def run(self): """Runs the task. Parameters ---------- None Returns ------- None """ self._summary = {} dt = utils.Dtime("CubeStats") #maxvrms = 2.0 # maximum variation in rms allowed (hardcoded for now) #maxvrms = -1.0 # turn maximum variation in rms allowed off maxvrms = self.getkey("maxvrms") psample = -1 psample = self.getkey("psample") # BDP's used : # b1 = input BDP # b2 = output BDP b1 = self._bdp_in[0] fin = b1.getimagefile(bt.CASA) bdp_name = self.mkext(fin,'cst') b2 = CubeStats_BDP(bdp_name) self.addoutput(b2) # PeakPointPlot use_ppp = self.getkey("ppp") # peakstats: not enabled for mortal users yet # peakstats = (psample=1, numsigma=4, minchan=3, maxgap=2, peakfit=False) pnumsigma = 4 minchan = 3 maxgap = 2 peakfit = False # True will enable a true gaussian fit # numsigma: adding all signal > numsigma ; not user enabled; for peaksum. numsigma = -1.0 numsigma = 3.0 # grab the new robust statistics. If this is used, 'rms' will be the RMS, # else we will use RMS = 1.4826*MAD (MAD does a decent job on outliers as well) # and was the only method available before CASA 4.4 when robust was implemented robust = self.getkey("robust") rargs = casautil.parse_robust(robust) nrargs = len(rargs) if nrargs == 0: sumrargs = "medabsdevmed" # for the summary, indicate the default robust else: sumrargs = str(rargs) self._summary["rmsmethd"] = SummaryEntry([sumrargs,fin],"CubeStats_AT",self.id(True)) #@todo think about using this instead of putting 'fin' in all the SummaryEntry #self._summary["casaimage"] = SummaryEntry(fin,"CubeStats_AT",self.id(True)) # extra CASA call to get the freq's in GHz, as these are not in imstat1{} # @todo what if the coordinates are not in FREQ ? # Note: CAS-7648 bug on 3D cubes if False: # csys method ia.open(self.dir(fin)) csys = ia.coordsys() spec_axis = csys.findaxisbyname("spectral") # ieck, we need a valid position, or else it will come back and "Exception: All selected pixels are masked" #freqs = ia.getprofile(spec_axis, region=rg.box([0,0],[0,0]))['coords']/1e9 #freqs = ia.getprofile(spec_axis)['coords']/1e9 freqs = ia.getprofile(spec_axis,unit="GHz")['coords'] dt.tag("getprofile") else: # old imval method #imval0 = casa.imval(self.dir(fin),box='0,0,0,0') # this fails on 3D imval0 = casa.imval(self.dir(fin)) freqs = imval0['coords'].transpose()[2]/1e9 dt.tag("imval") nchan = len(freqs) chans = np.arange(nchan) # call CASA to get what we want # imstat0 is the whole cube, imstat1 the plane based statistics # warning: certain robust stats (**rargs) on the whole cube are going to be very slow dt.tag("start") imstat0 = casa.imstat(self.dir(fin), logfile=self.dir('imstat0.logfile'),append=False,**rargs) dt.tag("imstat0") imstat1 = casa.imstat(self.dir(fin),axes=[0,1],logfile=self.dir('imstat1.logfile'),append=False,**rargs) dt.tag("imstat1") # imm = casa.immoments(self.dir(fin),axis='spec', moments=8, outfile=self.dir('ppp.im')) if nrargs > 0: # need to get the peaks without rubust imstat10 = casa.imstat(self.dir(fin), logfile=self.dir('imstat0.logfile'),append=True) dt.tag("imstat10") imstat11 = casa.imstat(self.dir(fin),axes=[0,1],logfile=self.dir('imstat1.logfile'),append=True) dt.tag("imstat11") # grab the relevant plane-based things from imstat1 if nrargs == 0: mean = imstat1["mean"] sigma = imstat1["medabsdevmed"]*1.4826 # see also: astropy.stats.median_absolute_deviation() peakval = imstat1["max"] minval = imstat1["min"] else: mean = imstat1["mean"] sigma = imstat1["rms"] peakval = imstat11["max"] minval = imstat11["min"] if True: # work around a bug in imstat(axes=[0,1]) for last channel [CAS-7697] for i in range(len(sigma)): if sigma[i] == 0.0: minval[i] = peakval[i] = 0.0 # too many variations in the RMS ? sigma_pos = sigma[np.where(sigma>0)] smin = sigma_pos.min() smax = sigma_pos.max() logging.info("sigma varies from %f to %f; %d/%d channels ok" % (smin,smax,len(sigma_pos),len(sigma))) if maxvrms > 0: if smax/smin > maxvrms: cliprms = smin * maxvrms logging.warning("sigma varies too much, going to clip to %g (%g > %g)" % (cliprms, smax/smin, maxvrms)) sigma = np.where(sigma < cliprms, sigma, cliprms) # @todo (and check again) for foobar.fits all sigma's became 0 when robust was selected # was this with mask=True/False? # PeakPointPlot (can be expensive, hence the option) if use_ppp: logging.info("Computing MaxPos for PeakPointPlot") xpos = np.zeros(nchan) ypos = np.zeros(nchan) peaksum = np.zeros(nchan) ia.open(self.dir(fin)) for i in range(nchan): if sigma[i] > 0.0: plane = ia.getchunk(blc=[0,0,i,-1],trc=[-1,-1,i,-1],dropdeg=True) v = ma.masked_invalid(plane) v_abs = np.absolute(v) max = np.unravel_index(v_abs.argmax(), v_abs.shape) xpos[i] = max[0] ypos[i] = max[1] if numsigma > 0.0: peaksum[i] = ma.masked_less(v,numsigma * sigma[i]).sum() peaksum = np.nan_to_num(peaksum) # put 0's where nan's are found ia.close() dt.tag("ppp") nzeros = len(np.where(sigma<=0.0)) if nzeros > 0: zeroch = np.where(sigma<=0.0) logging.warning("There are %d fully masked channels (%s)" % (nzeros,str(zeroch))) # construct the admit Table for CubeStats_BDP # note data needs to be a tuple, later to be column_stack'd if use_ppp: labels = ["channel" ,"frequency" ,"mean" ,"sigma" ,"max" ,"maxposx" ,"maxposy" ,"min", "peaksum"] units = ["number" ,"GHz" ,"Jy/beam" ,"Jy/beam" ,"Jy/beam" ,"number" ,"number" ,"Jy/beam", "Jy"] data = (chans ,freqs ,mean ,sigma ,peakval ,xpos ,ypos ,minval, peaksum) else: labels = ["channel" ,"frequency" ,"mean" ,"sigma" ,"max" ,"min"] units = ["number" ,"GHz" ,"Jy/beam" ,"Jy/beam" ,"Jy/beam" ,"Jy/beam"] data = (chans ,freqs ,mean ,sigma ,peakval ,minval) table = Table(columns=labels,units=units,data=np.column_stack(data)) b2.setkey("table",table) # get the full cube statistics, it depends if robust was pre-selected if nrargs == 0: mean0 = imstat0["mean"][0] sigma0 = imstat0["medabsdevmed"][0]*1.4826 peak0 = imstat0["max"][0] b2.setkey("mean" , float(mean0)) b2.setkey("sigma", float(sigma0)) b2.setkey("minval",float(imstat0["min"][0])) b2.setkey("maxval",float(imstat0["max"][0])) b2.setkey("minpos",imstat0["minpos"][:3].tolist()) #? [] or array(..dtype=int32) ?? b2.setkey("maxpos",imstat0["maxpos"][:3].tolist()) #? [] or array(..dtype=int32) ?? logging.info("CubeMax: %f @ %s" % (imstat0["max"][0],str(imstat0["maxpos"]))) logging.info("CubeMin: %f @ %s" % (imstat0["min"][0],str(imstat0["minpos"]))) logging.info("CubeRMS: %f" % sigma0) else: mean0 = imstat0["mean"][0] sigma0 = imstat0["rms"][0] peak0 = imstat10["max"][0] b2.setkey("mean" , float(mean0)) b2.setkey("sigma", float(sigma0)) b2.setkey("minval",float(imstat10["min"][0])) b2.setkey("maxval",float(imstat10["max"][0])) b2.setkey("minpos",imstat10["minpos"][:3].tolist()) #? [] or array(..dtype=int32) ?? b2.setkey("maxpos",imstat10["maxpos"][:3].tolist()) #? [] or array(..dtype=int32) ?? logging.info("CubeMax: %f @ %s" % (imstat10["max"][0],str(imstat10["maxpos"]))) logging.info("CubeMin: %f @ %s" % (imstat10["min"][0],str(imstat10["minpos"]))) logging.info("CubeRMS: %f" % sigma0) b2.setkey("robust",robust) rms_ratio = imstat0["rms"][0]/sigma0 logging.info("RMS Sanity check %f" % rms_ratio) if rms_ratio > 1.5: logging.warning("RMS sanity check = %f. Either bad sidelobes, lotsa signal, or both" % rms_ratio) logging.regression("CST: %f %f" % (sigma0, rms_ratio)) # plots: no plots need to be made when nchan=1 for continuum # however we could make a histogram, overlaying the "best" gauss so # signal deviations are clear? logging.info('mean,rms,S/N=%f %f %f' % (mean0,sigma0,peak0/sigma0)) if nchan == 1: # for a continuum/1-channel we only need to stuff some numbers into the _summary self._summary["chanrms"] = SummaryEntry([float(sigma0), fin], "CubeStats_AT", self.id(True)) self._summary["dynrange"] = SummaryEntry([float(peak0)/float(sigma0), fin], "CubeStats_AT", self.id(True)) self._summary["datamean"] = SummaryEntry([float(mean0), fin], "CubeStats_AT", self.id(True)) else: y1 = np.log10(ma.masked_invalid(peakval)) y2 = np.log10(ma.masked_invalid(sigma)) y3 = y1-y2 y4 = np.log10(ma.masked_invalid(-minval)) y5 = y1-y4 y = [y1,y2,y3,y4] title = 'CubeStats: ' + bdp_name+'_0' xlab = 'Channel' ylab = 'log(Peak,Noise,Peak/Noise)' labels = ['log(peak)','log(rms noise)','log(peak/noise)','log(|minval|)'] myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir()) segp = [[chans[0],chans[nchan-1],math.log10(sigma0),math.log10(sigma0)]] myplot.plotter(chans,y,title,bdp_name+"_0",xlab=xlab,ylab=ylab,segments=segp,labels=labels,thumbnail=True) imfile = myplot.getFigure(figno=myplot.figno,relative=True) thumbfile = myplot.getThumbnail(figno=myplot.figno,relative=True) image0 = Image(images={bt.PNG:imfile},thumbnail=thumbfile,thumbnailtype=bt.PNG,description="CubeStats_0") b2.addimage(image0,"im0") if use_ppp: # new trial for Lee title = 'PeakSum: (numsigma=%.1f)' % (numsigma) ylab = 'Jy*N_ppb' myplot.plotter(chans,[peaksum],title,bdp_name+"_00",xlab=xlab,ylab=ylab,thumbnail=False) if True: # hack ascii table y30 = np.where(sigma > 0, np.log10(peakval/sigma), 0.0) table2 = Table(columns=["freq","log(P/N)"],data=np.column_stack((freqs,y30))) table2.exportTable(self.dir("testCubeStats.tab")) del table2 # the "box" for the "spectrum" is all pixels. Don't know how to # get this except via shape. ia.open(self.dir(fin)) s = ia.summary() ia.close() if 'shape' in s: specbox = (0,0,s['shape'][0],s['shape'][1]) else: specbox = () caption = "Emission characteristics as a function of channel, as derived by CubeStats_AT " caption += "(cyan: global rms," caption += " green: noise per channel," caption += " blue: peak value per channel," caption += " red: peak/noise per channel)." self._summary["spectra"] = SummaryEntry([0, 0, str(specbox), 'Channel', imfile, thumbfile , caption, fin], "CubeStats_AT", self.id(True)) self._summary["chanrms"] = SummaryEntry([float(sigma0), fin], "CubeStats_AT", self.id(True)) # @todo Will imstat["max"][0] always be equal to s['datamax']? If not, why not? if 'datamax' in s: self._summary["dynrange"] = SummaryEntry([float(s['datamax']/sigma0), fin], "CubeStats_AT", self.id(True)) else: self._summary["dynrange"] = SummaryEntry([float(imstat0["max"][0]/sigma0), fin], "CubeStats_AT", self.id(True)) self._summary["datamean"] = SummaryEntry([imstat0["mean"][0], fin], "CubeStats_AT", self.id(True)) title = bdp_name + "_1" xlab = 'log(Peak,Noise,P/N)' myplot.histogram([y1,y2,y3],title,bdp_name+"_1",xlab=xlab,thumbnail=True) imfile = myplot.getFigure(figno=myplot.figno,relative=True) thumbfile = myplot.getThumbnail(figno=myplot.figno,relative=True) image1 = Image(images={bt.PNG:imfile},thumbnail=thumbfile,thumbnailtype=bt.PNG,description="CubeStats_1") b2.addimage(image1,"im1") # note that the 'y2' can have been clipped, which can throw off stats.robust() # @todo should set a mask for those. title = bdp_name + "_2" xlab = 'log(Noise))' n = len(y2) ry2 = stats.robust(y2) y2_mean = ry2.mean() y2_std = ry2.std() if n>9: logging.debug("NORMALTEST2: %s" % str(scipy.stats.normaltest(ry2))) myplot.hisplot(y2,title,bdp_name+"_2",xlab=xlab,gauss=[y2_mean,y2_std],thumbnail=True) title = bdp_name + "_3" xlab = 'log(diff[Noise])' n = len(y2) # dy2 = y2[0:-2] - y2[1:-1] dy2 = ma.masked_equal(y2[0:-2] - y2[1:-1],0.0).compressed() rdy2 = stats.robust(dy2) dy2_mean = rdy2.mean() dy2_std = rdy2.std() if n>9: logging.debug("NORMALTEST3: %s" % str(scipy.stats.normaltest(rdy2))) myplot.hisplot(dy2,title,bdp_name+"_3",xlab=xlab,gauss=[dy2_mean,dy2_std],thumbnail=True) title = bdp_name + "_4" xlab = 'log(Signal/Noise))' n = len(y3) ry3 = stats.robust(y3) y3_mean = ry3.mean() y3_std = ry3.std() if n>9: logging.debug("NORMALTEST4: %s" % str(scipy.stats.normaltest(ry3))) myplot.hisplot(y3,title,bdp_name+"_4",xlab=xlab,gauss=[y3_mean,y3_std],thumbnail=True) title = bdp_name + "_5" xlab = 'log(diff[Signal/Noise)])' n = len(y3) dy3 = y3[0:-2] - y3[1:-1] rdy3 = stats.robust(dy3) dy3_mean = rdy3.mean() dy3_std = rdy3.std() if n>9: logging.debug("NORMALTEST5: %s" % str(scipy.stats.normaltest(rdy3))) myplot.hisplot(dy3,title,bdp_name+"_5",xlab=xlab,gauss=[dy3_mean,dy3_std],thumbnail=True) title = bdp_name + "_6" xlab = 'log(Peak+Min)' n = len(y1) ry5 = stats.robust(y5) y5_mean = ry5.mean() y5_std = ry5.std() if n>9: logging.debug("NORMALTEST6: %s" % str(scipy.stats.normaltest(ry5))) myplot.hisplot(y5,title,bdp_name+"_6",xlab=xlab,gauss=[y5_mean,y5_std],thumbnail=True) logging.debug("LogPeak: m,s= %f %f min/max %f %f" % (y1.mean(),y1.std(),y1.min(),y1.max())) logging.debug("LogNoise: m,s= %f %f %f %f min/max %f %f" % (y2.mean(),y2.std(),y2_mean,y2_std,y2.min(),y2.max())) logging.debug("LogDeltaNoise: RMS/sqrt(2)= %f %f " % (dy2.std()/math.sqrt(2),dy2_std/math.sqrt(2))) logging.debug("LogDeltaP/N: RMS/sqrt(2)= %f %f" % (dy3.std()/math.sqrt(2),dy3_std/math.sqrt(2))) logging.debug("LogPeak+Min: robust m,s= %f %f" % (y5_mean,y5_std)) # compute two ratios that should both be near 1.0 if noise is 'normal' ratio = y2.std()/(dy2.std()/math.sqrt(2)) ratio2 = y2_std/(dy2_std/math.sqrt(2)) logging.info("RMS BAD VARIATION RATIO: %f %f" % (ratio,ratio2)) # making PPP plot if nchan > 1 and use_ppp: smax = 10 gamma = 0.75 z0 = peakval/peakval.max() # point sizes s = np.pi * ( smax * (z0**gamma) )**2 cmds = ["grid", "axis equal"] title = "Peak Points per channel" pppimage = bdp_name + '_ppp' myplot.scatter(xpos,ypos,title=title,figname=pppimage,size=s,color=chans,cmds=cmds,thumbnail=True) pppimage = myplot.getFigure(figno=myplot.figno,relative=True) pppthumbnail = myplot.getThumbnail(figno=myplot.figno,relative=True) caption = "Peak point plot: Locations of per-channel peaks in the image cube " + fin self._summary["peakpnt"] = SummaryEntry([pppimage, pppthumbnail, caption, fin], "CubeStats_AT", self.id(True)) dt.tag("plotting") # making PeakStats plot if nchan > 1 and psample > 0: logging.info("Computing peakstats") # grab peak,mean and width values for all peaks (pval,mval,wval) = peakstats(self.dir(fin),freqs,sigma0,pnumsigma,minchan,maxgap,psample,peakfit) title = "PeakStats: cutoff = %g" % (sigma0*pnumsigma) xlab = 'Peak value' ylab = 'FWHM (channels)' pppimage = bdp_name + '_peakstats' cval = mval myplot.scatter(pval,wval,title=title,xlab=xlab,ylab=ylab,color=cval,figname=pppimage,thumbnail=False) dt.tag("peakstats") # myplot.final() # pjt debug # all done! dt.tag("done") taskargs = "robust=" + sumrargs if use_ppp: taskargs = taskargs + " ppp=True" else: taskargs = taskargs + " ppp=False" for v in self._summary: self._summary[v].setTaskArgs(taskargs) dt.tag("summary") dt.end()
class PVCorr_AT(AT): """PV correllation in a PVSlice map. PVCorr_AT computes a cross-correlation of a feature in a PVSlice with the whole PVSlice, looking for repeated patterns to detect spectral lines. Much like the output from CubeStats_AT and CubeSpectrum_AT, this table can then be given to LineID_AT to attempt a line identification. See also :ref:`PVCorr-AT-Design` for the design document. **Keywords** **numsigma**: float Minimum intensity, in terms of sigma, above which a selected portion of the spectrum will be used for cross-correlation. Default: 3.0. **range**: integer list If given, it has to be a list with 2 channel numbers, the first and last channel (0-based channels) of the range which to use for the cross-correlation. Default: []. **nchan**: integer The number of channels (in case range= was not used) that defines the line. The line is centers on the strongest point in the input PV-map. If 0 is given, it will watershed down from the strongest line. Default: 0. **Input BDPs** **PVSlice_BDP**: count: 1 Input PV Slice. As created with e.g. PVSlice_AT. **CubeStats_BDP**: count: 1 Input cube statistics from which the RMS is taken. **Output BDPs** **PVCorr_BDP**: count: 1 Output table. """ def __init__(self, **keyval): keys = { "numsigma": 3.0, # N-sigma "range": [], # optional channel range "nchan": 0, # number of channels around the channel where the peak is } AT.__init__(self, keys, keyval) self._version = "1.0.1" self.set_bdp_in([ (Image_BDP, 1, bt.REQUIRED), # @todo optional 2nd PVSlice can be used to draw the template from (CubeStats_BDP, 1, bt.REQUIRED) ]) self.set_bdp_out([(PVCorr_BDP, 1)]) def summary(self): """Returns the summary dictionary from the AT, for merging into the ADMIT Summary object. PVCorr_AT adds the following to ADMIT summary: .. table:: :class: borderless +----------+----------+-----------------------------------+ | Key | type | Description | +==========+==========+===================================+ | pvcorr | list | correlation diagram | +----------+----------+-----------------------------------+ Parameters ---------- None Returns ------- dict Dictionary of SummaryEntry """ if hasattr(self, "_summary"): return self._summary else: return {} def run(self): dt = utils.Dtime("PVCorr") self._summary = {} numsigma = self.getkey("numsigma") mode = 1 # PV corr mode (1,2,3) normalize = True # normalize = False b1 = self._bdp_in[0] # PVSlice_BDP fin = b1.getimagefile(bt.CASA) # CASA image data = casautil.getdata_raw( self.dir(fin)) # grab the data as a numpy array self.myplot = APlot(ptype=self._plot_type, pmode=self._plot_mode, abspath=self.dir()) #print 'DATA[0,0]:',data[0,0] #print 'pv shape: ',data.shape npos = data.shape[0] nvel = data.shape[1] dt.tag("getdata") b2 = self._bdp_in[1] # CubeStats_BDP sigma = b2.sigma # global sigma in the cube cutoff = numsigma * sigma freq = b2.table.getColumnByName("frequency") chans = self.getkey("range") # range of channels, if used if len(chans) > 0: if len(chans) != 2: logging.fatal("range=%s" % chans) raise Exception, "range= needs two values, left and right (inclusive) channel" ch0 = chans[0] ch1 = chans[1] else: nchan = self.getkey("nchan") imstat0 = casa.imstat(self.dir(fin)) # @todo can use data[] now xmaxpos = imstat0['maxpos'][0] ymaxpos = imstat0['maxpos'][1] logging.info("MAXPOS-VEL %s %g" % (str(imstat0['maxpos']), imstat0['max'][0])) if nchan > 0: # expand around it, later ch0,ch1 will be checked for running off the edge ch0 = ymaxpos - nchan / 2 ch1 = ymaxpos + nchan / 2 else: # watershed down to find ch0 and ch1 ? # this doesn't work well in crowded areas ch0 = ymaxpos ch1 = ymaxpos spmax = data.max(axis=0) k = spmax.argmax() n = len(spmax) logging.debug('spmax %s %d %g' % (str(spmax.shape), k, spmax[k])) # find lower cutoff for i in range(n): ch0 = ymaxpos - i if ch0 < 0: break if spmax[ch0] < cutoff: break ch0 = ch0 + 1 # find higher cutoff for i in range(n): ch1 = ymaxpos + i if ch1 == n: break if spmax[ch1] < cutoff: break ch1 = ch1 - 1 dt.tag("imstat") bdp_name = self.mkext(fin, "pvc") # output PVCorr_BDP b3 = PVCorr_BDP(bdp_name) self.addoutput(b3) if ch0 < 0 or ch1 >= nvel: # this probably only happens to small cubes (problematic for PVCorr) # or when the strongest line is really close to the edge of the band # (which is probably ok) if ch0 < 0 and ch1 >= nvel: logging.warning("Serious issues with the size of this cube") if ch0 < 0: logging.warning("Resetting ch0 edge to 0") ch0 = 0 if ch1 >= nvel: ch1 = nvel - 1 logging.warning("Resetting ch1 edge to the maximum") if ch0 > ch1: logging.warning("Sanity swapping ch0,1 due to likely noisy data") ch0, ch1 = ch1, ch0 if mode == 1: out, rms = mode1(data, ch0, ch1, cutoff, normalize) corr = out elif mode == 2: out, rms = mode2(data, ch0, ch1, cutoff) # slower 2D version corr = out[ npos / 2, :] # center cut, but could also try feature detection elif mode == 3: out, rms = self.mode3(data, ch0, ch1, cutoff) # Doug's faster 2D version # get the peak of each column corr = np.amax(out, axis=0) # print "PVCORR SHAPE ",corr.shape," mode", mode if len(corr) > 0: # print "SHAPE out:",out.shape,corr.shape,npos/2 ch = range(len(corr)) if len(corr) != len(freq): logging.fatal("ch (%d) and freq (%d) do not have same size" % (len(corr), len(freq))) raise Exception, "ch and freq do not have same dimension" dt.tag("mode") labels = ["channel", "frequency", "pvcorr"] units = ["number", "GHz", "N/A"] data = (ch, freq, corr) table = Table(columns=labels, units=units, data=np.column_stack(data)) else: # still construct a table, but with no rows labels = ["channel", "frequency", "pvcorr"] units = ["number", "GHz", "N/A"] table = Table(columns=labels, units=units) b3.setkey("table", table) b3.setkey("sigma", float(rms)) dt.tag("table") if len(corr) > 0: table.exportTable(self.dir("testPVCorr.tab"), cols=['frequency', 'pvcorr']) test_single(ch, freq, corr) logging.regression("PVC: %f %f" % (corr.min(), corr.max())) title = 'PVCorr mode=%d [%d,%d] %g' % (mode, ch0, ch1, cutoff) x = ch xlab = 'Channel' y = [corr] ylab = 'PV Correlation' p1 = "%s_%d" % (bdp_name, 0) segp = [] segp.append([0, len(ch), 0.0, 0.0]) segp.append([0, len(ch), 3.0 * rms, 3.0 * rms]) # @todo: in principle we know with given noise and size of box, what the sigma in pvcorr should be self.myplot.plotter(x, y, title, figname=p1, xlab=xlab, ylab=ylab, segments=segp, thumbnail=True) #out1 = np.rot90 (data.reshape((nvel,npos)) ) if mode > 1: self.myplot.map1(data=out, title="testing PVCorr_AT: mode%d" % mode, figname='testPVCorr', thumbnail=True) taskargs = "numsigma=%.1f range=[%d,%d]" % (numsigma, ch0, ch1) caption = "Position-velocity correlation plot" thumbname = self.myplot.getThumbnail(figno=self.myplot.figno, relative=True) figname = self.myplot.getFigure(figno=self.myplot.figno, relative=True) image = Image(images={bt.PNG: figname}, thumbnail=thumbname, thumbnailtype=bt.PNG, description=caption) b3.image.addimage(image, "pvcorr") self._summary["pvcorr"] = SummaryEntry( [figname, thumbname, caption, fin], "PVCorr_AT", self.id(True), taskargs) else: self._summary["pvcorr"] = None logging.warning("No summary") logging.regression("PVC: -1") dt.tag("done") dt.end() def mode3(self, data, v0, v1, dmin=0.0): """ v0..v1 (both inclusive) are channel selections threshold on dmin @todo the frequency axis is not properly calibrated here @todo a full 2D is slow, we only need the 1D version """ print "PVCorr mode3: v0,1=", v0, v1 smin = data.min() #s = data[v0:v1+1,:] s = data[:, v0:v1 + 1] if dmin == 0.0: logging.warning("Using all data in crosscorr") f = s else: f = np.where(s > dmin, s, 0) # find out where the zeros are temp = np.amax(f, axis=1) nz = np.nonzero(temp) # trim the kernel in the y direction, removing rows that are all 0.0 f = f[nz[0][0]:nz[0][-1], :] f0 = np.where(s > smin, 1, 0) f1 = np.where(s > dmin, 1, 0) fmax = f.max() print "PVCorr mode3:", f1.sum(), '/', f0.sum(), 'min/max', smin, fmax out = scipy.signal.correlate2d(data, f, mode='same') self.myplot.map1(data=f, title="PVCorr 2D Kernel", figname='PVCorrKernel', thumbnail=True) print 'PVCorr min/max:', out.min(), out.max() n1, m1, s1, n2, m2, s2 = stats.mystats(out.flatten()) print "PVCorr stats", n1, m1, s1, n2, m2, s2 rms_est = s2 / np.sqrt(f1.sum()) return out, rms_est
