Fapplied = 0.0 # (V/m) # -------------------------------- # REGIONAL SETTINGS FOR SIMULATION # -------------------------------- # GRID # For 1D, z-axis is choosen gridfactor = 0.1 #nm maxgridpoints = 200000 #for controlling the size # REGIONS # Region input is a two-dimensional list input. # An example: # Si p-n diode. Firstly lets picturize the regional input. # | Thickness (nm) | Material | Alloy fraction | Doping(cm^-3) | n or p type | # Layer 0 | 250.0 | Si | 0 | 1e16 | n | # Layer 1 | 250.0 | Si | 0 | 1e16 | p | # # To input this list in Gallium, we use lists as: material =[[ 20.0, 'AlGaAs', 0.2, 0, 'n'], [10.0, 'GaAs', 0, 2e18, 'n'], [20.0, 'AlGaAs', 0.2, 0, 'n']] if __name__ == "__main__": #this code allows you to run the input file directly input_obj = vars() import aestimo aestimo.run_aestimo(input_obj)
# QUANTUM # Total subband number to be calculated for electrons subnumber_e = 1 # -------------------------------- # REGIONAL SETTINGS FOR SIMULATION # -------------------------------- # GRID # For 1D, z-axis is choosen gridfactor = 0.2 #nm maxgridpoints = 200000 #for controlling the size # REGIONS # Region input is a two-dimensional list input. # An example: # Si p-n diode. Firstly lets picturize the regional input. # | Thickness (nm) | Material | Alloy fraction | Doping(cm^-3) | n or p type | # Layer 0 | 250.0 | Si | 0 | 1e16 | n | # Layer 1 | 250.0 | Si | 0 | 1e16 | p | # # To input this list in Gallium, we use lists as: material =[[500.0, 'Si', 0, 1.0e16, 'p'], [500.0, 'Si', 0, 1.0e16, 'n']] if __name__ == "__main__": #this code allows you to run the input file directly input_obj = vars() import aestimo aestimo.run_aestimo(input_obj)
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. See ~/COPYING file or http://www.gnu.org/copyleft/gpl.txt . For the list of contributors, see ~/AUTHORS Description: This is the main file. """ #import matplotlib.pyplot as pl #import numpy as np #import time #import sys import config #import aestimo_h as aestimo import aestimo # Import from config file inputfile = __import__(config.inputfilename) aestimo.logger.info("inputfile is %s" %config.inputfilename) aestimo.run_aestimo(inputfile)
along with this program. See ~/COPYING file or http://www.gnu.org/copyleft/gpl.txt . For the list of contributors, see ~/AUTHORS File Information: ----------------- This file is one method of running aestimo. Simply define the input file in the config.py module and run this script. We could also run aestimo.py directly to achieve the same effect. Alternatively, many of the example input files show how we can transform them into scripts that can be run directly to perform the simulations. That approach also allows us to tailor each simulation even more to our needs. """ #import matplotlib.pyplot as pl #import numpy as np #import time #import sys import config #import aestimo_eh as aestimo import aestimo # Import from config file inputfile = __import__(config.inputfilename) aestimo.logger.info("inputfile is %s" % config.inputfilename) if __name__ == "__main__": aestimo.run_aestimo(inputfile)