.info(
                "Right Ascen.  Declination   X(pix)   Y(pix)      Peak       Flux    Major   Minor    PA    SNR"
            )
            funits = atab['component0']['flux']['unit']
            if atab['component0']['shape'].has_key('majoraxis'):
                sunits = atab['component0']['shape']['majoraxis']['unit']
                aunits = atab['component0']['shape']['positionangle']['unit']
            else:
                sunits = "n/a"
                aunits = "n/a"
            punits = ia.summary()['unit']
            logging.info(
                "                                               %s       %s    %s   %s   %s"
                % (punits, funits, sunits, sunits, aunits))
            #
            # @todo future improvement is to look at image coordinates and control output appropriately
            #
            if ds9:
                # @todo variable name
                regname = self.mkext(infile, 'ds9.reg')
                fp9 = open(self.dir(regname), "w!")
            sn0 = -1.0
            for i in range(nsources):
                c = "component%d" % i
                name = "%d" % (i + 1)
                r = atab[c]['shape']['direction']['m0']['value']
                d = atab[c]['shape']['direction']['m1']['value']
                pixel = ia.topixel([r, d])
                xpos = pixel['numeric'][0]
                ypos = pixel['numeric'][1]
                rd = ia.toworld([xpos, ypos], 's')
                ra = rd['string'][0][:12]
                dec = rd['string'][1][:12]
                flux = atab[c]['flux']['value'][0]
                sumflux = sumflux + flux
                if atab[c]['shape'].has_key('majoraxis'):
                    smajor = atab[c]['shape']['majoraxis']['value']
                    sminor = atab[c]['shape']['minoraxis']['value']
                    sangle = atab[c]['shape']['positionangle']['value']
                else:
                    smajor = 0.0
                    sminor = 0.0
                    sangle = 0.0
                peakstr = ia.pixelvalue([xpos, ypos, 0, 0])
                if len(peakstr) == 0:
                    logging.warning("Problem with source %d @ %d,%d" %
                                    (i, xpos, ypos))
                    continue
                peakf = peakstr['value']['value']
                snr = peakf / sigma
                if snr > dynlog:
                    logscale = True
                if snr > sn0:
                    sn0 = snr
                logging.info(
                    "%s %s %8.2f %8.2f %10.3g %10.3g %7.3f %7.3f %6.1f %6.1f" %
                    (ra, dec, xpos, ypos, peakf, flux, smajor, sminor, sangle,
                     snr))

                xtab.append(xpos)
                ytab.append(ypos)
                slbdp.addRow(
                    [name, ra, dec, flux, peakf, smajor, sminor, sangle])
                if ds9:
                    ras = ra
                    des = dec.replace('.', ':', 2)
                    msg = 'ellipse(%s,%s,%g",%g",%g) # text={%s}' % (
                        ras, des, smajor, sminor, sangle + 90.0, i + 1)
                    fp9.write("%s\n" % msg)
            if ds9:
                fp9.close()
                logging.info("Wrote ds9.reg")
            dt.tag("table")
        logging.regression("CONTFLUX: %d %g" % (nsources, sumflux))

        summary = ia.summary()
        beammaj = summary['restoringbeam']['major']['value']
        beammin = summary['restoringbeam']['minor']['value']
        beamunit = summary['restoringbeam']['minor']['unit']
        beamang = summary['restoringbeam']['positionangle']['value']
        angunit = summary['restoringbeam']['positionangle']['unit']
        # @todo add to table comments?
        logging.info(" Fitted Gaussian size; NOT deconvolved source size.")
        logging.info(
            " Restoring Beam: Major axis: %10.3g %s , Minor axis: %10.3g %s , PA: %5.1f %s"
            % (beammaj, beamunit, beammin, beamunit, beamang, angunit))
        # form into a xml table

        # output is a table_bdp
        self.addoutput(slbdp)

        # instantiate a plotter for all plots made herein
        myplot = APlot(ptype=self._plot_type,
                       pmode=self._plot_mode,
                       abspath=self.dir())

        # make output png with circles marking sources found
        if mpl:
            circles = []
            nx = data.shape[1]  # data[] array was already flipud(rot90)'d
            ny = data.shape[0]  #
            for (x, y) in zip(xtab, ytab):
                circles.append([x, y, 1])
            # @todo variable name
            if logscale:
                logging.warning("LogScaling applied")
                data = data / sigma
                data = np.where(data < 0, -np.log10(1 - data),
                                +np.log10(1 + data))
            if nsources == 0:
                title = "SFind2D: 0 sources above S/N=%.1f" % (nsigma)
            elif nsources == 1:
                title = "SFind2D: 1 source (%.1f < S/N < %.1f)" % (nsigma, sn0)
            else:
                title = "SFind2D: %d sources (%.1f < S/N < %.1f)" % (
                    nsources, nsigma, sn0)
            myplot.map1(data,
                        title,
                        slbase,
                        thumbnail=True,
                        circles=circles,
                        zoom=self.getkey("zoom"))

        #---------------------------------------------------------
        # Get the figure and thumbmail names and create a caption
        #---------------------------------------------------------
        imname = myplot.getFigure(figno=myplot.figno, relative=True)
        thumbnailname = myplot.getThumbnail(figno=myplot.figno, relative=True)
        caption = "Image of input map with sources found by SFind2D overlayed in green."
        slbdp.table.description = "Table of source locations and sizes (not deconvolved)"

        #---------------------------------------------------------
        # Add finder image to the BDP
        #---------------------------------------------------------
        image = Image(images={bt.PNG: imname},
                      thumbnail=thumbnailname,
                      thumbnailtype=bt.PNG,
                      description=caption)
        slbdp.image.addimage(image, "finderimage")

        #-------------------------------------------------------------
        # Create the summary entry for the table and image
        #-------------------------------------------------------------
        self._summary["sources"] = SummaryEntry(
            [slbdp.table.serialize(),
             slbdp.image.serialize()], "SFind2D_AT", self.id(True), taskargs)

        dt.tag("done")
        dt.end()
Esempio n. 10
0
    def run(self):
        """ Main program for OverlapIntegral
        """
        dt = utils.Dtime("OverlapIntegral")
        self._summary = {}
        chans =self.getkey("chans")
        cmap = self.getkey("cmap")
        normalize = self.getkey("normalize")
        doCross = True
        doCross = False
        myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
        
        dt.tag("start")
 
        n = len(self._bdp_in)
        if n==0:
            raise Exception,"Need at least 1 input Image_BDP "
        logging.debug("Processing %d input maps" % n)
        data = range(n)     # array in which each element is placeholder for the data
        mdata = range(n)    # array to hold the max in each array
        summarytable = admit.util.Table()
        summarytable.columns = ["File name","Spectral Line ID"]
        summarytable.description = "Images used in Overlap Integral"
        for i in range(n):
            bdpfile = self._bdp_in[i].getimagefile(bt.CASA)
            if hasattr(self._bdp_in[i],"line"):
                line = getattr(self._bdp_in[i],"line")
                logging.info("Map %d: %s" % (i,line.uid))
                lineid = line.uid
            else:
                lineid="no line"
            data[i] = casautil.getdata(self.dir(bdpfile),chans)
            mdata[i] = data[i].max()
            logging.info("shape[%d] = %s with %d good data" % (i,data[i].shape,data[i].count()))
            if i==0:
                shape = data[i].shape
                outfile = self.mkext("testOI","oi")
            else:
                if shape != data[i].shape:
                    raise Exception,"Shapes not the same, cannot overlap them"
            # collect the file names and line identifications for the summary
            summarytable.addRow([bdpfile,lineid])
        logging.regression("OI: %s" % str(mdata))
                    
        if len(shape)>2 and shape[2] > 1:
            raise Exception,"Cannot handle 3D cubes yet"

        if doCross:
            # debug: produce all cross-corr's of the N input maps (expensive!)
            crossn(data, myplot)
            dt.tag("crossn")

        b1 = Image_BDP(outfile)
        self.addoutput(b1)
        b1.setkey("image", Image(images={bt.CASA:outfile}))

        dt.tag("open")

        useClone = True

        # to create an output dataset, clone the first input, but using the chans=ch0~ch1
        # e.g. using imsubimage(infile,outfile=,chans=
        if len(chans) > 0:
            # ia.regrid() doesn't have the chans=
            taskinit.ia.open(self.dir(self._bdp_in[0].getimagefile(bt.CASA)))
            taskinit.ia.regrid(outfile=self.dir(outfile))
            taskinit.ia.close()
        else:
            # 2D for now
            if not useClone:
                logging.info("OVERLAP out=%s" % outfile)
                taskinit.ia.fromimage(infile=self.dir(self._bdp_in[0].getimagefile(bt.CASA)),
                                      outfile=self.dir(outfile), overwrite=True)
                taskinit.ia.close()
        dt.tag("fromimage")


        if n==3:
            # RGB
            logging.info("RGB mode")
            out = rgb1(data[0],data[1],data[2], normalize)
        else:
            # simple sum
            out = data[0]
            for i in range(1,n):
                out = out + data[i]

        if useClone:
            casautil.putdata_raw(self.dir(outfile),out,clone=self.dir(self._bdp_in[0].getimagefile(bt.CASA)))
        else:
            taskinit.ia.open(self.dir(outfile))
            s1 = taskinit.ia.shape()
            s0 = [0,0,0,0]
            r1 = taskinit.rg.box(blc=s0,trc=s1)
            pixeldata = out.data
            pixelmask = ~out.mask
            taskinit.ia.putregion(pixels=pixeldata, pixelmask=pixelmask, region=r1)
            taskinit.ia.close()

        title = "OverlapIntegral"
        pdata = np.rot90(out.squeeze())
        logging.info("PDATA: %s" % str(pdata.shape))
        
        myplot.map1(pdata,title,"testOI",thumbnail=True,cmap=cmap)
        
        #-----------------------------
        # Populate summary information
        #-----------------------------
        taskargs = "chans=%s cmap=%s" % (chans, cmap)
        imname = ""
        thumbnailname = ""
        # uncomment when ready.
        imname = myplot.getFigure(figno=myplot.figno,relative=True)
        thumbnailname = myplot.getThumbnail(figno=myplot.figno,relative=True)
        #@todo fill in caption with more info - line names, etc.
        caption = "Need descriptive caption here"
        summaryinfo = [summarytable.serialize(),imname,thumbnailname,caption]
        self._summary["overlap"] = SummaryEntry(summaryinfo,
                                   "OverlapIntegral_AT",
                                   self.id(True),taskargs)
        #-----------------------------
        dt.tag("done")
        dt.end()
Esempio n. 11
0
    def run(self):
        """Runs the task.