def run(self): """Runs the task. Parameters ---------- None Returns ------- None """ self._summary = {} dt = utils.Dtime("CubeSpectrum") # our BDP's # b1 = input BDP # b1s = optional input CubeSpectrum # b1m = optional input Moment # b1p = optional input SourceList for positions # b2 = output BDP b1 = self._bdp_in[0] # check input SpwCube (or LineCube) fin = b1.getimagefile(bt.CASA) if self._bdp_in[0]._type == bt.LINECUBE_BDP: use_vel = True else: use_vel = False sources = self.getkey("sources") pos = [ ] # blank it first, then try and grab it from the optional bdp_in's cmean = 0.0 csigma = 0.0 smax = [] # accumulate max in each spectrum for regression self.spec_description = [] # for summary() if self._bdp_in[1] != None: # check if CubeStats_BDP #print "BDP[1] type: ",self._bdp_in[1]._type if self._bdp_in[1]._type != bt.CUBESTATS_BDP: raise Exception, "bdp_in[1] not a CubeStats_BDP, should never happen" # a table (cubestats) b1s = self._bdp_in[1] pos.append(b1s.maxpos[0]) pos.append(b1s.maxpos[1]) logging.info('CubeStats::maxpos,val=%s,%f' % (str(b1s.maxpos), b1s.maxval)) cmean = b1s.mean csigma = b1s.sigma dt.tag("CubeStats-pos") if self._bdp_in[ 2] != None: # check if Moment_BDP (probably from CubeSum) #print "BDP[2] type: ",self._bdp_in[2]._type if self._bdp_in[2]._type != bt.MOMENT_BDP: raise Exception, "bdp_in[2] not a Moment_BDP, should never happen" b1m = self._bdp_in[2] fim = b1m.getimagefile(bt.CASA) pos1, maxval = self.maxpos_im( self.dir(fim)) # compute maxpos, since it is not in bdp (yet) logging.info('CubeSum::maxpos,val=%s,%f' % (str(pos1), maxval)) pos.append(pos1[0]) pos.append(pos1[1]) dt.tag("Moment-pos") if self._bdp_in[3] != None: # check if SourceList #print "BDP[3] type: ",self._bdp_in[3]._type # a table (SourceList) b1p = self._bdp_in[3] ra = b1p.table.getFullColumnByName("RA") dec = b1p.table.getFullColumnByName("DEC") peak = b1p.table.getFullColumnByName("Peak") if sources == []: # use the whole SourceList for (r, d, p) in zip(ra, dec, peak): rdc = convert_sexa(r, d) pos.append(rdc[0]) pos.append(rdc[1]) logging.info('SourceList::maxpos,val=%s,%f' % (str(rdc), p)) else: # select specific ones from the source list for ipos in sources: if ipos < len(ra): radec = convert_sexa(ra[ipos], dec[ipos]) pos.append(radec[0]) pos.append(radec[1]) logging.info('SourceList::maxpos,val=%s,%f' % (str(radec), peak[ipos])) else: logging.warning('Skipping illegal source number %d' % ipos) dt.tag("SourceList-pos") # if pos[] still blank, use the AT keyword. if len(pos) == 0: pos = self.getkey("pos") # if still none, try the map center if len(pos) == 0: # @todo this could result in a masked pixel and cause further havoc # @todo could also take the reference pixel, but that could be outside image taskinit.ia.open(self.dir(fin)) s = taskinit.ia.summary() pos = [int(s['shape'][0]) / 2, int(s['shape'][1]) / 2] logging.warning( "No input positions supplied, map center choosen: %s" % str(pos)) dt.tag("map-center") # exhausted all sources where pos[] can be set; if still zero, bail out if len(pos) == 0: raise Exception, "No positions found from input BDP's or pos=" # convert this regular list to a list of tuples with duplicates removed # sadly the order is lost. pos = list(set(zip(pos[0::2], pos[1::2]))) npos = len(pos) dt.tag("open") bdp_name = self.mkext(fin, "csp") b2 = CubeSpectrum_BDP(bdp_name) self.addoutput(b2) imval = range(npos) # spectra, one for each pos (placeholder) planes = range(npos) # labels for the tables (placeholder) images = {} # png's accumulated for i in range(npos): # loop over pos, they can have mixed types now sd = [] caption = "Spectrum" xpos = pos[i][0] ypos = pos[i][1] if type(xpos) != type(ypos): print "POS:", xpos, ypos raise Exception, "position pair not of the same type" if type(xpos) == int: # for integers, boxes are allowed, even multiple box = '%d,%d,%d,%d' % (xpos, ypos, xpos, ypos) # convention for summary is (box) cbox = '(%d,%d,%d,%d)' % (xpos, ypos, xpos, ypos) # use extend here, not append, we want individual values in a list sd.extend([xpos, ypos, cbox]) caption = "Average Spectrum at %s" % cbox if False: # this will fail on 3D cubes (see CAS-7648) imval[i] = casa.imval(self.dir(fin), box=box) else: # work around that CAS-7648 bug # another approach is the ia.getprofile(), see CubeStats, this will # also integrate over regions, imval will not (!!!) region = 'centerbox[[%dpix,%dpix],[1pix,1pix]]' % (xpos, ypos) caption = "Average Spectrum at %s" % region imval[i] = casa.imval(self.dir(fin), region=region) elif type(xpos) == str: # this is tricky, to stay under 1 pixel , or you get a 2x2 back. region = 'centerbox[[%s,%s],[1pix,1pix]]' % (xpos, ypos) caption = "Average Spectrum at %s" % region sd.extend([xpos, ypos, region]) imval[i] = casa.imval(self.dir(fin), region=region) else: print "Data type: ", type(xpos) raise Exception, "Data type for region not handled" dt.tag("imval") flux = imval[i]['data'] if len(flux.shape ) > 1: # rare case if we step on a boundary between cells? logging.warning( "source %d has spectrum shape %s: averaging the spectra" % (i, repr(flux.shape))) flux = np.average(flux, axis=0) logging.debug('minmax: %f %f %d' % (flux.min(), flux.max(), len(flux))) smax.append(flux.max()) if i == 0: # for first point record few extra things if len(imval[i]['coords'].shape) == 2: # normal case: 1 pixel freqs = imval[i]['coords'].transpose( )[2] / 1e9 # convert to GHz @todo: input units ok? elif len(imval[i]['coords'].shape ) == 3: # rare case if > 1 point in imval() freqs = imval[i]['coords'][0].transpose( )[2] / 1e9 # convert to GHz @todo: input units ok? else: logging.fatal( "bad shape %s in freq return from imval - SHOULD NEVER HAPPEN" % imval[i]['coords'].shape) chans = np.arange(len(freqs)) # channels 0..nchans-1 unit = imval[i]['unit'] restfreq = casa.imhead( self.dir(fin), mode="get", hdkey="restfreq")['value'] / 1e9 # in GHz dt.tag("imhead") vel = ( 1 - freqs / restfreq ) * utils.c # @todo : use a function (and what about relativistic?) # construct the Table for CubeSpectrum_BDP # @todo note data needs to be a tuple, later to be column_stack'd labels = ["channel", "frequency", "flux"] units = ["number", "GHz", unit] data = (chans, freqs, flux) if i == 0: # plane 0 : we are allowing a multiplane table, so the first plane is special table = Table(columns=labels, units=units, data=np.column_stack(data), planes=["0"]) else: # planes 1,2,3.... are stacked onto the previous one table.addPlane(np.column_stack(data), "%d" % i) # example plot , one per position for now if use_vel: x = vel xlab = 'VLSR (km/s)' else: x = chans xlab = 'Channel' y = [flux] sd.append(xlab) if type(xpos) == int: # grab the RA/DEC... kludgy h = casa.imstat(self.dir(fin), box=box) ra = h['blcf'].split(',')[0] dec = h['blcf'].split(',')[1] title = '%s %d @ %d,%d = %s,%s' % (bdp_name, i, xpos, ypos, ra, dec) else: title = '%s %d @ %s,%s' % ( bdp_name, i, xpos, ypos ) # or use box, once we allow non-points myplot = APlot(ptype=self._plot_type, pmode=self._plot_mode, abspath=self.dir()) ylab = 'Flux (%s)' % unit p1 = "%s_%d" % (bdp_name, i) myplot.plotter(x, y, title, p1, xlab=xlab, ylab=ylab, thumbnail=True) # Why not use p1 as the key? ii = images["pos%d" % i] = myplot.getFigure(figno=myplot.figno, relative=True) thumbname = myplot.getThumbnail(figno=myplot.figno, relative=True) sd.extend([ii, thumbname, caption, fin]) self.spec_description.append(sd) logging.regression("CSP: %s" % str(smax)) image = Image(images=images, description="CubeSpectrum") b2.setkey("image", image) b2.setkey("table", table) b2.setkey("sigma", csigma) # TODO: not always available b2.setkey("mean", cmean) # TODO: not always available if True: # @todo only first plane due to limitation in exportTable() islash = bdp_name.find('/') if islash < 0: tabname = self.dir("testCubeSpectrum.tab") else: tabname = self.dir(bdp_name[:islash] + "/testCubeSpectrum.tab") table.exportTable(tabname, cols=["frequency", "flux"]) dt.tag("done") # For a single spectrum this is # SummaryEntry([[data for spec1]], "CubeSpectrum_AT",taskid) # For multiple spectra this is # SummaryEntry([[data for spec1],[data for spec2],...], "CubeSpectrum_AT",taskid) self._summary["spectra"] = SummaryEntry(self.spec_description, "CubeSpectrum_AT", self.id(True)) taskargs = "pos=" + str(pos) taskargs += ' <span style="background-color:white"> ' + fin.split( '/')[0] + ' </span>' for v in self._summary: self._summary[v].setTaskArgs(taskargs) dt.tag("summary") dt.end()
def convert(self, chan=None, freq=None, velocity=None, spec=None, file=None, separator=None, restfreq=None, vlsr=None): """ Method to convert input data (either files or arrays) into a CubeSpectrum_BDP. If files are used then then the columns containing the frequency and the intensity must be given (channel numbers are optional). Any number of files can be given, but all spectra must have the same length as they are assumed to come from the same data source. Blank lines and lines starting with a comment '#' will be skipped, additionally any line with too few columns will be skipped. If arrays are used an input then both the frequency and intensity must be specified (the channel numbers are optional). Both lists and numpy arrays are accepted as inputs. Multidimmensional arrays are supported with the following parameters: + A single frequency list can be given to cover all input spectra, otherwise the shape of the frequency array must match that of the spectra + A single channel list can be given to cover all input spectra, otherwise the shape of the channel array must match that of the spectra + All spectra must have the same length If a channel array is not specified then one will be constructed with the following parameters: + The channel numbers will start at 0 (casa convention) + The first entry in the spectrum will be considered the first channel, regardless of whether the frequency array increases or decreases. Additionally, if there is velocity axis, but no frequency axis, a frequency axis can be constructed by specifying a rest frequency (restfreq), and vlsr. The convert method will return a single CubeSpectrum_BDP instance holding all input spectra along with an image of each. Parameters ---------- chan : array or int An array holding the channel numbers for the data, multidimmensional arrays are supported. If an integer is specified then it is the number of the column in the file which contains the channel numbers, column numbers are 1 based. Default: None freq : array An array holding the frequencies for the data, multidimmensional arrays are supported. If an integer is specified then it is the number of the column