Пример #1
0
Fapplied = 0.0 # (V/m)

# --------------------------------
# REGIONAL SETTINGS FOR SIMULATION
# --------------------------------

# GRID
# For 1D, z-axis is choosen
gridfactor = 0.1 #nm
maxgridpoints = 200000 #for controlling the size

# REGIONS
# Region input is a two-dimensional list input.
# An example:
# Si p-n diode. Firstly lets picturize the regional input.
#         | Thickness (nm)  | Material | Alloy fraction | Doping(cm^-3) | n or p type |
# Layer 0 |       250.0     |   Si     |      0         |     1e16      |     n       |
# Layer 1 |       250.0     |   Si     |      0         |     1e16      |     p       |
#
# To input this list in Gallium, we use lists as:
material =[[ 20.0, 'AlGaAs', 0.2, 0, 'n'],
            [10.0, 'GaAs', 0, 2e18, 'n'],
            [20.0, 'AlGaAs', 0.2, 0, 'n']]
 


if __name__ == "__main__": #this code allows you to run the input file directly
    input_obj = vars()
    import aestimo
    aestimo.run_aestimo(input_obj)
# QUANTUM
# Total subband number to be calculated for electrons
subnumber_e = 1

# --------------------------------
# REGIONAL SETTINGS FOR SIMULATION
# --------------------------------

# GRID
# For 1D, z-axis is choosen
gridfactor = 0.2 #nm
maxgridpoints = 200000 #for controlling the size

# REGIONS
# Region input is a two-dimensional list input.
# An example:
# Si p-n diode. Firstly lets picturize the regional input.
#         | Thickness (nm) | Material | Alloy fraction | Doping(cm^-3) | n or p type |
# Layer 0 |      250.0     |   Si     |      0         |     1e16      |     n       |
# Layer 1 |      250.0     |   Si     |      0         |     1e16      |     p       |
#
# To input this list in Gallium, we use lists as:
material =[[500.0, 'Si', 0, 1.0e16, 'p'],
            [500.0, 'Si', 0, 1.0e16, 'n']]
 

if __name__ == "__main__": #this code allows you to run the input file directly
    input_obj = vars()
    import aestimo
    aestimo.run_aestimo(input_obj)
Пример #3
0
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program. See ~/COPYING file or http://www.gnu.org/copyleft/gpl.txt .

    For the list of contributors, see ~/AUTHORS

 Description:  This is the main file.
"""
#import matplotlib.pyplot as pl
#import numpy as np
#import time
#import sys 

import config

#import aestimo_h as aestimo
import aestimo
    

# Import from config file
inputfile = __import__(config.inputfilename)
aestimo.logger.info("inputfile is %s" %config.inputfilename)

aestimo.run_aestimo(inputfile)


Пример #4
0
    along with this program. See ~/COPYING file or http://www.gnu.org/copyleft/gpl.txt .

    For the list of contributors, see ~/AUTHORS

File Information:
-----------------
This file is one method of running aestimo. Simply define the input file in 
the config.py module and run this script. We could also run aestimo.py directly
to achieve the same effect. 

Alternatively, many of the example input files show how we can transform them
into scripts that can be run directly to perform the simulations. That approach
also allows us to tailor each simulation even more to our needs.
"""
#import matplotlib.pyplot as pl
#import numpy as np
#import time
#import sys

import config

#import aestimo_eh as aestimo
import aestimo

# Import from config file
inputfile = __import__(config.inputfilename)
aestimo.logger.info("inputfile is %s" % config.inputfilename)

if __name__ == "__main__":
    aestimo.run_aestimo(inputfile)