           Parameters
           ----------
           None

           Returns
           -------
           None
        """

        self._summary = {}
        dt = utils.Dtime("CubeSpectrum")

        # our BDP's
        # b1  = input BDP
        # b1s = optional input CubeSpectrum
        # b1m = optional input Moment
        # b1p = optional input SourceList for positions
        # b2  = output BDP

        b1 = self._bdp_in[0]                                            # check input SpwCube (or LineCube)
        fin = b1.getimagefile(bt.CASA)
        if self._bdp_in[0]._type == bt.LINECUBE_BDP:
            use_vel = True
        else:
            use_vel = False

        sources = self.getkey("sources")
        pos = []                     # blank it first, then try and grab it from the optional bdp_in's
        cmean  = 0.0
        csigma = 0.0
        smax  = []                   # accumulate max in each spectrum for regression
        self.spec_description = []   # for summary() 

        if self._bdp_in[1] != None:                                      # check if CubeStats_BDP
            #print "BDP[1] type: ",self._bdp_in[1]._type
            if self._bdp_in[1]._type != bt.CUBESTATS_BDP:
                raise Exception,"bdp_in[1] not a CubeStats_BDP, should never happen"
            # a table (cubestats)
            b1s = self._bdp_in[1]
            pos.append(b1s.maxpos[0])
            pos.append(b1s.maxpos[1])
            logging.info('CubeStats::maxpos,val=%s,%f' % (str(b1s.maxpos),b1s.maxval))
            cmean  = b1s.mean
            csigma = b1s.sigma
            dt.tag("CubeStats-pos")
            
        if self._bdp_in[2] != None:                                      # check if Moment_BDP (probably from CubeSum)
            #print "BDP[2] type: ",self._bdp_in[2]._type
            if self._bdp_in[2]._type != bt.MOMENT_BDP:
                raise Exception,"bdp_in[2] not a Moment_BDP, should never happen"
            b1m = self._bdp_in[2]
            fim = b1m.getimagefile(bt.CASA)
            pos1,maxval = self.maxpos_im(self.dir(fim))     # compute maxpos, since it is not in bdp (yet)
            logging.info('CubeSum::maxpos,val=%s,%f' % (str(pos1),maxval))
            pos.append(pos1[0])
            pos.append(pos1[1])
            dt.tag("Moment-pos")

        if self._bdp_in[3] != None:                                      # check if SourceList
            #print "BDP[3] type: ",self._bdp_in[3]._type
            # a table (SourceList)
            b1p = self._bdp_in[3]
            ra   = b1p.table.getFullColumnByName("RA")
            dec  = b1p.table.getFullColumnByName("DEC")
            peak = b1p.table.getFullColumnByName("Peak")
            if sources == []:
                # use the whole SourceList
                for (r,d,p) in zip(ra,dec,peak):
                  rdc = convert_sexa(r,d)
                  pos.append(rdc[0])
                  pos.append(rdc[1])
                  logging.info('SourceList::maxpos,val=%s,%f' % (str(rdc),p))
            else:                  
                # select specific ones from the source list
                for ipos in sources:
                    if ipos < len(ra):
                        radec =  convert_sexa(ra[ipos],dec[ipos])
                        pos.append(radec[0])
                        pos.append(radec[1])
                        logging.info('SourceList::maxpos,val=%s,%f' % (str(radec),peak[ipos]))
                    else:
                        logging.warning('Skipping illegal source number %d' % ipos)

            dt.tag("SourceList-pos")

        # if pos[] still blank, use the AT keyword.
        if len(pos) == 0:
            pos = self.getkey("pos")

        # if still none, try the map center
        if len(pos) == 0:
            # @todo  this could result in a masked pixel and cause further havoc
            # @todo  could also take the reference pixel, but that could be outside image
            taskinit.ia.open(self.dir(fin))
            s = taskinit.ia.summary()
            pos = [int(s['shape'][0])/2, int(s['shape'][1])/2]
            logging.warning("No input positions supplied, map center choosen: %s" % str(pos))
            dt.tag("map-center")

        # exhausted all sources where pos[] can be set; if still zero, bail out
        if len(pos) == 0:
            raise Exception,"No positions found from input BDP's or pos="

        # convert this regular list to a list of tuples with duplicates removed
        # sadly the order is lost.
        pos = list(set(zip(pos[0::2],pos[1::2])))
        npos = len(pos)
        
        dt.tag("open")

        bdp_name = self.mkext(fin,"csp")
        b2 = CubeSpectrum_BDP(bdp_name)
        self.addoutput(b2)

        imval  = range(npos)                             # spectra, one for each pos (placeholder)
        planes = range(npos)                             # labels for the tables (placeholder)
        images = {}                                      # png's accumulated

        for i in range(npos):                            # loop over pos, they can have mixed types now
            sd = []
            caption = "Spectrum"
            xpos = pos[i][0]
            ypos = pos[i][1]
            if type(xpos) != type(ypos):
                print "POS:",xpos,ypos
                raise Exception,"position pair not of the same type"
            if type(xpos)==int:
                # for integers, boxes are allowed, even multiple
                box = '%d,%d,%d,%d' % (xpos,ypos,xpos,ypos)
                # convention for summary is (box)
                cbox = '(%d,%d,%d,%d)' % (xpos,ypos,xpos,ypos)
                # use extend here, not append, we want individual values in a list
                sd.extend([xpos,ypos,cbox])
                caption = "Average Spectrum at %s" % cbox
                if False:
                    # this will fail on 3D cubes (see CAS-7648)
                    imval[i] = casa.imval(self.dir(fin),box=box)
                else:
                    # work around that CAS-7648 bug 
                    # another approach is the ia.getprofile(), see CubeStats, this will
                    # also integrate over regions, imval will not (!!!)
                    region = 'centerbox[[%dpix,%dpix],[1pix,1pix]]' % (xpos,ypos)
                    caption = "Average Spectrum at %s" % region
                    imval[i] = casa.imval(self.dir(fin),region=region)
            elif type(xpos)==str:
                # this is tricky, to stay under 1 pixel , or you get a 2x2 back.
                region = 'centerbox[[%s,%s],[1pix,1pix]]' % (xpos,ypos)
                caption = "Average Spectrum at %s" % region
                sd.extend([xpos,ypos,region])
                imval[i] = casa.imval(self.dir(fin),region=region)
            else:
                print "Data type: ",type(xpos)
                raise Exception,"Data type for region not handled"
            dt.tag("imval")

            flux  = imval[i]['data']
            if len(flux.shape) > 1:     # rare case if we step on a boundary between cells?
                logging.warning("source %d has spectrum shape %s: averaging the spectra" % (i,repr(flux.shape)))
                flux = np.average(flux,axis=0)
            logging.debug('minmax: %f %f %d' % (flux.min(),flux.max(),len(flux)))
            smax.append(flux.max())
            if i==0:                                              # for first point record few extra things
                if len(imval[i]['coords'].shape) == 2:                   # normal case: 1 pixel
                    freqs = imval[i]['coords'].transpose()[2]/1e9        # convert to GHz  @todo: input units ok?
                elif len(imval[i]['coords'].shape) == 3:                 # rare case if > 1 point in imval()
                    freqs = imval[i]['coords'][0].transpose()[2]/1e9     # convert to GHz  @todo: input units ok?
                else:
                    logging.fatal("bad shape %s in freq return from imval - SHOULD NEVER HAPPEN" % imval[i]['coords'].shape)
                chans = np.arange(len(freqs))                     # channels 0..nchans-1
                unit  = imval[i]['unit']
                restfreq = casa.imhead(self.dir(fin),mode="get",hdkey="restfreq")['value']/1e9    # in GHz
                dt.tag("imhead")
                vel   = (1-freqs/restfreq)*utils.c                #  @todo : use a function (and what about relativistic?)

            # construct the Table for CubeSpectrum_BDP 
            # @todo note data needs to be a tuple, later to be column_stack'd
            labels = ["channel" ,"frequency" ,"flux" ]
            units  = ["number"  ,"GHz"       ,unit   ]
            data   = (chans     ,freqs       ,flux   )

            if i==0:
                # plane 0 : we are allowing a multiplane table, so the first plane is special
                table = Table(columns=labels,units=units,data=np.column_stack(data),planes=["0"])
            else:
                # planes 1,2,3.... are stacked onto the previous one
                table.addPlane(np.column_stack(data),"%d" % i)

            # example plot , one per position for now
            if use_vel:
                x = vel
                xlab = 'VLSR (km/s)'
            else:
                x = chans
                xlab  = 'Channel'
            y = [flux]
            sd.append(xlab)
            if type(xpos)==int:
                # grab the RA/DEC... kludgy
                h = casa.imstat(self.dir(fin),box=box)
                ra  = h['blcf'].split(',')[0]
                dec = h['blcf'].split(',')[1]
                title = '%s %d @ %d,%d = %s,%s' % (bdp_name,i,xpos,ypos,ra,dec)
            else:
                title = '%s %d @ %s,%s' % (bdp_name,i,xpos,ypos)       # or use box, once we allow non-points

            myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode, abspath=self.dir())
            ylab  = 'Flux (%s)' % unit
            p1 = "%s_%d" % (bdp_name,i)
            myplot.plotter(x,y,title,p1,xlab=xlab,ylab=ylab,thumbnail=True)
            # Why not use p1 as the key?
            ii = images["pos%d" % i] = myplot.getFigure(figno=myplot.figno,relative=True)
            thumbname = myplot.getThumbnail(figno=myplot.figno,relative=True)
            sd.extend([ii, thumbname, caption, fin])
            self.spec_description.append(sd)

        logging.regression("CSP: %s" % str(smax))

        image = Image(images=images, description="CubeSpectrum")
        b2.setkey("image",image)
        b2.setkey("table",table)
        b2.setkey("sigma",csigma)   # TODO: not always available
        b2.setkey("mean",cmean)     # TODO: not always available

        if True:
            #       @todo     only first plane due to limitation in exportTable()
            islash = bdp_name.find('/')
            if islash < 0:
                tabname = self.dir("testCubeSpectrum.tab")
            else:
                tabname = self.dir(bdp_name[:islash] + "/testCubeSpectrum.tab")
            table.exportTable(tabname,cols=["frequency" ,"flux"])
        dt.tag("done")
        # For a single spectrum this is
        # SummaryEntry([[data for spec1]], "CubeSpectrum_AT",taskid)
        # For multiple spectra this is
        # SummaryEntry([[data for spec1],[data for spec2],...], "CubeSpectrum_AT",taskid)
        self._summary["spectra"] = SummaryEntry(self.spec_description,"CubeSpectrum_AT",self.id(True))
        taskargs = "pos="+str(pos)
        taskargs += '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; <span style="background-color:white">&nbsp;' + fin.split('/')[0] + '&nbsp;</span>'
        for v in self._summary:
            self._summary[v].setTaskArgs(taskargs)
        dt.tag("summary")
        dt.end()
Esempio n. 12
0
    def run(self):
        """Runs the task.