in the file which contains the frequencies, column numbers are 1 based. Default: None velocity : array An array holding the velocity for the data, multidimmensional arrays are supported. If an integer is specified then it is the number of the column in the file which contains the velcoties, column numbers are 1 based. If this parameter is specified then restfreq and vlsr must also be specified. Default: None spec : array An array holding the intesities of the data, multidimmensional arrays are supported. If an integer is specified then it is the number of the column in the file which contains the intensities, column numbers are 1 based. Default: None file : list or str A single file name or a list of file names to be read in for spectra. Default: None separator : str The column separator for reading in the data files. Default: None (any whitespace) restfreq : float The rest frequency to use to convert the spectra from velocity to frequency units. The rest frequency is in GHz. Default: None (no conversion done) vlsr : float The reference velocity for converting a velocity axis to frequency. The units are km/s. If this is not set then it is assumed that the vlsr is 0.0. Default: None Returns ------- CubeSpectrum_BDP instance containing all of the inpur spectra. """ self.restfreq = restfreq self.vlsr = vlsr # if a string was given as the file name then turn it into a list so it can be iterated over if isinstance(file, str): self.file = [file] else: self.file = file # do some error checking if isinstance(chan, np.ndarray) or isinstance(chan, list): if isinstance(chan, list): self.chan = np.array(chan) else: self.chan = copy.deepcopy(chan) self.chancol = -1 elif isinstance(chan, int): self.chancol = chan self.chan = None else: self.chancol = -1 self.chan = None if isinstance(freq, np.ndarray) or isinstance(freq, list): if isinstance(freq, list): self.freq = np.array(freq) else: self.freq = copy.deepcopy(freq) self.freqcol = -1 elif isinstance(freq, int): self.freqcol = freq self.freq = None else: self.freqcol = -1 self.freq = None if isinstance(velocity, np.ndarray) or isinstance(velocity, list): if isinstance(velocity, list): self.freq = np.array(velocity, dtype=np.float) else: self.freq = velocity.astype(np.float) for i, frq in enumerate(self.freq): self.freq[i] = self.restfreq + utils.veltofreq(frq - self.vlsr, self.restfreq) self.freqcol = -1 elif isinstance(velocity, int): self.velcol = velocity self.velocity = None else: self.velcol = -1 self.velocity = None if isinstance(spec, np.ndarray) or isinstance(spec, list): if isinstance(spec, list): self.spec = np.array(spec) else: self.spec = copy.deepcopy(spec) self.speccol = -1 elif isinstance(spec, int): self.speccol = spec self.spec = None else: self.speccol = -1 self.spec = None if isinstance(separator, str): self.separator = separator spectra = [] # read in the data from any files if self.file: for fl in self.file: spectra.append(self.getfile(fl)) else: # convert the input arrays singlefreq = False singlechan = False havechan = False # make sure they have the same shape or that the frequency array is 1D if self.spec.shape != self.freq.shape: if len(self.spec.shape) == 1 and len(self.freq.shape) != 1: raise Exception("Frequency axis and spectral axis do not have the same shape.") else: singlefreq = True # make sure they have the same shape or that the channel array is 1D if self.chan: havechan = True if self.spec.shape != self.chan.shape: if len(spec.shape) == 1 and len(self.chan.shape) != 1: raise Exception("Channel axis and spectral axis do not have the same shape.") else: singlechan = True # if the arrays are more than 1D, then go through each if len(self.spec.shape) > 1: for i in range(self.spec.shape[0]): spec = self.spec[i] if not havechan: chan = np.arange(len(spec)) elif singlechan: chan = self.chan else: chan = self.chan[i] if singlefreq: freq = self.freq else: freq = self.freq[i] spectra.append(Spectrum(spec=spec, freq=freq, chans=chan)) else: # construct the channel array if needed if not havechan: self.chan = np.arange(len(self.spec)) spectra.append(Spectrum(spec=self.spec, freq=self.freq, chans=self.chan)) first = True images = {} # make images from the spectra for i, spec in enumerate(spectra): data = (spec.chans(masked=False), spec.freq(masked=False), spec.spec(csub=False, masked=False)) if first: table = Table(columns=["channel", "frequency", "flux"], units=["number", "GHz", "Unknown"], data=np.column_stack(data), planes=["0"]) first = False else: table.addPlane(np.column_stack(data), "%i" % i) myplot = APlot(ptype=admit.PlotControl.PNG, pmode=admit.PlotControl.BATCH, abspath=os.getcwd()) myplot.plotter(spec.freq(masked=False), [spec.spec(csub=False, masked=False)], title="Spectrum %i" % i, figname="fig_%i" % i, xlab="Frequency", ylab="Intensity", thumbnail=True) # Why not use p1 as the key? images["fig%i" % i] = myplot.getFigure(figno=myplot.figno, relative=True) image = Image(images=images, description="Spectra") # construct the BDP bdp = CubeSpectrum_BDP(image=image, table=table) return bdp
def run(self): """Runs the task. Parameters ---------- None Returns ------- None """ self._summary = {} dt = utils.Dtime("CubeSpectrum") seed = self.getkey("seed") if seed <= 0: np.random.seed() else: np.random.seed(seed) #print "RANDOM.GET_STATE:",np.random.get_state() contin = self.getkey("contin") rms = 1.0 # not a user parameter, we do all spectra in S/N space f0 = self.getkey("freq") # central frequency in band df = self.getkey("delta") / 1000.0 # channel width (in GHz) nspectra = self.getkey("nspectra") taskargs = " contin=%f freq=%f delta=%f nspectra=%f " % (contin, f0, df, nspectra) spec = range(nspectra) dt.tag("start") if self.getkey("file") != "": print "READING spectrum from", self.getkey("file") (freq, spec[0]) = getspec(self.getkey("file")) nchan = len(freq) print "Spectrum %d chans from %f to %f: min/max = %f %f" % ( nchan, freq.min(), freq.max(), spec[0].min(), spec[0].max()) # @todo nspectra>1 not tested for i in range(1, nspectra): spec[i] = deepcopy(spec[0]) dt.tag("getspec") else: nchan = self.getkey("nchan") freq = np.arange(nchan, dtype=np.float64) center = int(nchan / 2) for i in range(nchan): freq[i] = f0 + (float((i - center)) * df) for i in range(nspectra): spec[i] = np.zeros(nchan) chans = np.arange(nchan) taskargs += " nchan = %d" % nchan for i in range(nspectra): if seed >= 0: spec[i] += np.random.normal(contin, rms, nchan) # print "MEAN/STD",spec[i].mean(),spec[i].std() lines = self.getkey("lines") sls = SpectralLineSearch(False) for item in self.getkey("transitions"): kw = { "include_only_nrao": True, "line_strengths": ["ls1", "ls2"], "energy_levels": ["el2", "el4"], "fel": True, "species": item[0] } results = sls.search(item[1][0], item[1][1], "off", **kw) # look at line strengths if len(results) > 0: mx = 0.0 indx = -1 for i in range(len(results)): if results[i].getkey("linestrength") > mx: indx = i mx = results[i].getkey("linestrength") for res in results: if mx > 0.0: lines.append([ item[2] * res.getkey("linestrength") / mx, res.getkey("frequency") + utils.veltofreq(item[4], res.getkey("frequency")), item[3] ]) else: lines.append([ item[2], res.getkey("frequency") + utils.veltofreq(item[4], res.getkey("frequency")), item[3] ]) for item in lines: for i in range(nspectra): spec[i] += utils.gaussian1D(freq, item[0], item[1], utils.veltofreq(item[2], item[1])) if self.getkey("hanning"): for i in range(nspectra): filter = Filter1D.Filter1D(spec[i], "hanning", **{"width": 3}) spec[i] = filter.run() dt.tag("hanning") center = int(nchan / 2) dt.tag("open") bdp_name = self.mkext("Genspec", "csp") b2 = CubeSpectrum_BDP(bdp_name) self.addoutput(b2) images = {} # png's accumulated for i in range(nspectra): sd = [] caption = "Generated Spectrum %d" % i # construct the Table for CubeSpectrum_BDP # @todo note data needs to be a tuple, later to be column_stack'd labels = ["channel", "frequency", "flux"] units = ["number", "GHz", ""] data = (chans, freq, spec[i]) # plane 0 : we are allowing a multiplane table, so the first plane is special if i == 0: table = Table(columns=labels, units=units, data=np.column_stack(data), planes=["0"]) else: table.addPlane(np.column_stack(data), "%d" % i) # example plot , one per position for now x = chans xlab = 'Channel' y = [spec[i]] sd.append(xlab) myplot = APlot(ptype=self._plot_type, pmode=self._plot_mode, abspath=self.dir()) ylab = 'Flux' p1 = "%s_%d" % (bdp_name, i) myplot.plotter(x, y, "", p1, xlab=xlab, ylab=ylab, thumbnail=True) # Why not use p1 as the key? ii = images["pos%d" % i] = myplot.getFigure(figno=myplot.figno, relative=True) thumbname = myplot.getThumbnail(figno=myplot.figno, relative=True) image = Image(images=images, description="CubeSpectrum") sd.extend([ii, thumbname, caption]) self.spec_description.append(sd) self._summary["spectra"] = SummaryEntry(self.spec_description, "GenerateSpectrum_AT", self.id(True), taskargs) dt.tag("table") b2.setkey("image", image) b2.setkey("table", table) b2.setkey("sigma", rms) b2.setkey("mean", contin) dt.tag("done") dt.end()
def convert(self, chan=None, freq=None, velocity=None, spec=None, file=None, separator=None, restfreq=None, vlsr=None): """ Method to convert input data (either files or arrays) into a CubeSpectrum_BDP. If files are used then then the columns containing the frequency and the intensity must be given (channel numbers are optional). Any number of files can be given, but all spectra must have the same length as they are assumed to come from the same data source. Blank lines and lines starting with a comment '#' will be skipped, additionally any line with too few columns will be skipped. If arrays are used an input then both the frequency and intensity must be specified (the channel numbers are optional). Both lists and numpy arrays are accepted as inputs. Multidimmensional arrays are supported with the following parameters: + A single frequency list can be given to cover all input spectra, otherwise the shape of the frequency array must match that of the spectra + A single channel list can be given to cover all input spectra, otherwise the shape of the channel array must match that of the spectra + All spectra must have the same length If a channel array is not specified then one will be constructed with the following parameters: + The channel numbers will start at 0 (casa convention) + The first entry in the spectrum will be considered the first channel, regardless of whether the frequency array increases or decreases. Additionally, if there is velocity axis, but no frequency axis, a frequency axis can be constructed by specifying a rest frequency (restfreq), and vlsr. The convert method will return a single CubeSpectrum_BDP instance holding all input spectra along with an image of each. Parameters ---------- chan : array or int An array holding the channel numbers for the data, multidimmensional arrays are supported. If an integer is specified then it is the number of the column in the file which contains the channel numbers, column numbers are 1 based. Default: None freq : array An array holding the frequencies for the data, multidimmensional