def test_isinf(): b = 1.0 * numpy.random.randint(0, 2, (2, 3)) b[b == 0] = numpy.inf a = afnumpy.array(b) fassert(afnumpy.isnan(a), numpy.isnan(b))
def gpuSIRT(tomo, angles, center, input_params): print('Starting GPU SIRT recon') #allocate space for final answer af.set_device( input_params['gpu_device']) #Set the device number for gpu based code #Change tomopy format new_tomo = np.transpose(tomo, (1, 2, 0)) #slice, columns, angles im_size = new_tomo.shape[1] num_slice = new_tomo.shape[0] num_angles = new_tomo.shape[2] pad_size = np.int16(im_size * input_params['oversamp_factor']) nufft_scaling = (np.pi / pad_size)**2 num_iter = input_params['num_iter'] #Initialize structures for NUFFT sino = {} geom = {} sino['Ns'] = pad_size #Sinogram size after padding sino['Ns_orig'] = im_size #size of original sinogram sino['center'] = center + (sino['Ns'] / 2 - sino['Ns_orig'] / 2 ) #for padded sinogram sino['angles'] = angles #Initialize NUFFT parameters nufft_params = init_nufft_params(sino, geom) temp_y = afnp.zeros((sino['Ns'], num_angles), dtype=afnp.complex64) temp_x = afnp.zeros((sino['Ns'], sino['Ns']), dtype=afnp.complex64) x_recon = afnp.zeros((num_slice / 2, sino['Ns_orig'], sino['Ns_orig']), dtype=afnp.complex64) pad_idx = slice(sino['Ns'] / 2 - sino['Ns_orig'] / 2, sino['Ns'] / 2 + sino['Ns_orig'] / 2) #allocate output array rec_sirt_final = np.zeros((num_slice, sino['Ns_orig'], sino['Ns_orig']), dtype=np.float32) #Pre-compute diagonal scaling matrices ; one the same size as the image and the other the same as data #initialize an image of all ones x_ones = afnp.ones((sino['Ns_orig'], sino['Ns_orig']), dtype=afnp.complex64) temp_x[pad_idx, pad_idx] = x_ones temp_proj = forward_project(temp_x, nufft_params) * (sino['Ns'] * afnp.pi / 2) R = 1 / afnp.abs(temp_proj) R[afnp.isnan(R)] = 0 R[afnp.isinf(R)] = 0 R = afnp.array(R, dtype=afnp.complex64) #Initialize a sinogram of all ones y_ones = afnp.ones((sino['Ns_orig'], num_angles), dtype=afnp.complex64) temp_y[pad_idx] = y_ones temp_backproj = back_project(temp_y, nufft_params) * nufft_scaling / 2 C = 1 / (afnp.abs(temp_backproj)) C[afnp.isnan(C)] = 0 C[afnp.isinf(C)] = 0 C = afnp.array(C, dtype=afnp.complex64) #Move all data to GPU slice_1 = slice(0, num_slice, 2) slice_2 = slice(1, num_slice, 2) gdata = afnp.array(new_tomo[slice_1] + 1j * new_tomo[slice_2], dtype=afnp.complex64) #loop over all slices for i in range(num_slice / 2): for iter_num in range(num_iter): #filtered back-projection temp_x[pad_idx, pad_idx] = x_recon[i] Ax = (np.pi / 2) * sino['Ns'] * forward_project( temp_x, nufft_params) temp_y[pad_idx] = gdata[i] x_recon[i] = x_recon[i] + ( C * back_project(R * (temp_y - Ax), nufft_params) * nufft_scaling / 2)[pad_idx, pad_idx] #Move to CPU #Rescale result to match tomopy rec_sirt = np.array(x_recon, dtype=np.complex64) rec_sirt_final[slice_1] = np.array(rec_sirt.real, dtype=np.float32) rec_sirt_final[slice_2] = np.array(rec_sirt.imag, dtype=np.float32) return rec_sirt_final
def test_isinf(): b = 1.0*numpy.random.randint(0,2,(2,3)) b[b == 0] = numpy.inf a = afnumpy.array(b) fassert(afnumpy.isnan(a), numpy.isnan(b))