           Parameters
           ----------
           None

           Returns
           -------
           None
        """

        self._summary = {}
        dt = utils.Dtime("CubeSpectrum")
        seed = self.getkey("seed")
        if seed <= 0:
            np.random.seed()
        else:
            np.random.seed(seed)
        #print "RANDOM.GET_STATE:",np.random.get_state()
        contin = self.getkey("contin")
        rms = 1.0        # not a user parameter, we do all spectra in S/N space
        f0 = self.getkey("freq")     # central frequency in band
        df = self.getkey("delta") / 1000.0      # channel width (in GHz)
        nspectra = self.getkey("nspectra")
        taskargs = " contin=%f freq=%f delta=%f nspectra=%f " % (contin,f0,df,nspectra)
        spec = range(nspectra)
        dt.tag("start")
        if self.getkey("file") != "":
            print "READING spectrum from",self.getkey("file") 
            (freq, spec[0]) = getspec(self.getkey("file"))
            nchan = len(freq)
            print "Spectrum %d chans from %f to %f: min/max = %f %f" % (nchan, freq.min(), freq.max(), spec[0].min(), spec[0].max())
            # @todo nspectra>1 not tested
            for i in range(1,nspectra):
                spec[i] = deepcopy(spec[0])
            dt.tag("getspec")                
        else:
            nchan = self.getkey("nchan")
            freq = np.arange(nchan, dtype=np.float64)
            center = int(nchan/2)
            for i in range(nchan):
                freq[i] = f0 + (float((i - center)) * df)
            for i in range(nspectra):
                spec[i] = np.zeros(nchan)
        chans = np.arange(nchan)
        taskargs += " nchan = %d" % nchan
        for i in range(nspectra):
            if seed >= 0:
                spec[i] += np.random.normal(contin, rms, nchan)
#            print "MEAN/STD",spec[i].mean(),spec[i].std()
        lines = self.getkey("lines")
        sls = SpectralLineSearch(False)
        for item in self.getkey("transitions"):
            kw = {"include_only_nrao" : True,
                  "line_strengths": ["ls1", "ls2"],
                  "energy_levels" : ["el2", "el4"],
                  "fel" : True,
                  "species" : item[0]
                  }
            results = sls.search(item[1][0], item[1][1], "off", **kw)
            # look at line strengths
            if len(results) > 0:
                mx = 0.0
                indx = -1
                for i in range(len(results)):
                    if results[i].getkey("linestrength") > mx:
                        indx = i
                        mx = results[i].getkey("linestrength")
                for res in results:
                    if mx > 0.0:
                        lines.append([item[2] * res.getkey("linestrength") / mx, res.getkey("frequency") +
                                      utils.veltofreq(item[4], res.getkey("frequency")), item[3]])
                    else:
                        lines.append([item[2], res.getkey("frequency") + utils.veltofreq(item[4], 
                                      res.getkey("frequency")), item[3]])
        for item in lines:
            for i in range(nspectra):
                spec[i] += utils.gaussian1D(freq, item[0], item[1], utils.veltofreq(item[2], item[1]))

        if self.getkey("hanning"):
            for i in range(nspectra):
                filter = Filter1D.Filter1D(spec[i], "hanning", **{"width" : 3})
                spec[i] = filter.run()
            dt.tag("hanning")
        center = int(nchan/2)
        dt.tag("open")
        bdp_name = self.mkext("Genspec","csp")
        b2 = CubeSpectrum_BDP(bdp_name)
        self.addoutput(b2)
        images = {}                                      # png's accumulated
        for i in range(nspectra):
            sd = []
            caption = "Generated Spectrum %d" % i
            # construct the Table for CubeSpectrum_BDP 
            # @todo note data needs to be a tuple, later to be column_stack'd
            labels = ["channel" ,"frequency" ,"flux" ]
            units  = ["number"  ,"GHz"       ,""   ]
            data   = (chans     ,freq       ,spec[i]   )

            # plane 0 : we are allowing a multiplane table, so the first plane is special
            if i==0:
                table = Table(columns=labels,units=units,data=np.column_stack(data),planes=["0"])
            else:
                table.addPlane(np.column_stack(data),"%d" % i)
            # example plot , one per position for now
            x = chans
            xlab  = 'Channel'
            y = [spec[i]]
            sd.append(xlab)

            myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode, abspath=self.dir())
            ylab  = 'Flux'
            p1 = "%s_%d" % (bdp_name,i)
            myplot.plotter(x,y,"",p1,xlab=xlab,ylab=ylab,thumbnail=True)
            # Why not use p1 as the key?
            ii = images["pos%d" % i] = myplot.getFigure(figno=myplot.figno,relative=True)
            thumbname = myplot.getThumbnail(figno=myplot.figno,relative=True)

            image = Image(images=images, description="CubeSpectrum")
            sd.extend([ii, thumbname, caption])
            self.spec_description.append(sd)

        self._summary["spectra"] = SummaryEntry(self.spec_description,"GenerateSpectrum_AT",self.id(True), taskargs)
        

        dt.tag("table")
        b2.setkey("image",image)
        b2.setkey("table",table)
        b2.setkey("sigma",rms)
        b2.setkey("mean",contin)

        dt.tag("done")
        dt.end()
Esempio n. 13
0
class PVCorr_AT(AT):
    """PV correllation in a PVSlice map.

       PVCorr_AT computes a cross-correlation of a feature in a PVSlice with the 
       whole PVSlice, looking for repeated patterns to detect spectral lines. Much
       like the output from CubeStats_AT and CubeSpectrum_AT, this table can then be
       given to LineID_AT to attempt a line identification.

       See also :ref:`PVCorr-AT-Design` for the design document.

       **Keywords**

          **numsigma**: float 
            Minimum intensity, in terms of sigma, above which a selected portion
            of the spectrum will be used for cross-correlation.
            Default: 3.0.

          **range**: integer list
            If given, it has to be a list with 2 channel numbers, the first and last channel
            (0-based channels) of the range which to use for the cross-correlation.
            Default: [].

          **nchan**: integer
            The number of channels (in case range= was not used) that defines the line.
            The line is centers on the strongest point in the input PV-map.
            If 0 is given, it will watershed down from the strongest line.
            Default: 0.

       **Input BDPs**

          **PVSlice_BDP**: count: 1
            Input PV Slice. As created with e.g. PVSlice_AT.

          **CubeStats_BDP**: count: 1
            Input cube statistics from which the RMS is taken.

       **Output BDPs**

          **PVCorr_BDP**: count: 1
            Output table.
       

    """

    def __init__(self,**keyval):
        keys = {"numsigma" : 3.0,    # N-sigma
                "range"    : [],     # optional channel range
                "nchan"    : 0,      # number of channels around the channel where the peak is
               }
        AT.__init__(self,keys,keyval)
        self._version = "1.0.1"
        self.set_bdp_in([(Image_BDP,1,bt.REQUIRED),
                         # @todo optional 2nd PVSlice can be used to draw the template from
                         (CubeStats_BDP,1,bt.REQUIRED)])
        self.set_bdp_out([(PVCorr_BDP,1)])

    def summary(self):
        """Returns the summary dictionary from the AT, for merging
           into the ADMIT Summary object.

           PVCorr_AT adds the following to ADMIT summary:

           .. table::
              :class: borderless

              +----------+----------+-----------------------------------+
              |   Key    | type     |    Description                    |
              +==========+==========+===================================+
              | pvcorr   | list     |   correlation diagram             |
              +----------+----------+-----------------------------------+
           
           Parameters
           ----------
           None

           Returns
           -------
           dict
               Dictionary of SummaryEntry
        """
        if hasattr(self,"_summary"):
            return self._summary
        else:
            return {}

    def run(self):
        dt = utils.Dtime("PVCorr")
        self._summary = {}

        numsigma = self.getkey("numsigma")
        mode = 1                                            # PV corr mode (1,2,3)
        normalize = True
        # normalize = False

        b1 = self._bdp_in[0]                                # PVSlice_BDP
        fin = b1.getimagefile(bt.CASA)                      # CASA image
        data = casautil.getdata_raw(self.dir(fin))          # grab the data as a numpy array
        self.myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())
        #print 'DATA[0,0]:',data[0,0]
        #print 'pv shape: ',data.shape
        npos = data.shape[0]
        nvel = data.shape[1]
        dt.tag("getdata")

        b2 = self._bdp_in[1]                                # CubeStats_BDP
        sigma = b2.sigma                                    # global sigma in the cube
        cutoff = numsigma * sigma
        freq =  b2.table.getColumnByName("frequency")

        chans = self.getkey("range")                        # range of channels, if used
        if len(chans) > 0:
            if len(chans) != 2:
                logging.fatal("range=%s" % chans)
                raise Exception,"range= needs two values, left and right (inclusive) channel"
            ch0 = chans[0]
            ch1 = chans[1]
        else:
            nchan = self.getkey("nchan")
            imstat0 = casa.imstat(self.dir(fin))         # @todo   can use data[] now
            xmaxpos = imstat0['maxpos'][0]
            ymaxpos = imstat0['maxpos'][1]
            logging.info("MAXPOS-VEL %s %g" % (str(imstat0['maxpos']),imstat0['max'][0]))
            if nchan > 0:
                # expand around it, later ch0,ch1 will be checked for running off the edge
                ch0 = ymaxpos - nchan/2
                ch1 = ymaxpos + nchan/2
            else:
                # watershed down to find ch0 and ch1 ?
                # this doesn't work well in crowded areas
                ch0 = ymaxpos
                ch1 = ymaxpos
                spmax = data.max(axis=0)
                k = spmax.argmax()
                n = len(spmax)
                logging.debug('spmax %s %d %g' % (str(spmax.shape),k,spmax[k]))
                # find lower cutoff
                for i in range(n):
                    ch0 = ymaxpos - i
                    if ch0<0: break
                    if spmax[ch0] < cutoff: break
                ch0 = ch0 + 1
                # find higher cutoff
                for i in range(n):
                    ch1 = ymaxpos + i
                    if ch1==n: break
                    if spmax[ch1] < cutoff: break
                ch1 = ch1 - 1
            dt.tag("imstat")

        
        bdp_name = self.mkext(fin,"pvc")                    # output PVCorr_BDP
        b3 = PVCorr_BDP(bdp_name)
        self.addoutput(b3)

        if ch0<0 or ch1>=nvel:
            # this probably only happens to small cubes (problematic for PVCorr)
            # or when the strongest line is really close to the edge of the band
            # (which is probably ok)
            if ch0<0 and ch1>=nvel:
                logging.warning("Serious issues with the size of this cube")
            if ch0<0: 
                logging.warning("Resetting ch0 edge to 0")
                ch0=0
            if ch1>=nvel: 
                ch1=nvel-1
                logging.warning("Resetting ch1 edge to the maximum")