arrays are supported. If an integer is specified then it is the number of the column in the file which contains the frequencies, column numbers are 1 based. Default: None velocity : array An array holding the velocity for the data, multidimmensional arrays are supported. If an integer is specified then it is the number of the column in the file which contains the velcoties, column numbers are 1 based. If this parameter is specified then restfreq and vlsr must also be specified. Default: None spec : array An array holding the intesities of the data, multidimmensional arrays are supported. If an integer is specified then it is the number of the column in the file which contains the intensities, column numbers are 1 based. Default: None file : list or str A single file name or a list of file names to be read in for spectra. Default: None separator : str The column separator for reading in the data files. Default: None (any whitespace) restfreq : float The rest frequency to use to convert the spectra from velocity to frequency units. The rest frequency is in GHz. Default: None (no conversion done) vlsr : float The reference velocity for converting a velocity axis to frequency. The units are km/s. If this is not set then it is assumed that the vlsr is 0.0. Default: None Returns ------- CubeSpectrum_BDP instance containing all of the inpur spectra. """ self.restfreq = restfreq self.vlsr = vlsr # if a string was given as the file name then turn it into a list so it can be iterated over if isinstance(file, str): self.file = [file] else: self.file = file # do some error checking if isinstance(chan, np.ndarray) or isinstance(chan, list): if isinstance(chan, list): self.chan = np.array(chan) else: self.chan = copy.deepcopy(chan) self.chancol = -1 elif isinstance(chan, int): self.chancol = chan self.chan = None else: self.chancol = -1 self.chan = None if isinstance(freq, np.ndarray) or isinstance(freq, list): if isinstance(freq, list): self.freq = np.array(freq) else: self.freq = copy.deepcopy(freq) self.freqcol = -1 elif isinstance(freq, int): self.freqcol = freq self.freq = None else: self.freqcol = -1 self.freq = None if isinstance(velocity, np.ndarray) or isinstance(velocity, list): if isinstance(velocity, list): self.freq = np.array(velocity, dtype=np.float) else: self.freq = velocity.astype(np.float) for i, frq in enumerate(self.freq): self.freq[i] = self.restfreq + utils.veltofreq( frq - self.vlsr, self.restfreq) self.freqcol = -1 elif isinstance(velocity, int): self.velcol = velocity self.velocity = None else: self.velcol = -1 self.velocity = None if isinstance(spec, np.ndarray) or isinstance(spec, list): if isinstance(spec, list): self.spec = np.array(spec) else: self.spec = copy.deepcopy(spec) self.speccol = -1 elif isinstance(spec, int): self.speccol = spec self.spec = None else: self.speccol = -1 self.spec = None if isinstance(separator, str): self.separator = separator spectra = [] # read in the data from any files if self.file: for fl in self.file: spectra.append(self.getfile(fl)) else: # convert the input arrays singlefreq = False singlechan = False havechan = False # make sure they have the same shape or that the frequency array is 1D if self.spec.shape != self.freq.shape: if len(self.spec.shape) == 1 and len(self.freq.shape) != 1: raise Exception( "Frequency axis and spectral axis do not have the same shape." ) else: singlefreq = True # make sure they have the same shape or that the channel array is 1D if self.chan: havechan = True if self.spec.shape != self.chan.shape: if len(spec.shape) == 1 and len(self.chan.shape) != 1: raise Exception( "Channel axis and spectral axis do not have the same shape." ) else: singlechan = True # if the arrays are more than 1D, then go through each if len(self.spec.shape) > 1: for i in range(self.spec.shape[0]): spec = self.spec[i] if not havechan: chan = np.arange(len(spec)) elif singlechan: chan = self.chan else: chan = self.chan[i] if singlefreq: freq = self.freq else: freq = self.freq[i] spectra.append(Spectrum(spec=spec, freq=freq, chans=chan)) else: # construct the channel array if needed if not havechan: self.chan = np.arange(len(self.spec)) spectra.append( Spectrum(spec=self.spec, freq=self.freq, chans=self.chan)) first = True images = {} # make images from the spectra for i, spec in enumerate(spectra): data = (spec.chans(masked=False), spec.freq(masked=False), spec.spec(csub=False, masked=False)) if first: table = Table(columns=["channel", "frequency", "flux"], units=["number", "GHz", "Unknown"], data=np.column_stack(data), planes=["0"]) first = False else: table.addPlane(np.column_stack(data), "%i" % i) myplot = APlot(ptype=admit.PlotControl.PNG, pmode=admit.PlotControl.BATCH, abspath=os.getcwd()) myplot.plotter(spec.freq(masked=False), [spec.spec(csub=False, masked=False)], title="Spectrum %i" % i, figname="fig_%i" % i, xlab="Frequency", ylab="Intensity", thumbnail=True) # Why not use p1 as the key? images["fig%i" % i] = myplot.getFigure(figno=myplot.figno, relative=True) image = Image(images=images, description="Spectra") # construct the BDP bdp = CubeSpectrum_BDP(image=image, table=table) return bdp
def run(self): """ The run method, calculates the moments and creates the BDP(s) Parameters ---------- None Returns ------- None """ self._summary = {} momentsummary = [] dt = utils.Dtime("Moment") # variable to track if we are using a single cutoff for all moment maps allsame = False moments = self.getkey("moments") numsigma = self.getkey("numsigma") mom0clip = self.getkey("mom0clip") # determine if there is only 1 cutoff or if there is a cutoff for each moment if len(moments) != len(numsigma): if len(numsigma) != 1: raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.") allsame = True # default moment file extensions, this is information copied from casa.immoments() momentFileExtensions = {-1: ".average", 0: ".integrated", 1: ".weighted_coord", 2: ".weighted_dispersion_coord", 3: ".median", 4: "", 5: ".standard_deviation", 6: ".rms", 7: ".abs_mean_dev", 8: ".maximum", 9: ".maximum_coord", 10: ".minimum", 11: ".minimum_coord", } logging.debug("MOMENT: %s %s %s" % (str(moments), str(numsigma), str(allsame))) # get the input casa image from bdp[0] # also get the channels the line actually covers (if any) bdpin = self._bdp_in[0] infile = bdpin.getimagefile(bt.CASA) chans = self.getkey("chans") # the basename of the moments, we will append _0, _1, etc. basename = self.mkext(infile, "mom") fluxname = self.mkext(infile, "flux") # beamarea = nppb(self.dir(infile)) beamarea = 1.0 # until we have it from the MOM0 map sigma0 = self.getkey("sigma") sigma = sigma0 ia = taskinit.iatool() dt.tag("open") # if no CubseStats BDP was given and no sigma was specified, find a # noise level via casa.imstat() if self._bdp_in[1] is None and sigma <= 0.0: raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff") elif self._bdp_in[1] is not None: sigma = self._bdp_in[1].get("sigma") # immoments is a bit peculiar. If you give one moment, it will use # exactly the outfile you picked for multiple moments, it will pick # extensions such as .integrated [0], .weighted_coord [1] etc. # we loop over the moments and will use the numeric extension instead. # Might be laborious loop for big input cubes # # arguments for immoments args = {"imagename" : self.dir(infile), "moments" : moments, "outfile" : self.dir(basename)} # set the channels if given if chans != "": args["chans"] = chans # error check the mom0clip input if mom0clip > 0.0 and not 0 in moments: logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.") # add moment0 to the list of computed moments, but it has to be first moments.insert(0,0) if not allsame: numsigma.insert(0, 2.0*sigma) if allsame: # this is only executed now if len(moments) > 1 and len(cutoff)==1 args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma] casa.immoments(**args) dt.tag("immoments-all") else: # this is execute if len(moments)==len(cutoff) , even when len=1 for i in range(len(moments)): args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma] args["moments"] = moments[i] args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]]) casa.immoments(**args) dt.tag("immoments-%d" % moments[i]) taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) if sigma0 > 0: taskargs = taskargs + " sigma=%.2f" % sigma0 if mom0clip > 0: taskargs = taskargs + " mom0clip=%g" % mom0clip if chans == "": taskargs = taskargs + " chans=all" else: taskargs = taskargs + " chans=%s" % str(chans) taskargs += ' <span style="background-color:white"> ' + basename.split('/')[0] + ' </span>' # generate the mask to be applied to all but moment 0 if mom0clip > 0.0: # get the statistics from mom0 map # this is usually a very biased map, so unclear if mom0sigma is all that reliable args = {"imagename": self.dir(infile)} stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0])) mom0sigma = float(stat["sigma"][0]) # generate a temporary masked file, mask will be copied to other moments args = {"imagename" : self.dir(basename + momentFileExtensions[0]), "expr" : 'IM0[IM0>%f]' % (mom0clip * mom0sigma), "outfile" : self.dir("mom0.masked") } casa.immath(**args) # get the default mask name ia.open(self.dir("mom0.masked")) defmask = ia.maskhandler('default') ia.close() dt.tag("mom0clip") # loop over moments to rename them to _0, _1, _2 etc. # apply a mask as well for proper histogram creation map = {} myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) for mom in moments: figname = imagename = "%s_%i" % (basename, mom) tempname = basename + momentFileExtensions[mom] # rename and remove the old one if there is one utils.rename(self.dir(tempname), self.dir(imagename)) # copy the moment0 mask if requested; this depends on that mom0 was done before if mom0clip > 0.0 and mom != 0: #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0]) #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0]) makemask(mode="copy", inpimage=self.dir("mom0.masked"), output="%s:%s" % (self.dir(imagename), defmask[0]), overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"), defmask[0])) ia.open(self.dir(imagename)) ia.maskhandler('set', defmask) ia.close() dt.tag("makemask") if mom == 0: beamarea = nppb(self.dir(imagename)) implot.plotter(rasterfile=imagename,figname=figname, colorwedge=True,zoom=self.getkey("zoom")) imagepng = implot.getFigure(figno=implot.figno,relative=True) thumbname = implot.getThumbnail(figno=implot.figno,relative=True) images = {bt.CASA : imagename, bt.PNG : imagepng} thumbtype=bt.PNG dt.tag("implot") # get the data for a histogram (ia access is about 1000-2000 faster than imval()) map[mom] = casautil.getdata(self.dir(imagename)) data = map[mom].compressed() dt.tag("getdata") # make the histogram plot # get the label for the x axis bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit") # object for the caption objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object") # Make the histogram plot # Since we give abspath in the constructor, figname should be relative auxname = imagename + '_histo' auxtype = bt.PNG myplot.histogram(columns = data, figname = auxname, xlab = bunit, ylab = "Count", title = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True) casaimage = Image(images = images, auxiliary = auxname, auxtype = auxtype, thumbnail = thumbname, thumbnailtype = thumbtype) auxname = myplot.getFigure(figno=myplot.figno,relative=True) auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True) if hasattr(self._bdp_in[0], "line"): # SpwCube doesn't have Line line = deepcopy(getattr(self._bdp_in[0], "line")) if not isinstance(line, Line): line = Line(name="Unidentified") else: # fake a Line if there wasn't one line = Line(name="Unidentified") # add the BDP to the output array self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom, image=deepcopy(casaimage), line=line)) dt.tag("ren+mask_%d" % mom) imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname) auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname) thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption, auxname, auxthumb, auxcaption, infile] momentsummary.append(thismomentsummary) if map.has_key(0) and map.has_key(1) and map.has_key(2): logging.debug("MAPs present: %s" % (map.keys())) # m0 needs a new mask, inherited from the more restricted m1 (and m2) m0 = ma.masked_where(map[1].mask,map[0]) m1 = map[1] m2 = map[2] m01 = m0*m1 m02 = m0*m1*m1 m22 = m0*m2*m2 sum0 = m0.sum() vmean = m01.sum()/sum0 # lacking the full 3D cube, get two estimates and take the max sig1 = math.sqrt(m02.sum()/sum0 - vmean*vmean) sig2 = m2.max() #vsig = max(sig1,sig2) vsig = sig1 # consider clipping in the masked array (mom0clip) # @todo i can't use info from line, so just borrow basename for now for grepping # this also isn't really the flux, the points per beam is still in there loc = basename.rfind('/') sum1 = ma.masked_less(map[0],0.0).sum() # mom0clip # print out: LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0] s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9 s_line = line.frequency if loc>0: if basename[:loc][0:2] == 'U_': # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band if abs(vmean) > vsig: vwarn = '*' else: vwarn = '' vlsr = vmean + (1.0-s_line/s_rest)*utils.c msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig) else: # for identified lines we'll assume the ID was correct and not bother with RESTFREQ msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig) else: msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL" ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig) logging.regression(msg) dt.tag("mom0flux") # create a histogram of flux per channel # grab the X coordinates for the histogram, we want them in km/s # restfreq should also be in summary restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9 # in GHz # print "PJT %.10f %.10f" % (restfreq,s_rest) imval0 = casa.imval(self.dir(infile)) freqs = imval0['coords'].transpose()[2]/1e9 x = (1-freqs/restfreq)*utils.c # h = casa.imstat(self.dir(infile), axes=[0,1]) if h.has_key('flux'): flux0 = h['flux'] else: flux0 = h['sum']/beamarea flux0sum = flux0.sum() * abs(x[1]-x[0]) # @todo make a flux1 with fluxes derived from a good mask flux1 = flux0 # construct histogram title = 'Flux Spectrum (%g)' % flux0sum xlab = 'VLSR (km/s)' ylab = 'Flux (Jy)' myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True) dt.tag("flux-spectrum") self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", self.id(True), taskargs) # get rid of the temporary mask if mom0clip > 0.0: utils.rmdir(self.dir("mom0.masked")) dt.tag("done") dt.end()
def run(self): """Runs the task. Parameters ---------- None Returns ------- None """ self._summary = {} dt = utils.Dtime("CubeSpectrum") # our BDP's # b1 = input BDP # b1s = optional input CubeSpectrum # b1m = optional input Moment # b1p = optional input SourceList for positions # b2 = output BDP b1 = self._bdp_in[0] # check input SpwCube (or LineCube) fin = b1.getimagefile(bt.CASA) if self._bdp_in[0]._type == bt.LINECUBE_BDP: use_vel = True else: use_vel = False sources = self.getkey("sources") pos = [] # blank it first, then try and grab it from the optional bdp_in's cmean = 0.0 csigma = 0.0 smax = [] # accumulate max in each spectrum for regression self.spec_description = [] # for summary() if self._bdp_in[1] != None: # check if CubeStats_BDP #print "BDP[1] type: ",self._bdp_in[1]._type if self._bdp_in[1]._type != bt.CUBESTATS_BDP: raise Exception,"bdp_in[1] not a CubeStats_BDP, should never happen" # a table (cubestats) b1s = self._bdp_in[1] pos.append(b1s.maxpos[0]) pos.append(b1s.maxpos[1]) logging.info('CubeStats::maxpos,val=%s,%f' % (str(b1s.maxpos),b1s.maxval)) cmean = b1s.mean csigma = b1s.sigma dt.tag("CubeStats-pos") if self._bdp_in[2] != None: # check if Moment_BDP (probably from CubeSum) #print "BDP[2] type: ",self._bdp_in[2]._type if self._bdp_in[2]._type != bt.MOMENT_BDP: raise Exception,"bdp_in[2] not a Moment_BDP, should never happen" b1m = self._bdp_in[2] fim = b1m.getimagefile(bt.CASA) pos1,maxval = self.maxpos_im(self.dir(fim)) # compute maxpos, since it is not in bdp (yet) logging.info('CubeSum::maxpos,val=%s,%f' % (str(pos1),maxval)) pos.append(pos1[0]) pos.append(pos1[1]) dt.tag("Moment-pos") if self._bdp_in[3] != None: # check if SourceList #print "BDP[3] type: ",self._bdp_in[3]._type # a table (SourceList) b1p = self._bdp_in[3] ra = b1p.table.getFullColumnByName("RA") dec = b1p.table.getFullColumnByName("DEC") peak = b1p.table.getFullColumnByName("Peak") if sources == []: # use the whole SourceList for (r,d,p) in zip(ra,dec,peak): rdc = convert_sexa(r,d) pos.append(rdc[0]) pos.append(rdc[1]) logging.info('SourceList::maxpos,val=%s,%f' % (str(rdc),p)) else: # select specific ones from the source list for ipos in sources: if ipos < len(ra): radec = convert_sexa(ra[ipos],dec[ipos]) pos.append(radec[0]) pos.append(radec[1]) logging.info('SourceList::maxpos,val=%s,%f' % (str(radec),peak[ipos])) else: logging.warning('Skipping illegal source number %d' % ipos) dt.tag("SourceList-pos") # if pos[] still blank, use the AT keyword. if len(pos) == 0: pos = self.getkey("pos") # if still none, try the map center if len(pos) == 0: # @todo this could result in a masked pixel and cause further havoc # @todo could also take the reference pixel, but that could be outside image taskinit.ia.open(self.dir(fin)) s = taskinit.ia.summary() pos = [int(s['shape'][0])/2, int(s['shape'][1])/2] logging.warning("No input positions supplied, map center choosen: %s" % str(pos)) dt.tag("map-center") # exhausted all sources where pos[] can be set; if still zero, bail out if len(pos) == 0: raise Exception,"No positions found from input BDP's or pos=" # convert this regular list to a list of tuples with duplicates removed # sadly the order is lost. pos = list(set(zip(pos[0::2],pos[1::2]))) npos = len(pos) dt.tag("open") bdp_name = self.mkext(fin,"csp") b2 = CubeSpectrum_BDP(bdp_name) self.addoutput(b2) imval = range(npos) # spectra, one for each pos (placeholder) planes = range(npos) # labels for the tables (placeholder) images = {} # png's accumulated for i in range(npos): # loop over pos, they can have mixed types now sd = [] caption = "Spectrum" xpos = pos[i][0] ypos = pos[i][1] if type(xpos) != type(ypos): print "POS:",xpos,ypos raise Exception,"position pair not of the same type" if type(xpos)==int: # for integers, boxes are allowed, even multiple box = '%d,%d,%d,%d' % (xpos,ypos,xpos,ypos) # convention for summary is (box) cbox = '(%d,%d,%d,%d)' % (xpos,ypos,xpos,ypos) # use extend here, not append, we want individual values in a list sd.extend([xpos,ypos,cbox]) caption = "Average Spectrum at %s" % cbox if False: # this will fail on 3D cubes (see CAS-7648) imval[i] = casa.imval(self.dir(fin),box=box) else: # work around that CAS-7648 bug # another approach is the ia.getprofile(), see CubeStats, this will # also integrate over regions, imval will not (!!!) region = 'centerbox[[%dpix,%dpix],[1pix,1pix]]' % (xpos,ypos) caption = "Average Spectrum at %s" % region imval[i] = casa.imval(self.dir(fin),region=region) elif type(xpos)==str: # this is tricky, to stay under 1 pixel , or you get a 2x2 back. region = 'centerbox[[%s,%s],[1pix,1pix]]' % (xpos,ypos) caption = "Average Spectrum at %s" % region sd.extend([xpos,ypos,region]) imval[i] = casa.imval(self.dir(fin),region=region) else: print "Data type: ",type(xpos) raise Exception,"Data type for region not handled" dt.tag("imval") flux = imval[i]['data'] if len(flux.shape) > 1: # rare case if we step on a boundary between cells? logging.warning("source %d has spectrum shape %s: averaging the spectra" % (i,repr(flux.shape))) flux = np.average(flux,axis=0) logging.debug('minmax: %f %f %d' % (flux.min(),flux.max(),len(flux))) smax.append(flux.max()) if i==0: # for first point record few extra things if len(imval[i]['coords'].shape) == 2: # normal case: 1 pixel freqs = imval[i]['coords'].transpose()[2]/1e9 # convert to GHz @todo: input units ok? elif len(imval[i]['coords'].shape) == 3: # rare case if > 1 point in imval() freqs = imval[i]['coords'][0].transpose()[2]/1e9 # convert to GHz @todo: input units ok? else: logging.fatal("bad shape %s in freq return from imval - SHOULD NEVER HAPPEN" % imval[i]['coords'].shape) chans = np.arange(len(freqs)) # channels 0..nchans-1 unit = imval[i]['unit'] restfreq = casa.imhead(self.dir(fin),mode="get",hdkey="restfreq")['value']/1e9 # in GHz dt.tag("imhead") vel = (1-freqs/restfreq)*utils.c # @todo : use a function (and what about relativistic?) # construct the Table for CubeSpectrum_BDP # @todo note data needs to be a tuple, later to be column_stack'd labels = ["channel" ,"frequency" ,"flux" ] units = ["number" ,"GHz" ,unit ] data = (chans ,freqs ,flux ) if i==0: # plane 0 : we are allowing a multiplane table, so the first plane is special table = Table(columns=labels,units=units,data=np.column_stack(data),planes=["0"]) else: # planes 1,2,3.... are stacked onto the previous one table.addPlane(np.column_stack(data),"%d" % i) # example plot , one per position for now if use_vel: x = vel xlab = 'VLSR (km/s)' else: x = chans xlab = 'Channel' y = [flux] sd.append(xlab) if type(xpos)==int: # grab the RA/DEC... kludgy h = casa.imstat(self.dir(fin),box=box) ra = h['blcf'].split(',')[0] dec = h['blcf'].split(',')[1] title = '%s %d @ %d,%d = %s,%s' % (bdp_name,i,xpos,ypos,ra,dec) else: title = '%s %d @ %s,%s' % (bdp_name,i,xpos,ypos) # or use box, once we allow non-points myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode, abspath=self.dir()) ylab = 'Flux (%s)' % unit p1 = "%s_%d" % (bdp_name,i) myplot.plotter(x,y,title,p1,xlab=xlab,ylab=ylab,thumbnail=True) # Why not use p1 as the key? ii = images["pos%d" % i] = myplot.getFigure(figno=myplot.figno,relative=True) thumbname = myplot.getThumbnail(figno=myplot.figno,relative=True) sd.extend([ii, thumbname, caption, fin]) self.spec_description.append(sd) logging.regression("CSP: %s" % str(smax)) image = Image(images=images, description="CubeSpectrum") b2.setkey("image",image) b2.setkey("table",table) b2.setkey("sigma",csigma) # TODO: not always available b2.setkey("mean",cmean) # TODO: not always available if True: # @todo only first plane due to limitation in exportTable() islash = bdp_name.find('/') if islash < 0: tabname = self.dir("testCubeSpectrum.tab") else: tabname = self.dir(bdp_name[:islash] + "/testCubeSpectrum.tab") table.exportTable(tabname,cols=["frequency" ,"flux"]) dt.tag("done") # For a single spectrum this is # SummaryEntry([[data for spec1]], "CubeSpectrum_AT",taskid) # For multiple spectra this is # SummaryEntry([[data for spec1],[data for spec2],...], "CubeSpectrum_AT",taskid) self._summary["spectra"] = SummaryEntry(self.spec_description,"CubeSpectrum_AT",self.id(True)) taskargs = "pos="+str(pos) taskargs += ' <span style="background-color:white"> ' + fin.split('/')[0] + ' </span>' for v in self._summary: self._summary[v].setTaskArgs(taskargs) dt.tag("summary") dt.end()