        if ch0 > ch1:
            logging.warning("Sanity swapping ch0,1 due to likely noisy data")
            ch0,ch1 = ch1,ch0

        if mode == 1:
            out,rms = mode1(data, ch0, ch1, cutoff, normalize)
            corr = out
        elif mode == 2:
            out,rms = mode2(data, ch0, ch1, cutoff)             # slower 2D version
            corr = out[npos/2,:]                                # center cut, but could also try feature detection
        elif mode == 3:
            out,rms = self.mode3(data, ch0, ch1, cutoff)        # Doug's faster 2D version
            # get the peak of each column
            corr = np.amax(out,axis=0)
        # print "PVCORR SHAPE ",corr.shape," mode", mode
        if len(corr) > 0:
            # print "SHAPE out:",out.shape,corr.shape,npos/2
            ch  = range(len(corr))
            if len(corr) != len(freq):
                logging.fatal("ch (%d) and freq (%d) do not have same size" % (len(corr),len(freq)))
                raise Exception,"ch and freq do not have same dimension"
            dt.tag("mode")
            labels = ["channel",   "frequency",  "pvcorr"]
            units  = ["number",    "GHz",        "N/A"]
            data   = (ch,          freq,         corr)
            table = Table(columns=labels,units=units,data=np.column_stack(data))
        else:
            # still construct a table, but with no rows
            labels = ["channel",   "frequency",  "pvcorr"]
            units  = ["number",    "GHz",        "N/A"]
            table = Table(columns=labels,units=units)
        b3.setkey("table",table)
        b3.setkey("sigma",float(rms))
        dt.tag("table")
        if len(corr) > 0:
            table.exportTable(self.dir("testPVCorr.tab"),cols=['frequency','pvcorr'])
            test_single(ch,freq,corr)

            logging.regression("PVC: %f %f" % (corr.min(),corr.max()))

            title = 'PVCorr mode=%d [%d,%d] %g' % (mode,ch0,ch1,cutoff)
            x = ch
            xlab = 'Channel'
            y = [corr]
            ylab = 'PV Correlation'
            p1 = "%s_%d" % (bdp_name,0)
            segp = []
            segp.append( [0,len(ch),0.0,0.0] )
            segp.append( [0,len(ch),3.0*rms, 3.0*rms] )
            # @todo:   in principle we know with given noise and  size of box, what the sigma in pvcorr should be
            self.myplot.plotter(x,y,title,figname=p1,xlab=xlab,ylab=ylab,segments=segp, thumbnail=True)

            #out1 = np.rot90 (data.reshape((nvel,npos)) )
            if mode > 1:
                self.myplot.map1(data=out,title="testing PVCorr_AT:  mode%d"%mode,figname='testPVCorr', thumbnail=True)

            taskargs = "numsigma=%.1f range=[%d,%d]" % (numsigma,ch0,ch1)
            caption = "Position-velocity correlation plot"
            thumbname = self.myplot.getThumbnail(figno=self.myplot.figno,relative=True)
            figname   = self.myplot.getFigure(figno=self.myplot.figno,relative=True)
            image = Image(images={bt.PNG: figname}, thumbnail=thumbname, thumbnailtype=bt.PNG,
                description=caption)
            b3.image.addimage(image, "pvcorr")

            self._summary["pvcorr"] = SummaryEntry([figname,thumbname,caption,fin],"PVCorr_AT",self.id(True),taskargs)
        else:
            self._summary["pvcorr"] = None
            logging.warning("No summary")
            logging.regression("PVC: -1")

        dt.tag("done")
        dt.end()

    def mode3(self, data, v0, v1, dmin=0.0):
        """ v0..v1 (both inclusive) are channel selections
            threshold on dmin
            @todo the frequency axis is not properly calibrated here
            @todo a full 2D is slow, we only need the 1D version
        """
        print "PVCorr mode3: v0,1=",v0,v1
        smin = data.min()
        #s = data[v0:v1+1,:]
        s = data[:,v0:v1+1]
        if dmin==0.0:
            logging.warning("Using all data in crosscorr")
            f = s
        else:
            f = np.where(s>dmin,s,0)
        # find out where the zeros are
        temp = np.amax(f,axis=1)
        nz = np.nonzero(temp)
        # trim the kernel in the y direction, removing rows that are all 0.0
        f = f[nz[0][0]:nz[0][-1],:]
        f0 = np.where(s>smin,1,0)
        f1 = np.where(s>dmin,1,0)
        fmax = f.max()
        print "PVCorr mode3:",f1.sum(),'/',f0.sum(),'min/max',smin,fmax
        out =  scipy.signal.correlate2d(data,f,mode='same')
        self.myplot.map1(data=f,title="PVCorr 2D Kernel",figname='PVCorrKernel', thumbnail=True)

        print 'PVCorr min/max:',out.min(),out.max()
        n1,m1,s1,n2,m2,s2 = stats.mystats(out.flatten())
        print "PVCorr stats", n1,m1,s1,n2,m2,s2
        rms_est = s2/np.sqrt(f1.sum())
        return out,rms_est
Esempio n. 14
0
    def run(self):
        """ The run method creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        dt = utils.Dtime("CubeSum")  # tagging time
        self._summary = {}  # an ADMIT summary will be created here

        numsigma = self.getkey("numsigma")  # get the input keys
        sigma = self.getkey("sigma")
        use_lines = self.getkey("linesum")
        pad = self.getkey("pad")

        b1 = self._bdp_in[0]  # spw image cube
        b1a = self._bdp_in[1]  # cubestats (optional)
        b1b = self._bdp_in[2]  # linelist  (optional)

        f1 = b1.getimagefile(bt.CASA)
        taskinit.ia.open(self.dir(f1))
        s = taskinit.ia.summary()
        nchan = s['shape'][2]

        if b1b != None:
            ch0 = b1b.table.getFullColumnByName("startchan")
            ch1 = b1b.table.getFullColumnByName("endchan")
            s = Segments(ch0, ch1, nchan=nchan)
            # @todo something isn't merging here as i would have expected,
            #       e.g. test0.fits [(16, 32), (16, 30), (16, 29)]
            if pad > 0:
                for (c0, c1) in s.getsegmentsastuples():
                    s.append([c0 - pad, c0])
                    s.append([c1, c1 + pad])
            s.merge()
            s.recalcmask()
            # print "PJT segments:",s.getsegmentsastuples()
            ns = len(s.getsegmentsastuples())
            chans = s.chans(not use_lines)
            if use_lines:
                msum = s.getmask()
            else:
                msum = 1 - s.getmask()
            logging.info("Read %d segments" % ns)
            # print "chans",chans
            # print "msum",msum

        #  from a deprecated keyword, but kept here to pre-smooth the spectrum before clipping
        #  examples are:  ['boxcar',3]    ['gaussian',7]    ['hanning',5]
        smooth = []

        sig_const = False  # figure out if sigma is taken as constant in the cube
        if b1a == None:  # if no 2nd BDP was given, sigma needs to be specified
            if sigma <= 0.0:
                raise Exception, "Neither user-supplied sigma nor CubeStats_BDP input given. One is required."
            else:
                sig_const = True  # and is constant
        else:
            if sigma > 0:
                sigma = b1a.get("sigma")
                sig_const = True

        if sig_const:
            logging.info("Using constant sigma = %f" % sigma)
        else:
            logging.info("Using varying sigma per plane")

        infile = b1.getimagefile(bt.CASA)  # ADMIT filename of the image (cube)
        bdp_name = self.mkext(
            infile, 'csm'
        )  # morph to the new output name with replaced extension 'csm'
        image_out = self.dir(bdp_name)  # absolute filename

        args = {
            "imagename": self.dir(infile)
        }  # assemble arguments for immoments()
        args["moments"] = 0  # only need moments=0 (or [0] is ok as well)
        args["outfile"] = image_out  # note full pathname

        dt.tag("start")

        if sig_const:
            args["excludepix"] = [-numsigma * sigma,
                                  numsigma * sigma]  # single global sigma
            if b1b != None:
                # print "PJT: ",chans
                args["chans"] = chans
        else:
            # @todo    in this section bad channels can cause a fully masked cubesum = bad
            # cubestats input
            sigma_array = b1a.table.getColumnByName(
                "sigma")  # channel dependent sigma
            sigma_pos = sigma_array[np.where(sigma_array > 0)]
            smin = sigma_pos.min()
            smax = sigma_pos.max()
            logging.info("sigma varies from %f to %f" % (smin, smax))
            maxval = b1a.get("maxval")  # max in cube
            nzeros = len(np.where(sigma_array <= 0.0)[0])  # check bad channels
            if nzeros > 0:
                logging.warning("There are %d NaN channels " % nzeros)
                # raise Exception,"need to recode CubeSum or use constant sigma"
            dt.tag("grab_sig")

            if len(smooth) > 0:
                # see also LineID and others
                filter = Filter1D.Filter1D(
                    sigma_array, smooth[0],
                    **Filter1D.Filter1D.convertargs(smooth))
                sigma_array = filter.run()
                dt.tag("smooth_sig")
            # create a CASA image copy for making the mirror sigma cube to mask against
            file = self.dir(infile)
            mask = file + "_mask"
            taskinit.ia.fromimage(infile=file, outfile=mask)
            nx = taskinit.ia.shape()[0]
            ny = taskinit.ia.shape()[1]
            nchan = taskinit.ia.shape()[2]
            taskinit.ia.fromshape(shape=[nx, ny, 1])
            plane = taskinit.ia.getchunk(
                [0, 0, 0],
                [-1, -1, 0])  # convenience plane for masking operation
            dt.tag("mask_sig")

            taskinit.ia.open(mask)
            dt.tag("open_mask")

            count = 0
            for i in range(nchan):
                if sigma_array[i] > 0:
                    if b1b != None:
                        if msum[i]:
                            taskinit.ia.putchunk(plane * 0 + sigma_array[i],
                                                 blc=[0, 0, i, -1])
                            count = count + 1
                        else:
                            taskinit.ia.putchunk(plane * 0 + maxval,
                                                 blc=[0, 0, i, -1])
                    else:
                        taskinit.ia.putchunk(plane * 0 + sigma_array[i],
                                             blc=[0, 0, i, -1])
                        count = count + 1
                else:
                    taskinit.ia.putchunk(plane * 0 + maxval, blc=[0, 0, i, -1])
            taskinit.ia.close()
            logging.info("%d/%d channels used for CubeSum" % (count, nchan))
            dt.tag("close_mask")

            names = [file, mask]
            tmp = file + '.tmp'
            if numsigma == 0.0:
                # hopefully this will also make use of the mask
                exp = "IM0[IM1<%f]" % (0.99 * maxval)
            else:
                exp = "IM0[abs(IM0/IM1)>%f]" % (numsigma)
            # print "PJT: exp",exp
            casa.immath(mode='evalexpr',
                        imagename=names,
                        expr=exp,
                        outfile=tmp)
            args["imagename"] = tmp
            dt.tag("immath")

        casa.immoments(**args)
        dt.tag("immoments")

        if sig_const is False:
            # get rid of temporary files
            utils.remove(tmp)
            utils.remove(mask)

        # get the flux
        taskinit.ia.open(image_out)
        st = taskinit.ia.statistics()
        taskinit.ia.close()
        dt.tag("statistics")
        # report that flux, but there's no way to get the units from casa it seems
        # ia.summary()['unit'] is usually 'Jy/beam.km/s' for ALMA
        # imstat() does seem to know it.
        if st.has_key('flux'):
            rdata = [st['flux'][0], st['sum'][0]]
            logging.info("Total flux: %f (sum=%f)" % (st['flux'], st['sum']))
        else:
            rdata = [st['sum'][0]]
            logging.info("Sum: %f (beam parameters missing)" % (st['sum']))
        logging.regression("CSM: %s" % str(rdata))

        # Create two output images for html and their thumbnails, too
        implot = ImPlot(ptype=self._plot_type,
                        pmode=self._plot_mode,
                        abspath=self.dir())
        implot.plotter(rasterfile=bdp_name, figname=bdp_name, colorwedge=True)
        figname = implot.getFigure(figno=implot.figno, relative=True)
        thumbname = implot.getThumbnail(figno=implot.figno, relative=True)

        dt.tag("implot")

        thumbtype = bt.PNG  # really should be correlated with self._plot_type!!

        # 2. Create a histogram of the map data
        # get the data for a histogram
        data = casautil.getdata(image_out, zeromask=True).compressed()
        dt.tag("getdata")

        # get the label for the x axis
        bunit = casa.imhead(imagename=image_out, mode="get", hdkey="bunit")

        # Make the histogram plot
        # Since we give abspath in the constructor, figname should be relative
        myplot = APlot(ptype=self._plot_type,
                       pmode=self._plot_mode,
                       abspath=self.dir())
        auxname = bdp_name + "_histo"
        auxtype = bt.PNG  # really should be correlated with self._plot_type!!
        myplot.histogram(columns=data,
                         figname=auxname,
                         xlab=bunit,
                         ylab="Count",
                         title="Histogram of CubeSum: %s" % (bdp_name),
                         thumbnail=True)
        auxname = myplot.getFigure(figno=myplot.figno, relative=True)
        auxthumb = myplot.getThumbnail(figno=myplot.figno, relative=True)

        images = {bt.CASA: bdp_name, bt.PNG: figname}
        casaimage = Image(images=images,
                          auxiliary=auxname,
                          auxtype=auxtype,
                          thumbnail=thumbname,
                          thumbnailtype=thumbtype)

        if hasattr(b1, "line"):  # SpwCube doesn't have Line
            line = deepcopy(getattr(b1, "line"))
            if type(line) != type(Line):
                line = Line(name="Undetermined")
        else:
            line = Line(name="Undetermined")  # fake a Line if there wasn't one

        self.addoutput(
            Moment_BDP(xmlFile=bdp_name,
                       moment=0,
                       image=deepcopy(casaimage),
                       line=line))
        imcaption = "Integral (moment 0) of all emission in image cube"
        auxcaption = "Histogram of cube sum for image cube"
        taskargs = "numsigma=%.1f sigma=%g smooth=%s" % (numsigma, sigma,
                                                         str(smooth))
        self._summary["cubesum"] = SummaryEntry([
            figname, thumbname, imcaption, auxname, auxthumb, auxcaption,
            bdp_name, infile
        ], "CubeSum_AT", self.id(True), taskargs)

        dt.tag("done")
        dt.end()
Esempio n. 15
0
class PVCorr_AT(AT):
    """PV correllation in a PVSlice map.

       PVCorr_AT computes a cross-correlation of a feature in a PVSlice with the 
       whole PVSlice, looking for repeated patterns to detect spectral lines. Much
       like the output from CubeStats_AT and CubeSpectrum_AT, this table can then be
       given to LineID_AT to attempt a line identification.

       See also :ref:`PVCorr-AT-Design` for the design document.

       **Keywords**

          **numsigma**: float 
            Minimum intensity, in terms of sigma, above which a selected portion
            of the spectrum will be used for cross-correlation.
            Default: 3.0.

          **range**: integer list
            If given, it has to be a list with 2 channel numbers, the first and last channel
            (0-based channels) of the range which to use for the cross-correlation.
            Default: [].

          **nchan**: integer
            The number of channels (in case range= was not used) that defines the line.
            The line is centers on the strongest point in the input PV-map.
            If 0 is given, it will watershed down from the strongest line.
            Default: 0.

       **Input BDPs**

          **PVSlice_BDP**: count: 1
            Input PV Slice. As created with e.g. PVSlice_AT.

          **CubeStats_BDP**: count: 1
            Input cube statistics from which the RMS is taken.

       **Output BDPs**

          **PVCorr_BDP**: count: 1
            Output table.
       

    """
    def __init__(self, **keyval):
        keys = {
            "numsigma": 3.0,  # N-sigma
            "range": [],  # optional channel range
            "nchan":
            0,  # number of channels around the channel where the peak is
        }
        AT.__init__(self, keys, keyval)
        self._version = "1.0.1"
        self.set_bdp_in([
            (Image_BDP, 1, bt.REQUIRED),
            # @todo optional 2nd PVSlice can be used to draw the template from
            (CubeStats_BDP, 1, bt.REQUIRED)
        ])
        self.set_bdp_out([(PVCorr_BDP, 1)])

    def summary(self):
        """Returns the summary dictionary from the AT, for merging
           into the ADMIT Summary object.

           PVCorr_AT adds the following to ADMIT summary:

           .. table::
              :class: borderless

              +----------+----------+-----------------------------------+
              |   Key    | type     |    Description                    |
              +==========+==========+===================================+
              | pvcorr   | list     |   correlation diagram             |
              +----------+----------+-----------------------------------+
           
           Parameters
           ----------
           None

           Returns
           -------
           dict
               Dictionary of SummaryEntry
        """
        if hasattr(self, "_summary"):
            return self._summary
        else:
            return {}

    def run(self):
        dt = utils.Dtime("PVCorr")
        self._summary = {}

        numsigma = self.getkey("numsigma")
        mode = 1  # PV corr mode (1,2,3)
        normalize = True
        # normalize = False

        b1 = self._bdp_in[0]  # PVSlice_BDP
        fin = b1.getimagefile(bt.CASA)  # CASA image
        data = casautil.getdata_raw(
            self.dir(fin))  # grab the data as a numpy array
        self.myplot = APlot(ptype=self._plot_type,
                            pmode=self._plot_mode,
                            abspath=self.dir())
        #print 'DATA[0,0]:',data[0,0]
        #print 'pv shape: ',data.shape
        npos = data.shape[0]
        nvel = data.shape[1]
        dt.tag("getdata")

        b2 = self._bdp_in[1]  # CubeStats_BDP
        sigma = b2.sigma  # global sigma in the cube
        cutoff = numsigma * sigma
        freq = b2.table.getColumnByName("frequency")

        chans = self.getkey("range")  # range of channels, if used
        if len(chans) > 0:
            if len(chans) != 2:
                logging.fatal("range=%s" % chans)
                raise Exception, "range= needs two values, left and right (inclusive) channel"
            ch0 = chans[0]
            ch1 = chans[1]
        else:
            nchan = self.getkey("nchan")
            imstat0 = casa.imstat(self.dir(fin))  # @todo   can use data[] now
            xmaxpos = imstat0['maxpos'][0]
            ymaxpos = imstat0['maxpos'][1]
            logging.info("MAXPOS-VEL %s %g" %
                         (str(imstat0['maxpos']), imstat0['max'][0]))
            if nchan > 0:
                # expand around it, later ch0,ch1 will be checked for running off the edge
                ch0 = ymaxpos - nchan / 2
                ch1 = ymaxpos + nchan / 2
            else:
                # watershed down to find ch0 and ch1 ?
                # this doesn't work well in crowded areas
                ch0 = ymaxpos
                ch1 = ymaxpos
                spmax = data.max(axis=0)
                k = spmax.argmax()
                n = len(spmax)
                logging.debug('spmax %s %d %g' %
                              (str(spmax.shape), k, spmax[k]))
                # find lower cutoff
                for i in range(n):
                    ch0 = ymaxpos - i
                    if ch0 < 0: break
                    if spmax[ch0] < cutoff: break
                ch0 = ch0 + 1
                # find higher cutoff
                for i in range(n):
                    ch1 = ymaxpos + i
                    if ch1 == n: break
                    if spmax[ch1] < cutoff: break
                ch1 = ch1 - 1
            dt.tag("imstat")

        bdp_name = self.mkext(fin, "pvc")  # output PVCorr_BDP
        b3 = PVCorr_BDP(bdp_name)
        self.addoutput(b3)

        if ch0 < 0 or ch1 >= nvel:
            # this probably only happens to small cubes (problematic for PVCorr)
            # or when the strongest line is really close to the edge of the band
            # (which is probably ok)
            if ch0 < 0 and ch1 >= nvel:
                logging.warning("Serious issues with the size of this cube")
            if ch0 < 0:
                logging.warning("Resetting ch0 edge to 0")
                ch0 = 0
            if ch1 >= nvel:
                ch1 = nvel - 1
                logging.warning("Resetting ch1 edge to the maximum")

        if ch0 > ch1:
            logging.warning("Sanity swapping ch0,1 due to likely noisy data")
            ch0, ch1 = ch1, ch0

        if mode == 1:
            out, rms = mode1(data, ch0, ch1, cutoff, normalize)
            corr = out
        elif mode == 2:
            out, rms = mode2(data, ch0, ch1, cutoff)  # slower 2D version
            corr = out[
                npos /
                2, :]  # center cut, but could also try feature detection
        elif mode == 3:
            out, rms = self.mode3(data, ch0, ch1,
                                  cutoff)  # Doug's faster 2D version
            # get the peak of each column
            corr = np.amax(out, axis=0)
        # print "PVCORR SHAPE ",corr.shape," mode", mode
        if len(corr) > 0:
            # print "SHAPE out:",out.shape,corr.shape,npos/2
            ch = range(len(corr))
            if len(corr) != len(freq):
                logging.fatal("ch (%d) and freq (%d) do not have same size" %
                              (len(corr), len(freq)))
                raise Exception, "ch and freq do not have same dimension"
            dt.tag("mode")
            labels = ["channel", "frequency", "pvcorr"]
            units = ["number", "GHz", "N/A"]
            data = (ch, freq, corr)
            table = Table(columns=labels,
                          units=units,
                          data=np.column_stack(data))
        else:
            # still construct a table, but with no rows
            labels = ["channel", "frequency", "pvcorr"]
            units = ["number", "GHz", "N/A"]
            table = Table(columns=labels, units=units)
        b3.setkey("table", table)
        b3.setkey("sigma", float(rms))
        dt.tag("table")
        if len(corr) > 0:
            table.exportTable(self.dir("testPVCorr.tab"),
                              cols=['frequency', 'pvcorr'])
            test_single(ch, freq, corr)

            logging.regression("PVC: %f %f" % (corr.min(), corr.max()))

            title = 'PVCorr mode=%d [%d,%d] %g' % (mode, ch0, ch1, cutoff)
            x = ch
            xlab = 'Channel'
            y = [corr]
            ylab = 'PV Correlation'
            p1 = "%s_%d" % (bdp_name, 0)
            segp = []
            segp.append([0, len(ch), 0.0, 0.0])
            segp.append([0, len(ch), 3.0 * rms, 3.0 * rms])
            # @todo:   in principle we know with given noise and  size of box, what the sigma in pvcorr should be
            self.myplot.plotter(x,
                                y,
                                title,
                                figname=p1,
                                xlab=xlab,
                                ylab=ylab,
                                segments=segp,
                                thumbnail=True)