def run(self): """Runs the task. Parameters ---------- None Returns ------- None """ self._summary = {} dt = utils.Dtime("CubeSpectrum") seed = self.getkey("seed") if seed <= 0: np.random.seed() else: np.random.seed(seed) #print "RANDOM.GET_STATE:",np.random.get_state() contin = self.getkey("contin") rms = 1.0 # not a user parameter, we do all spectra in S/N space f0 = self.getkey("freq") # central frequency in band df = self.getkey("delta") / 1000.0 # channel width (in GHz) nspectra = self.getkey("nspectra") taskargs = " contin=%f freq=%f delta=%f nspectra=%f " % (contin,f0,df,nspectra) spec = range(nspectra) dt.tag("start") if self.getkey("file") != "": print "READING spectrum from",self.getkey("file") (freq, spec[0]) = getspec(self.getkey("file")) nchan = len(freq) print "Spectrum %d chans from %f to %f: min/max = %f %f" % (nchan, freq.min(), freq.max(), spec[0].min(), spec[0].max()) # @todo nspectra>1 not tested for i in range(1,nspectra): spec[i] = deepcopy(spec[0]) dt.tag("getspec") else: nchan = self.getkey("nchan") freq = np.arange(nchan, dtype=np.float64) center = int(nchan/2) for i in range(nchan): freq[i] = f0 + (float((i - center)) * df) for i in range(nspectra): spec[i] = np.zeros(nchan) chans = np.arange(nchan) taskargs += " nchan = %d" % nchan for i in range(nspectra): if seed >= 0: spec[i] += np.random.normal(contin, rms, nchan) # print "MEAN/STD",spec[i].mean(),spec[i].std() lines = self.getkey("lines") sls = SpectralLineSearch(False) for item in self.getkey("transitions"): kw = {"include_only_nrao" : True, "line_strengths": ["ls1", "ls2"], "energy_levels" : ["el2", "el4"], "fel" : True, "species" : item[0] } results = sls.search(item[1][0], item[1][1], "off", **kw) # look at line strengths if len(results) > 0: mx = 0.0 indx = -1 for i in range(len(results)): if results[i].getkey("linestrength") > mx: indx = i mx = results[i].getkey("linestrength") for res in results: if mx > 0.0: lines.append([item[2] * res.getkey("linestrength") / mx, res.getkey("frequency") + utils.veltofreq(item[4], res.getkey("frequency")), item[3]]) else: lines.append([item[2], res.getkey("frequency") + utils.veltofreq(item[4], res.getkey("frequency")), item[3]]) for item in lines: for i in range(nspectra): spec[i] += utils.gaussian1D(freq, item[0], item[1], utils.veltofreq(item[2], item[1])) if self.getkey("hanning"): for i in range(nspectra): filter = Filter1D.Filter1D(spec[i], "hanning", **{"width" : 3}) spec[i] = filter.run() dt.tag("hanning") center = int(nchan/2) dt.tag("open") bdp_name = self.mkext("Genspec","csp") b2 = CubeSpectrum_BDP(bdp_name) self.addoutput(b2) images = {} # png's accumulated for i in range(nspectra): sd = [] caption = "Generated Spectrum %d" % i # construct the Table for CubeSpectrum_BDP # @todo note data needs to be a tuple, later to be column_stack'd labels = ["channel" ,"frequency" ,"flux" ] units = ["number" ,"GHz" ,"" ] data = (chans ,freq ,spec[i] ) # plane 0 : we are allowing a multiplane table, so the first plane is special if i==0: table = Table(columns=labels,units=units,data=np.column_stack(data),planes=["0"]) else: table.addPlane(np.column_stack(data),"%d" % i) # example plot , one per position for now x = chans xlab = 'Channel' y = [spec[i]] sd.append(xlab) myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode, abspath=self.dir()) ylab = 'Flux' p1 = "%s_%d" % (bdp_name,i) myplot.plotter(x,y,"",p1,xlab=xlab,ylab=ylab,thumbnail=True) # Why not use p1 as the key? ii = images["pos%d" % i] = myplot.getFigure(figno=myplot.figno,relative=True) thumbname = myplot.getThumbnail(figno=myplot.figno,relative=True) image = Image(images=images, description="CubeSpectrum") sd.extend([ii, thumbname, caption]) self.spec_description.append(sd) self._summary["spectra"] = SummaryEntry(self.spec_description,"GenerateSpectrum_AT",self.id(True), taskargs) dt.tag("table") b2.setkey("image",image) b2.setkey("table",table) b2.setkey("sigma",rms) b2.setkey("mean",contin) dt.tag("done") dt.end()
class PVCorr_AT(AT): """PV correllation in a PVSlice map. PVCorr_AT computes a cross-correlation of a feature in a PVSlice with the whole PVSlice, looking for repeated patterns to detect spectral lines. Much like the output from CubeStats_AT and CubeSpectrum_AT, this table can then be given to LineID_AT to attempt a line identification. See also :ref:`PVCorr-AT-Design` for the design document. **Keywords** **numsigma**: float Minimum intensity, in terms of sigma, above which a selected portion of the spectrum will be used for cross-correlation. Default: 3.0. **range**: integer list If given, it has to be a list with 2 channel numbers, the first and last channel (0-based channels) of the range which to use for the cross-correlation. Default: []. **nchan**: integer The number of channels (in case range= was not used) that defines the line. The line is centers on the strongest point in the input PV-map. If 0 is given, it will watershed down from the strongest line. Default: 0. **Input BDPs** **PVSlice_BDP**: count: 1 Input PV Slice. As created with e.g. PVSlice_AT. **CubeStats_BDP**: count: 1 Input cube statistics from which the RMS is taken. **Output BDPs** **PVCorr_BDP**: count: 1 Output table. """ def __init__(self,**keyval): keys = {"numsigma" : 3.0, # N-sigma "range" : [], # optional channel range "nchan" : 0, # number of channels around the channel where the peak is } AT.__init__(self,keys,keyval) self._version = "1.0.1" self.set_bdp_in([(Image_BDP,1,bt.REQUIRED), # @todo optional 2nd PVSlice can be used to draw the template from (CubeStats_BDP,1,bt.REQUIRED)]) self.set_bdp_out([(PVCorr_BDP,1)]) def summary(self): """Returns the summary dictionary from the AT, for merging into the ADMIT Summary object. PVCorr_AT adds the following to ADMIT summary: .. table:: :class: borderless +----------+----------+-----------------------------------+ | Key | type | Description | +==========+==========+===================================+ | pvcorr | list | correlation diagram | +----------+----------+-----------------------------------+ Parameters ---------- None Returns ------- dict Dictionary of SummaryEntry """ if hasattr(self,"_summary"): return self._summary else: return {} def run(self): dt = utils.Dtime("PVCorr") self._summary = {} numsigma = self.getkey("numsigma") mode = 1 # PV corr mode (1,2,3) normalize = True # normalize = False b1 = self._bdp_in[0] # PVSlice_BDP fin = b1.getimagefile(bt.CASA) # CASA image data = casautil.getdata_raw(self.dir(fin)) # grab the data as a numpy array self.myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir()) #print 'DATA[0,0]:',data[0,0] #print 'pv shape: ',data.shape npos = data.shape[0] nvel = data.shape[1] dt.tag("getdata") b2 = self._bdp_in[1] # CubeStats_BDP sigma = b2.sigma # global sigma in the cube cutoff = numsigma * sigma freq = b2.table.getColumnByName("frequency") chans = self.getkey("range") # range of channels, if used if len(chans) > 0: if len(chans) != 2: logging.fatal("range=%s" % chans) raise Exception,"range= needs two values, left and right (inclusive) channel" ch0 = chans[0] ch1 = chans[1] else: nchan = self.getkey("nchan") imstat0 = casa.imstat(self.dir(fin)) # @todo can use data[] now xmaxpos = imstat0['maxpos'][0] ymaxpos = imstat0['maxpos'][1] logging.info("MAXPOS-VEL %s %g" % (str(imstat0['maxpos']),imstat0['max'][0])) if nchan > 0: # expand around it, later ch0,ch1 will be checked for running off the edge ch0 = ymaxpos - nchan/2 ch1 = ymaxpos + nchan/2 else: # watershed down to find ch0 and ch1 ? # this doesn't work well in crowded areas ch0 = ymaxpos ch1 = ymaxpos spmax = data.max(axis=0) k = spmax.argmax() n = len(spmax) logging.debug('spmax %s %d %g' % (str(spmax.shape),k,spmax[k])) # find lower cutoff for i in range(n): ch0 = ymaxpos - i if ch0<0: break if spmax[ch0] < cutoff: break ch0 = ch0 + 1 # find higher cutoff for i in range(n): ch1 = ymaxpos + i if ch1==n: break if spmax[ch1] < cutoff: break ch1 = ch1 - 1 dt.tag("imstat") bdp_name = self.mkext(fin,"pvc") # output PVCorr_BDP b3 = PVCorr_BDP(bdp_name) self.addoutput(b3) if ch0<0 or ch1>=nvel: # this probably only happens to small cubes (problematic for PVCorr) # or when the strongest line is really close to the edge of the band # (which is probably ok) if ch0<0 and ch1>=nvel: logging.warning("Serious issues with the size of this cube") if ch0<0: logging.warning("Resetting ch0 edge to 0") ch0=0 if ch1>=nvel: ch1=nvel-1 logging.warning("Resetting ch1 edge to the maximum") if ch0 > ch1: logging.warning("Sanity swapping ch0,1 due to likely noisy data") ch0,ch1 = ch1,ch0 if mode == 1: out,rms = mode1(data, ch0, ch1, cutoff, normalize) corr = out elif mode == 2: out,rms = mode2(data, ch0, ch1, cutoff) # slower 2D version corr = out[npos/2,:] # center cut, but could also try feature detection elif mode == 3: out,rms = self.mode3(data, ch0, ch1, cutoff) # Doug's faster 2D version # get the peak of each column corr = np.amax(out,axis=0) # print "PVCORR SHAPE ",corr.shape," mode", mode if len(corr) > 0: # print "SHAPE out:",out.shape,corr.shape,npos/2 ch = range(len(corr)) if len(corr) != len(freq): logging.fatal("ch (%d) and freq (%d) do not have same size" % (len(corr),len(freq))) raise Exception,"ch and freq do not have same dimension" dt.tag("mode") labels = ["channel", "frequency", "pvcorr"] units = ["number", "GHz", "N/A"] data = (ch, freq, corr) table = Table(columns=labels,units=units,data=np.column_stack(data)) else: # still construct a table, but with no rows labels = ["channel", "frequency", "pvcorr"] units = ["number", "GHz", "N/A"] table = Table(columns=labels,units=units) b3.setkey("table",table) b3.setkey("sigma",float(rms)) dt.tag("table") if len(corr) > 0: table.exportTable(self.dir("testPVCorr.tab"),cols=['frequency','pvcorr']) test_single(ch,freq,corr) logging.regression("PVC: %f %f" % (corr.min(),corr.max())) title = 'PVCorr mode=%d [%d,%d] %g' % (mode,ch0,ch1,cutoff) x = ch xlab = 'Channel' y = [corr] ylab = 'PV Correlation' p1 = "%s_%d" % (bdp_name,0) segp = [] segp.append( [0,len(ch),0.0,0.0] ) segp.append( [0,len(ch),3.0*rms, 3.0*rms] ) # @todo: in principle we know with given noise and size of box, what the sigma in pvcorr should be self.myplot.plotter(x,y,title,figname=p1,xlab=xlab,ylab=ylab,segments=segp, thumbnail=True) #out1 = np.rot90 (data.reshape((nvel,npos)) ) if mode > 1: self.myplot.map1(data=out,title="testing PVCorr_AT: mode%d"%mode,figname='testPVCorr', thumbnail=True) taskargs = "numsigma=%.1f range=[%d,%d]" % (numsigma,ch0,ch1) caption = "Position-velocity correlation plot" thumbname = self.myplot.getThumbnail(figno=self.myplot.figno,relative=True) figname = self.myplot.getFigure(figno=self.myplot.figno,relative=True) image = Image(images={bt.PNG: figname}, thumbnail=thumbname, thumbnailtype=bt.PNG, description=caption) b3.image.addimage(image, "pvcorr") self._summary["pvcorr"] = SummaryEntry([figname,thumbname,caption,fin],"PVCorr_AT",self.id(True),taskargs) else: self._summary["pvcorr"] = None logging.warning("No summary") logging.regression("PVC: -1") dt.tag("done") dt.end() def mode3(self, data, v0, v1, dmin=0.0): """ v0..v1 (both inclusive) are channel selections threshold on dmin @todo the frequency axis is not properly calibrated here @todo a full 2D is slow, we only need the 1D version """ print "PVCorr mode3: v0,1=",v0,v1 smin = data.min() #s = data[v0:v1+1,:] s = data[:,v0:v1+1] if dmin==0.0: logging.warning("Using all data in crosscorr") f = s else: f = np.where(s>dmin,s,0) # find out where the zeros are temp = np.amax(f,axis=1) nz = np.nonzero(temp) # trim the kernel in the y direction, removing rows that are all 0.0 f = f[nz[0][0]:nz[0][-1],:] f0 = np.where(s>smin,1,0) f1 = np.where(s>dmin,1,0) fmax = f.max() print "PVCorr mode3:",f1.sum(),'/',f0.sum(),'min/max',smin,fmax out = scipy.signal.correlate2d(data,f,mode='same') self.myplot.map1(data=f,title="PVCorr 2D Kernel",figname='PVCorrKernel', thumbnail=True) print 'PVCorr min/max:',out.min(),out.max() n1,m1,s1,n2,m2,s2 = stats.mystats(out.flatten()) print "PVCorr stats", n1,m1,s1,n2,m2,s2 rms_est = s2/np.sqrt(f1.sum()) return out,rms_est