            #out1 = np.rot90 (data.reshape((nvel,npos)) )
            if mode > 1:
                self.myplot.map1(data=out,
                                 title="testing PVCorr_AT:  mode%d" % mode,
                                 figname='testPVCorr',
                                 thumbnail=True)

            taskargs = "numsigma=%.1f range=[%d,%d]" % (numsigma, ch0, ch1)
            caption = "Position-velocity correlation plot"
            thumbname = self.myplot.getThumbnail(figno=self.myplot.figno,
                                                 relative=True)
            figname = self.myplot.getFigure(figno=self.myplot.figno,
                                            relative=True)
            image = Image(images={bt.PNG: figname},
                          thumbnail=thumbname,
                          thumbnailtype=bt.PNG,
                          description=caption)
            b3.image.addimage(image, "pvcorr")

            self._summary["pvcorr"] = SummaryEntry(
                [figname, thumbname, caption, fin], "PVCorr_AT", self.id(True),
                taskargs)
        else:
            self._summary["pvcorr"] = None
            logging.warning("No summary")
            logging.regression("PVC: -1")

        dt.tag("done")
        dt.end()

    def mode3(self, data, v0, v1, dmin=0.0):
        """ v0..v1 (both inclusive) are channel selections
            threshold on dmin
            @todo the frequency axis is not properly calibrated here
            @todo a full 2D is slow, we only need the 1D version
        """
        print "PVCorr mode3: v0,1=", v0, v1
        smin = data.min()
        #s = data[v0:v1+1,:]
        s = data[:, v0:v1 + 1]
        if dmin == 0.0:
            logging.warning("Using all data in crosscorr")
            f = s
        else:
            f = np.where(s > dmin, s, 0)
        # find out where the zeros are
        temp = np.amax(f, axis=1)
        nz = np.nonzero(temp)
        # trim the kernel in the y direction, removing rows that are all 0.0
        f = f[nz[0][0]:nz[0][-1], :]
        f0 = np.where(s > smin, 1, 0)
        f1 = np.where(s > dmin, 1, 0)
        fmax = f.max()
        print "PVCorr mode3:", f1.sum(), '/', f0.sum(), 'min/max', smin, fmax
        out = scipy.signal.correlate2d(data, f, mode='same')
        self.myplot.map1(data=f,
                         title="PVCorr 2D Kernel",
                         figname='PVCorrKernel',
                         thumbnail=True)

        print 'PVCorr min/max:', out.min(), out.max()
        n1, m1, s1, n2, m2, s2 = stats.mystats(out.flatten())
        print "PVCorr stats", n1, m1, s1, n2, m2, s2
        rms_est = s2 / np.sqrt(f1.sum())
        return out, rms_est
Esempio n. 16
0
    def run(self):
        """ The run method creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        dt = utils.Dtime("CubeSum")              # tagging time
        self._summary = {}                       # an ADMIT summary will be created here
 
        numsigma = self.getkey("numsigma")       # get the input keys
        sigma = self.getkey("sigma")
        use_lines = self.getkey("linesum")
        pad = self.getkey("pad") 

        b1  = self._bdp_in[0]                    # spw image cube
        b1a = self._bdp_in[1]                    # cubestats (optional)
        b1b = self._bdp_in[2]                    # linelist  (optional)

        f1 =  b1.getimagefile(bt.CASA)
        taskinit.ia.open(self.dir(f1))
        s = taskinit.ia.summary()
        nchan = s['shape'][2]

        if b1b != None:
            ch0 = b1b.table.getFullColumnByName("startchan")
            ch1 = b1b.table.getFullColumnByName("endchan")
            s = Segments(ch0,ch1,nchan=nchan)
            # @todo something isn't merging here as i would have expected,
            #       e.g. test0.fits [(16, 32), (16, 30), (16, 29)]
            if pad > 0:
                for (c0,c1) in s.getsegmentsastuples():
                    s.append([c0-pad,c0])
                    s.append([c1,c1+pad])
            s.merge()
            s.recalcmask()
            # print "PJT segments:",s.getsegmentsastuples()
            ns = len(s.getsegmentsastuples())
            chans = s.chans(not use_lines)
            if use_lines:
                msum = s.getmask()
            else:
                msum = 1 - s.getmask()
            logging.info("Read %d segments" % ns)
            # print "chans",chans
            # print "msum",msum

        #  from a deprecated keyword, but kept here to pre-smooth the spectrum before clipping
        #  examples are:  ['boxcar',3]    ['gaussian',7]    ['hanning',5] 
        smooth= []
                
        sig_const = False                        # figure out if sigma is taken as constant in the cube
        if b1a == None:                          # if no 2nd BDP was given, sigma needs to be specified 
            if sigma <= 0.0:
                raise Exception,"Neither user-supplied sigma nor CubeStats_BDP input given. One is required."
            else:
                sig_const = True                 # and is constant
        else:
            if sigma > 0:
                sigma = b1a.get("sigma")
                sig_const = True

        if sig_const:
            logging.info("Using constant sigma = %f" % sigma)
        else:
            logging.info("Using varying sigma per plane")

        infile = b1.getimagefile(bt.CASA)          # ADMIT filename of the image (cube)
        bdp_name = self.mkext(infile,'csm')        # morph to the new output name with replaced extension 'csm'
        image_out = self.dir(bdp_name)             # absolute filename
        
        args = {"imagename" : self.dir(infile)}    # assemble arguments for immoments()
        args["moments"] = 0                        # only need moments=0 (or [0] is ok as well)
        args["outfile"] = image_out                # note full pathname

        dt.tag("start")

        if sig_const:
            args["excludepix"] = [-numsigma*sigma, numsigma*sigma]        # single global sigma
            if b1b != None:
                # print "PJT: ",chans
                args["chans"] = chans
        else:
            # @todo    in this section bad channels can cause a fully masked cubesum = bad
            # cubestats input
            sigma_array = b1a.table.getColumnByName("sigma")              # channel dependent sigma
            sigma_pos = sigma_array[np.where(sigma_array>0)]
            smin = sigma_pos.min()
            smax = sigma_pos.max()
            logging.info("sigma varies from %f to %f" % (smin,smax))
            maxval = b1a.get("maxval")                                    # max in cube
            nzeros = len(np.where(sigma_array<=0.0)[0])                   # check bad channels
            if nzeros > 0:
                logging.warning("There are %d NaN channels " % nzeros)
                # raise Exception,"need to recode CubeSum or use constant sigma" 
            dt.tag("grab_sig")

            if len(smooth) > 0:
                # see also LineID and others
                filter = Filter1D.Filter1D(sigma_array,smooth[0],**Filter1D.Filter1D.convertargs(smooth))
                sigma_array = filter.run()
                dt.tag("smooth_sig")
            # create a CASA image copy for making the mirror sigma cube to mask against
            file = self.dir(infile)
            mask = file+"_mask"
            taskinit.ia.fromimage(infile=file, outfile=mask)
            nx = taskinit.ia.shape()[0]
            ny = taskinit.ia.shape()[1]
            nchan = taskinit.ia.shape()[2]
            taskinit.ia.fromshape(shape=[nx,ny,1])
            plane = taskinit.ia.getchunk([0,0,0],[-1,-1,0])     # convenience plane for masking operation
            dt.tag("mask_sig")

            taskinit.ia.open(mask) 
            dt.tag("open_mask")
              
            count = 0
            for i in range(nchan):
                if sigma_array[i] > 0:
                    if b1b != None:
                        if msum[i]:
                            taskinit.ia.putchunk(plane*0+sigma_array[i],blc=[0,0,i,-1])
                            count = count + 1
                        else:
                            taskinit.ia.putchunk(plane*0+maxval,blc=[0,0,i,-1])                            
                    else:
                        taskinit.ia.putchunk(plane*0+sigma_array[i],blc=[0,0,i,-1])
                        count = count + 1
                else:
                    taskinit.ia.putchunk(plane*0+maxval,blc=[0,0,i,-1])
            taskinit.ia.close()
            logging.info("%d/%d channels used for CubeSum" % (count,nchan))
            dt.tag("close_mask")

            names = [file, mask]
            tmp = file + '.tmp'
            if numsigma == 0.0:
                # hopefully this will also make use of the mask
                exp = "IM0[IM1<%f]" % (0.99*maxval)
            else:
                exp = "IM0[abs(IM0/IM1)>%f]" % (numsigma)
            # print "PJT: exp",exp
            casa.immath(mode='evalexpr', imagename=names, expr=exp, outfile=tmp) 
            args["imagename"] = tmp
            dt.tag("immath")

        casa.immoments(**args) 
        dt.tag("immoments")

        if sig_const is False:  
            # get rid of temporary files
            utils.remove(tmp)
            utils.remove(mask)

        # get the flux
        taskinit.ia.open(image_out)
        st = taskinit.ia.statistics()
        taskinit.ia.close()
        dt.tag("statistics")
        # report that flux, but there's no way to get the units from casa it seems
        # ia.summary()['unit'] is usually 'Jy/beam.km/s' for ALMA
        # imstat() does seem to know it.
        if st.has_key('flux'):
            rdata = [st['flux'][0],st['sum'][0]]
            logging.info("Total flux: %f (sum=%f)" % (st['flux'],st['sum']))
        else:
            rdata = [st['sum'][0]]
            logging.info("Sum: %f (beam parameters missing)" % (st['sum']))
        logging.regression("CSM: %s" % str(rdata))
            
        # Create two output images for html and their thumbnails, too
        implot = ImPlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())
        implot.plotter(rasterfile=bdp_name,figname=bdp_name,colorwedge=True)
        figname   = implot.getFigure(figno=implot.figno,relative=True)
        thumbname = implot.getThumbnail(figno=implot.figno,relative=True)
       
        dt.tag("implot")

        thumbtype = bt.PNG            # really should be correlated with self._plot_type!!

        # 2. Create a histogram of the map data
        # get the data for a histogram
        data = casautil.getdata(image_out,zeromask=True).compressed()
        dt.tag("getdata")

        # get the label for the x axis
        bunit = casa.imhead(imagename=image_out, mode="get", hdkey="bunit")

        # Make the histogram plot
        # Since we give abspath in the constructor, figname should be relative
        myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())
        auxname = bdp_name + "_histo"
        auxtype = bt.PNG  # really should be correlated with self._plot_type!!
        myplot.histogram(columns = data,
                         figname = auxname,
                         xlab    = bunit,
                         ylab    = "Count",
                         title   = "Histogram of CubeSum: %s" % (bdp_name),
                         thumbnail=True)
        auxname = myplot.getFigure(figno=myplot.figno,relative=True)
        auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True)

        images = {bt.CASA : bdp_name, bt.PNG : figname}
        casaimage = Image(images    = images,
                                auxiliary = auxname,
                                auxtype   = auxtype,
                                thumbnail = thumbname,
                                thumbnailtype = thumbtype)

        if hasattr(b1,"line"):                      # SpwCube doesn't have Line
            line = deepcopy(getattr(b1,"line"))
            if type(line) != type(Line):
                line = Line(name="Undetermined")
        else:
            line = Line(name="Undetermined")    # fake a Line if there wasn't one

        self.addoutput(Moment_BDP(xmlFile=bdp_name,moment=0,image=deepcopy(casaimage),line=line))
        imcaption = "Integral (moment 0) of all emission in image cube"
        auxcaption = "Histogram of cube sum for image cube"
        taskargs = "numsigma=%.1f sigma=%g smooth=%s" % (numsigma, sigma, str(smooth))
        self._summary["cubesum"] = SummaryEntry([figname,thumbname,imcaption,auxname,auxthumb,auxcaption,bdp_name,infile],"CubeSum_AT",self.id(True),taskargs)
        
        dt.tag("done")
        dt.end()
Esempio n. 17
0
    def run(self):
        """Runs the task.

           Parameters
           ----------
           None

           Returns
           -------
           None
        """
        self._summary = {}
        pvslicesummary = []
        sumslicetype = 'slice'
        sliceargs = []
        dt = utils.Dtime("PVSlice")
        # import here, otherwise sphinx cannot parse
        from impv     import impv
        from imsmooth import imsmooth

        pvslice = self.getkey('slice')       # x_s,y_s,x_e,y_e (start and end of line)
        pvslit  = self.getkey('slit')        # x_c,y_c,len,pa  (center, length and PA of line)

        # BDP's used :

        #   b10 = input BDP
        #   b11 = input BDP (moment)
        #   b12 = input BDP (new style cubestats w/ maxpos)
        #   b2 = output BDP

        b10 = self._bdp_in[0]                 # input SpwCube
        fin = b10.getimagefile(bt.CASA)       # input name

        b11 = self._bdp_in[1]                 # 
        b12 = self._bdp_in[2]

        clip  = self.getkey('clip')           # clipping to data for Moment-of-Inertia
        gamma = self.getkey('gamma')          # gamma factor to data for Moment-of-Inertia

        if b11 != None and len(pvslice) == 0 and len(pvslit) == 0:
            # if a map (e.g. cubesum ) given, and no slice/slit, get a best pvslice from that
            (pvslice,clip) = map_to_slit(self.dir(b11.getimagefile(bt.CASA)),clip=clip,gamma=gamma)
        elif b12 != None and len(pvslice) == 0 and len(pvslit) == 0:
            # PPP doesn't seem to work too well yet
            logging.debug("testing new slice computation from a PPP")
            max     = b12.table.getColumnByName("max")
            maxposx = b12.table.getColumnByName("maxposx")
            maxposy = b12.table.getColumnByName("maxposy")
            if maxposx == None:
              raise Exception,"PPP was not enabled in your CubeStats"
            (pvslice,clip) = tab_to_slit([maxposx,maxposy,max],clip=clip,gamma=gamma)
        sliceargs = deepcopy(pvslice)
        if len(sliceargs)==0:
            logging.warning("no slice for plot yet")
        # ugh, this puts single quotes around the numbers
        formattedslice = str(["%.2f" % a for a in sliceargs])
        taskargs = "slice="+formattedslice
        dt.tag("slice")

        pvname = self.mkext(fin,'pv')        # output image name
        b2 = PVSlice_BDP(pvname)
        self.addoutput(b2)

        width   = self.getkey('width')       # @todo also:  "4arcsec"  (can't work since it's a single keyword)

        if len(pvslice) == 4:
            start = pvslice[:2]   # @todo also allow:   ["14h20m20.5s","-30d45m25.4s"]
            end   = pvslice[2:]
            impv(self.dir(fin), self.dir(pvname),"coords",start=start,end=end,width=width,overwrite=True)
        elif len(pvslit) == 4:
            sumslicetype = 'slit'
            sliceargs = deepcopy(pvslit)
            formattedslice = str(["%.2f" % a for a in sliceargs])
            taskargs = "slit="+formattedslice
            # length="40arcsec" same as {"value": 40, "unit": "arcsec"})
            center = pvslit[:2]   # @todo also:   ["14h20m20.5s","-30d45m25.4s"].
            length = pvslit[2]    # @todo also:   "40arcsec", {"value": 40, "unit": "arcsec"})
            if type(pvslit[3]) is float or type(pvslit[3]) is int:
                pa = "%gdeg" % pvslit[3]
            else:
                pa = pvslit[3]
            impv(self.dir(fin), self.dir(pvname),"length",center=center,length=length,pa=pa,width=width,overwrite=True)
        else:
            raise Exception,"no valid input  slit= or slice= or bad Moment_BDP input"
        sliceargs.append(width)
        taskargs = taskargs + " width=%d" % width
        dt.tag("impv")

        smooth = self.getkey('pvsmooth')
        if len(smooth) > 0:
            if len(smooth) == 1:
                smooth.append(smooth[0])
            major = '%dpix' % smooth[0]
            minor = '%dpix' % smooth[1]
            logging.info("imsmooth PV slice: %s %s" % (major,minor))
            imsmooth(self.dir(pvname), outfile=self.dir(pvname)+'.smooth',kernel='boxcar',major=major,minor=minor)
            dt.tag("imsmooth")
            # utils.rename(self.dir(pvname)+'.smooth',self.dir(pvname))
            # @todo  we will keep the smooth PVslice for inspection, no further flow work

        # get some statistics
        data = casautil.getdata_raw(self.dir(pvname))
        rpix = stats.robust(data.flatten())
        r_mean = rpix.mean()
        r_std  = rpix.std()
        r_max = rpix.max()
        logging.info("PV stats: mean/std/max %f %f %f" % (r_mean, r_std, r_max))
        logging.regression("PVSLICE: %f %f %f" % (r_mean, r_std, r_max))

        myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())

        # hack to get a slice on a mom0map 
        # @todo   if pmode is not png, can viewer handle this?
        figname   = pvname + ".png"
        slicename = self.dir(figname)
        overlay   = "pvoverlay"
        if b11 != None:
            f11 = b11.getimagefile(bt.CASA)
            taskinit.tb.open(self.dir(f11))
            data = taskinit.tb.getcol('map')
            nx = data.shape[0]
            ny = data.shape[1]
            taskinit.tb.close()
            d1 = np.flipud(np.rot90 (data.reshape((nx,ny))))
            if len(pvslice) == 4:
              segm = [[pvslice[0],pvslice[2],pvslice[1],pvslice[3]]]
              pa = np.arctan2(pvslice[2]-pvslice[0],pvslice[1]-pvslice[3])*180.0/np.pi
              title = "PV Slice location : slice PA=%.1f" % pa
            elif len(pvslit) == 4:
              # can only do this now if using pixel coordinates
              xcen = pvslit[0]
              ycen = ny-pvslit[1]-1
              slen = pvslit[2]
              pard = pvslit[3]*np.pi/180.0
              cosp = np.cos(pard)
              sinp = np.sin(pard)
              halflen = 0.5*slen
              segm = [[xcen-halflen*sinp,xcen+halflen*sinp,ycen-halflen*cosp,ycen+halflen*cosp]]
              pa   = pvslit[3]
              title = "PV Slice location : slit PA=%g" % pa
            else:
              # bogus, some error in pvslice
              logging.warning("bogus segm since pvslice=%s" % str(pvslice))
              segm = [[10,20,10,20]]
              pa   = -999.999
              title = "PV Slice location - bad PA"
            logging.info("MAP1 segm %s %s" % (str(segm),str(pvslice)))
            if d1.max() < clip:
              logging.warning("datamax=%g,  clip=%g" % (d1.max(), clip))
              title = title + ' (no signal over %g?)' % clip
              myplot.map1(d1,title,overlay,segments=segm,thumbnail=True)
            else:
              myplot.map1(d1,title,overlay,segments=segm,range=[clip],thumbnail=True)
            dt.tag("plot")
            overlayname = myplot.getFigure(figno=myplot.figno,relative=True)
            overlaythumbname = myplot.getThumbnail(figno=myplot.figno,relative=True)
            Qover = True
        else:
            Qover = False

        implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
        implot.plotter(rasterfile=pvname, figname=pvname, colorwedge=True)
        thumbname = implot.getThumbnail(figno=implot.figno,relative=True)
        figname   = implot.getFigure(figno=implot.figno,relative=True)
        if False:
            # debug:
            #
            # @todo    tmp1 is ok, tmp2 is not displaying the whole thing
            # old style:   viewer() seems to plot full image, but imview() wants square pixels?
            casa.viewer(infile=self.dir(pvname), outfile=self.dir('tmp1.pv.png'), gui=False, outformat="png")
            casa.imview(raster={'file':self.dir(pvname),  'colorwedge' : True, 'scaling':-1},
                    axes={'y':'Declination'},
                    out=self.dir('tmp2.pv.png'))
            #
            # -> this one works, axes= should be correct
            # imview(raster={'file':'x.pv',  'colorwedge' : True, 'scaling':-1},axes={'y':'Frequency'})
            #
            # @TODO big fixme, we're going to reuse 'tmp1.pv.png' because implot give a broken view
            figname = 'tmp1.pv.png'
                    
        # @todo   technically we don't know what map it was overlay'd on.... CubeSum/Moment0
        overlaycaption = "Location of position-velocity slice overlaid on a CubeSum map"
        pvcaption = "Position-velocity diagram through emission centroid"
        pvimage = Image(images={bt.CASA : pvname, bt.PNG : figname},thumbnail=thumbname,thumbnailtype=bt.PNG, description=pvcaption)
        b2.setkey("image",pvimage)
        b2.setkey("mean",float(r_mean))
        b2.setkey("sigma",float(r_std))
        if Qover:
          thispvsummary = [sumslicetype,sliceargs,figname,thumbname,pvcaption,overlayname,overlaythumbname,overlaycaption,pvname,fin]
        else:
          thispvsummary = [sumslicetype,sliceargs,figname,thumbname,pvcaption,pvname,fin]
        