def run(self): """ The run method, calculates the moments and creates the BDP(s) Parameters ---------- None Returns ------- None """ self._summary = {} momentsummary = [] dt = utils.Dtime("Moment") # variable to track if we are using a single cutoff for all moment maps allsame = False moments = self.getkey("moments") numsigma = self.getkey("numsigma") mom0clip = self.getkey("mom0clip") # determine if there is only 1 cutoff or if there is a cutoff for each moment if len(moments) != len(numsigma): if len(numsigma) != 1: raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.") allsame = True # default moment file extensions, this is information copied from casa.immoments() momentFileExtensions = {-1: ".average", 0: ".integrated", 1: ".weighted_coord", 2: ".weighted_dispersion_coord", 3: ".median", 4: "", 5: ".standard_deviation", 6: ".rms", 7: ".abs_mean_dev", 8: ".maximum", 9: ".maximum_coord", 10: ".minimum", 11: ".minimum_coord", } logging.debug("MOMENT: %s %s %s" % (str(moments), str(numsigma), str(allsame))) # get the input casa image from bdp[0] # also get the channels the line actually covers (if any) bdpin = self._bdp_in[0] infile = bdpin.getimagefile(bt.CASA) chans = self.getkey("chans") # the basename of the moments, we will append _0, _1, etc. basename = self.mkext(infile, "mom") fluxname = self.mkext(infile, "flux") # beamarea = nppb(self.dir(infile)) beamarea = 1.0 # until we have it from the MOM0 map sigma0 = self.getkey("sigma") sigma = sigma0 dt.tag("open") # if no CubseStats BDP was given and no sigma was specified, find a # noise level via casa.imstat() if self._bdp_in[1] is None and sigma <= 0.0: raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff") elif self._bdp_in[1] is not None: sigma = self._bdp_in[1].get("sigma") # immoments is a bit peculiar. If you give one moment, it will use # exactly the outfile you picked for multiple moments, it will pick # extensions such as .integrated [0], .weighted_coord [1] etc. # we loop over the moments and will use the numeric extension instead. # Might be laborious loop for big input cubes # # arguments for immoments args = {"imagename" : self.dir(infile), "moments" : moments, "outfile" : self.dir(basename)} # set the channels if given if chans != "": args["chans"] = chans # error check the mom0clip input if mom0clip > 0.0 and not 0 in moments: logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.") # add moment0 to the list of computed moments, but it has to be first moments.insert(0,0) if not allsame: numsigma.insert(0, 2.0*sigma) if allsame: # this is only executed now if len(moments) > 1 and len(cutoff)==1 args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma] casa.immoments(**args) dt.tag("immoments-all") else: # this is execute if len(moments)==len(cutoff) , even when len=1 for i in range(len(moments)): args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma] args["moments"] = moments[i] args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]]) casa.immoments(**args) dt.tag("immoments-%d" % moments[i]) taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) if sigma0 > 0: taskargs = taskargs + " sigma=%.2f" % sigma0 if mom0clip > 0: taskargs = taskargs + " mom0clip=%g" % mom0clip if chans == "": taskargs = taskargs + " chans=all" else: taskargs = taskargs + " chans=%s" % str(chans) taskargs += ' <span style="background-color:white"> ' + basename.split('/')[0] + ' </span>' # generate the mask to be applied to all but moment 0 if mom0clip > 0.0: # get the statistics from mom0 map # this is usually a very biased map, so unclear if mom0sigma is all that reliable args = {"imagename": self.dir(infile)} stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0])) mom0sigma = float(stat["sigma"][0]) # generate a temporary masked file, mask will be copied to other moments args = {"imagename" : self.dir(basename + momentFileExtensions[0]), "expr" : 'IM0[IM0>%f]' % (mom0clip * mom0sigma), "outfile" : self.dir("mom0.masked") } casa.immath(**args) # get the default mask name taskinit.ia.open(self.dir("mom0.masked")) defmask = taskinit.ia.maskhandler('default') taskinit.ia.close() dt.tag("mom0clip") # loop over moments to rename them to _0, _1, _2 etc. # apply a mask as well for proper histogram creation map = {} myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir()) for mom in moments: figname = imagename = "%s_%i" % (basename, mom) tempname = basename + momentFileExtensions[mom] # rename and remove the old one if there is one utils.rename(self.dir(tempname), self.dir(imagename)) # copy the moment0 mask if requested; this depends on that mom0 was done before if mom0clip > 0.0 and mom != 0: #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0]) #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0]) makemask(mode="copy", inpimage=self.dir("mom0.masked"), output="%s:%s" % (self.dir(imagename), defmask[0]), overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"), defmask[0])) taskinit.ia.open(self.dir(imagename)) taskinit.ia.maskhandler('set', defmask) taskinit.ia.close() dt.tag("makemask") if mom == 0: beamarea = nppb(self.dir(imagename)) implot.plotter(rasterfile=imagename,figname=figname,colorwedge=True) imagepng = implot.getFigure(figno=implot.figno,relative=True) thumbname = implot.getThumbnail(figno=implot.figno,relative=True) images = {bt.CASA : imagename, bt.PNG : imagepng} thumbtype=bt.PNG dt.tag("implot") # get the data for a histogram (ia access is about 1000-2000 faster than imval()) map[mom] = casautil.getdata(self.dir(imagename)) data = map[mom].compressed() dt.tag("getdata") # make the histogram plot # get the label for the x axis bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit") # object for the caption objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object") # Make the histogram plot # Since we give abspath in the constructor, figname should be relative auxname = imagename + '_histo' auxtype = bt.PNG myplot.histogram(columns = data, figname = auxname, xlab = bunit, ylab = "Count", title = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True) casaimage = Image(images = images, auxiliary = auxname, auxtype = auxtype, thumbnail = thumbname, thumbnailtype = thumbtype) auxname = myplot.getFigure(figno=myplot.figno,relative=True) auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True) if hasattr(self._bdp_in[0], "line"): # SpwCube doesn't have Line line = deepcopy(getattr(self._bdp_in[0], "line")) if not isinstance(line, Line): line = Line(name="Unidentified") else: # fake a Line if there wasn't one line = Line(name="Unidentified") # add the BDP to the output array self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom, image=deepcopy(casaimage), line=line)) dt.tag("ren+mask_%d" % mom) imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname) auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname) thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption, auxname, auxthumb, auxcaption, infile] momentsummary.append(thismomentsummary) if map.has_key(0) and map.has_key(1) and map.has_key(2): logging.debug("MAPs present: %s" % (map.keys())) # m0 needs a new mask, inherited from the more restricted m1 (and m2) m0 = ma.masked_where(map[1].mask,map[0]) m1 = map[1] m2 = map[2] m01 = m0*m1 m02 = m0*m1*m1 m22 = m0*m2*m2 sum0 = m0.sum() vmean = m01.sum()/sum0 # lacking the full 3D cube, get two estimates and take the max sig1 = math.sqrt(m02.sum()/sum0 - vmean*vmean) sig2 = m2.max() #vsig = max(sig1,sig2) vsig = sig1 # consider clipping in the masked array (mom0clip) # @todo i can't use info from line, so just borrow basename for now for grepping # this also isn't really the flux, the points per beam is still in there loc = basename.rfind('/') sum1 = ma.masked_less(map[0],0.0).sum() # mom0clip # print out: LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0] s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9 s_line = line.frequency if loc>0: if basename[:loc][0:2] == 'U_': # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band if abs(vmean) > vsig: vwarn = '*' else: vwarn = '' vlsr = vmean + (1.0-s_line/s_rest)*utils.c msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig) else: # for identified lines we'll assume the ID was correct and not bother with RESTFREQ msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig) else: msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL" ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig) logging.regression(msg) dt.tag("mom0flux") # create a histogram of flux per channel # grab the X coordinates for the histogram, we want them in km/s # restfreq should also be in summary restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9 # in GHz # print "PJT %.10f %.10f" % (restfreq,s_rest) imval0 = casa.imval(self.dir(infile)) freqs = imval0['coords'].transpose()[2]/1e9 x = (1-freqs/restfreq)*utils.c # h = casa.imstat(self.dir(infile), axes=[0,1]) if h.has_key('flux'): flux0 = h['flux'] else: flux0 = h['sum']/beamarea flux0sum = flux0.sum() * abs(x[1]-x[0]) # @todo make a flux1 with fluxes derived from a good mask flux1 = flux0 # construct histogram title = 'Flux Spectrum (%g)' % flux0sum xlab = 'VLSR (km/s)' ylab = 'Flux (Jy)' myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True) dt.tag("flux-spectrum") self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", self.id(True), taskargs) # get rid of the temporary mask if mom0clip > 0.0: utils.rmdir(self.dir("mom0.masked")) dt.tag("done") dt.end()