        # Yes, this is a nested list.  Against the day when PVSLICE can
        # compute multiple slices per map.
        pvslicesummary.append(thispvsummary)
        self._summary["pvslices"] = SummaryEntry(pvslicesummary,"PVSlice_AT",self.id(True),taskargs)

        dt.tag("done")
        dt.end()
Esempio n. 18
0
    def run(self):
        """ The run method, calculates the moments and creates the BDP(s)

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        self._summary = {}
        momentsummary = []
        dt = utils.Dtime("Moment")

        # variable to track if we are using a single cutoff for all moment maps
        allsame = False
        moments = self.getkey("moments")
        numsigma = self.getkey("numsigma")
        mom0clip = self.getkey("mom0clip")
        # determine if there is only 1 cutoff or if there is a cutoff for each moment
        if len(moments) != len(numsigma):
            if len(numsigma) != 1:
                raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.")
            allsame = True
        # default moment file extensions, this is information copied from casa.immoments()
        momentFileExtensions = {-1: ".average",
                                 0: ".integrated",
                                 1: ".weighted_coord",
                                 2: ".weighted_dispersion_coord",
                                 3: ".median",
                                 4: "",
                                 5: ".standard_deviation",
                                 6: ".rms",
                                 7: ".abs_mean_dev",
                                 8: ".maximum",
                                 9: ".maximum_coord",
                                10: ".minimum",
                                11: ".minimum_coord",
                                }

        logging.debug("MOMENT: %s %s %s" %  (str(moments), str(numsigma), str(allsame)))

        # get the input casa image from bdp[0]
        # also get the channels the line actually covers (if any)
        bdpin = self._bdp_in[0]
        infile = bdpin.getimagefile(bt.CASA)
        chans = self.getkey("chans")
        # the basename of the moments, we will append _0, _1, etc.
        basename = self.mkext(infile, "mom")
        fluxname = self.mkext(infile, "flux")
        # beamarea = nppb(self.dir(infile))
        beamarea = 1.0  # until we have it from the MOM0 map

        sigma0 = self.getkey("sigma")
        sigma  = sigma0

        dt.tag("open")

        # if no CubseStats BDP was given and no sigma was specified, find a 
        # noise level via casa.imstat()
        if self._bdp_in[1] is None and sigma <= 0.0:
            raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff")
        elif self._bdp_in[1] is not None:
            sigma = self._bdp_in[1].get("sigma")

        # immoments is a bit peculiar. If you give one moment, it will use 
        # exactly the outfile you picked for multiple moments, it will pick
        # extensions such as .integrated [0], .weighted_coord [1] etc.
        # we loop over the moments and will use the numeric extension instead. 
        # Might be laborious loop for big input cubes
        #
        # arguments for immoments
        args = {"imagename" : self.dir(infile),
                "moments"   : moments,
                "outfile"   : self.dir(basename)}

        # set the channels if given
        if chans != "":
            args["chans"] = chans
        # error check the mom0clip input
        if mom0clip > 0.0 and not 0 in moments:
            logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.")
            # add moment0 to the list of computed moments, but it has to be first
            moments.insert(0,0)
            if not allsame:
                numsigma.insert(0, 2.0*sigma)

        if allsame:
            # this is only executed now if len(moments) > 1 and len(cutoff)==1
            args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma]
            casa.immoments(**args)
            dt.tag("immoments-all")
        else:
            # this is execute if len(moments)==len(cutoff) , even when len=1
            for i in range(len(moments)):
                args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma]
                args["moments"] = moments[i]
                args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]])
                casa.immoments(**args)
                dt.tag("immoments-%d" % moments[i])

        taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) 
        if sigma0 > 0:
            taskargs = taskargs + " sigma=%.2f" % sigma0
        if mom0clip > 0:
            taskargs = taskargs + " mom0clip=%g" % mom0clip
        if chans == "": 
            taskargs = taskargs + " chans=all"
        else:
            taskargs = taskargs + " chans=%s" % str(chans)
        taskargs += '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; <span style="background-color:white">&nbsp;' + basename.split('/')[0] + '&nbsp;</span>'

        # generate the mask to be applied to all but moment 0
        if mom0clip > 0.0:
            # get the statistics from mom0 map
            # this is usually a very biased map, so unclear if mom0sigma is all that reliable
            args = {"imagename": self.dir(infile)}
            stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0]))
            mom0sigma = float(stat["sigma"][0])
            # generate a temporary masked file, mask will be copied to other moments
            args = {"imagename" : self.dir(basename + momentFileExtensions[0]),
                    "expr"      : 'IM0[IM0>%f]' % (mom0clip * mom0sigma),
                    "outfile"   : self.dir("mom0.masked")
                    }
            casa.immath(**args)
            # get the default mask name
            taskinit.ia.open(self.dir("mom0.masked"))
            defmask = taskinit.ia.maskhandler('default')
            taskinit.ia.close()
            dt.tag("mom0clip")

        # loop over moments to rename them to _0, _1, _2 etc.
        # apply a mask as well for proper histogram creation
        map = {}
        myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
        implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())

        for mom in moments:
            figname = imagename = "%s_%i" % (basename, mom)
            tempname = basename + momentFileExtensions[mom]
            # rename and remove the old one if there is one
            utils.rename(self.dir(tempname), self.dir(imagename))
            # copy the moment0 mask if requested; this depends on that mom0 was done before
            if mom0clip > 0.0 and mom != 0:
                #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0])
                #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0])
                makemask(mode="copy", inpimage=self.dir("mom0.masked"),
                         output="%s:%s" % (self.dir(imagename), defmask[0]),
                         overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"),
                                                            defmask[0]))
                taskinit.ia.open(self.dir(imagename))
                taskinit.ia.maskhandler('set', defmask)
                taskinit.ia.close()
                dt.tag("makemask")
            if mom == 0:
                beamarea = nppb(self.dir(imagename))
            implot.plotter(rasterfile=imagename,figname=figname,colorwedge=True)
            imagepng  = implot.getFigure(figno=implot.figno,relative=True)
            thumbname = implot.getThumbnail(figno=implot.figno,relative=True)
            images = {bt.CASA : imagename, bt.PNG  : imagepng}
            thumbtype=bt.PNG
            dt.tag("implot")

            # get the data for a histogram (ia access is about 1000-2000 faster than imval())
            map[mom] = casautil.getdata(self.dir(imagename))
            data = map[mom].compressed()
            dt.tag("getdata")

            # make the histogram plot

            # get the label for the x axis
            bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit")
            # object for the caption
            objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object")

            # Make the histogram plot
            # Since we give abspath in the constructor, figname should be relative
            auxname = imagename + '_histo'
            auxtype = bt.PNG
            myplot.histogram(columns = data,
                             figname = auxname,
                             xlab    = bunit,
                             ylab    = "Count",
                             title   = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True)

            casaimage = Image(images    = images,
                                    auxiliary = auxname,
                                    auxtype   = auxtype,
                                    thumbnail = thumbname,
                                    thumbnailtype = thumbtype)
            auxname = myplot.getFigure(figno=myplot.figno,relative=True)
            auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True)

            if hasattr(self._bdp_in[0], "line"):   # SpwCube doesn't have Line
                line = deepcopy(getattr(self._bdp_in[0], "line"))
                if not isinstance(line, Line):
                    line = Line(name="Unidentified")
            else:
                # fake a Line if there wasn't one
                line = Line(name="Unidentified")
            # add the BDP to the output array
            self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom,
                           image=deepcopy(casaimage), line=line))
            dt.tag("ren+mask_%d" % mom)

            imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname)
            auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname)
            thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption,
                                 auxname, auxthumb, auxcaption, infile]
            momentsummary.append(thismomentsummary)

        if map.has_key(0) and map.has_key(1) and map.has_key(2):
            logging.debug("MAPs present: %s" % (map.keys()))

            # m0 needs a new mask, inherited from the more restricted m1 (and m2)
            m0 = ma.masked_where(map[1].mask,map[0])
            m1 = map[1]
            m2 = map[2]
            m01 = m0*m1
            m02 = m0*m1*m1
            m22 = m0*m2*m2
            sum0 = m0.sum()
            vmean = m01.sum()/sum0
            # lacking the full 3D cube, get two estimates and take the max
            sig1  = math.sqrt(m02.sum()/sum0 - vmean*vmean)
            sig2  = m2.max()
            #vsig = max(sig1,sig2)
            vsig = sig1
            
            # consider clipping in the masked array (mom0clip)
            # @todo   i can't use info from line, so just borrow basename for now for grepping
            #         this also isn't really the flux, the points per beam is still in there
            loc = basename.rfind('/')
            sum1 = ma.masked_less(map[0],0.0).sum()   # mom0clip
            # print out:   LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression
            # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube
            s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0]
            s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9
            s_line = line.frequency
            if loc>0:
                if basename[:loc][0:2] == 'U_':
                    # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band
                    if abs(vmean) > vsig:
                        vwarn = '*'
                    else:
                        vwarn = ''
                    vlsr = vmean + (1.0-s_line/s_rest)*utils.c
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig)
                else:
                    # for identified lines we'll assume the ID was correct and not bother with RESTFREQ
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            else:
                msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL"    ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            logging.regression(msg)
            dt.tag("mom0flux")

            # create a histogram of flux per channel

            # grab the X coordinates for the histogram, we want them in km/s
            # restfreq should also be in summary
            restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9    # in GHz
            # print "PJT  %.10f %.10f" % (restfreq,s_rest)
            imval0 = casa.imval(self.dir(infile))
            freqs = imval0['coords'].transpose()[2]/1e9
            x = (1-freqs/restfreq)*utils.c
            # 
            h = casa.imstat(self.dir(infile), axes=[0,1])
            if h.has_key('flux'):
                flux0 = h['flux']
            else:
                flux0 = h['sum']/beamarea
            flux0sum = flux0.sum() * abs(x[1]-x[0])
            # @todo   make a flux1 with fluxes derived from a good mask
            flux1 = flux0 
            # construct histogram
            title = 'Flux Spectrum (%g)' % flux0sum
            xlab = 'VLSR (km/s)'
            ylab = 'Flux (Jy)'
            myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True)
            dt.tag("flux-spectrum")
            
        self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", 
                                                self.id(True), taskargs)
        # get rid of the temporary mask
        if mom0clip > 0.0: 
            utils.rmdir(self.dir("mom0.masked"))

        dt.tag("done")
        dt.end()