示例#1
0
def test_isinf():
    b = 1.0 * numpy.random.randint(0, 2, (2, 3))
    b[b == 0] = numpy.inf
    a = afnumpy.array(b)
    fassert(afnumpy.isnan(a), numpy.isnan(b))
示例#2
0
def gpuSIRT(tomo, angles, center, input_params):
    print('Starting GPU SIRT recon')
    #allocate space for final answer
    af.set_device(
        input_params['gpu_device'])  #Set the device number for gpu based code
    #Change tomopy format
    new_tomo = np.transpose(tomo, (1, 2, 0))  #slice, columns, angles
    im_size = new_tomo.shape[1]
    num_slice = new_tomo.shape[0]
    num_angles = new_tomo.shape[2]
    pad_size = np.int16(im_size * input_params['oversamp_factor'])
    nufft_scaling = (np.pi / pad_size)**2
    num_iter = input_params['num_iter']
    #Initialize structures for NUFFT
    sino = {}
    geom = {}
    sino['Ns'] = pad_size  #Sinogram size after padding
    sino['Ns_orig'] = im_size  #size of original sinogram
    sino['center'] = center + (sino['Ns'] / 2 - sino['Ns_orig'] / 2
                               )  #for padded sinogram
    sino['angles'] = angles

    #Initialize NUFFT parameters
    nufft_params = init_nufft_params(sino, geom)
    temp_y = afnp.zeros((sino['Ns'], num_angles), dtype=afnp.complex64)
    temp_x = afnp.zeros((sino['Ns'], sino['Ns']), dtype=afnp.complex64)
    x_recon = afnp.zeros((num_slice / 2, sino['Ns_orig'], sino['Ns_orig']),
                         dtype=afnp.complex64)
    pad_idx = slice(sino['Ns'] / 2 - sino['Ns_orig'] / 2,
                    sino['Ns'] / 2 + sino['Ns_orig'] / 2)

    #allocate output array
    rec_sirt_final = np.zeros((num_slice, sino['Ns_orig'], sino['Ns_orig']),
                              dtype=np.float32)

    #Pre-compute diagonal scaling matrices ; one the same size as the image and the other the same as data
    #initialize an image of all ones
    x_ones = afnp.ones((sino['Ns_orig'], sino['Ns_orig']),
                       dtype=afnp.complex64)
    temp_x[pad_idx, pad_idx] = x_ones
    temp_proj = forward_project(temp_x,
                                nufft_params) * (sino['Ns'] * afnp.pi / 2)
    R = 1 / afnp.abs(temp_proj)
    R[afnp.isnan(R)] = 0
    R[afnp.isinf(R)] = 0
    R = afnp.array(R, dtype=afnp.complex64)

    #Initialize a sinogram of all ones
    y_ones = afnp.ones((sino['Ns_orig'], num_angles), dtype=afnp.complex64)
    temp_y[pad_idx] = y_ones
    temp_backproj = back_project(temp_y, nufft_params) * nufft_scaling / 2
    C = 1 / (afnp.abs(temp_backproj))
    C[afnp.isnan(C)] = 0
    C[afnp.isinf(C)] = 0
    C = afnp.array(C, dtype=afnp.complex64)

    #Move all data to GPU
    slice_1 = slice(0, num_slice, 2)
    slice_2 = slice(1, num_slice, 2)
    gdata = afnp.array(new_tomo[slice_1] + 1j * new_tomo[slice_2],
                       dtype=afnp.complex64)

    #loop over all slices
    for i in range(num_slice / 2):
        for iter_num in range(num_iter):
            #filtered back-projection
            temp_x[pad_idx, pad_idx] = x_recon[i]
            Ax = (np.pi / 2) * sino['Ns'] * forward_project(
                temp_x, nufft_params)
            temp_y[pad_idx] = gdata[i]
            x_recon[i] = x_recon[i] + (
                C * back_project(R * (temp_y - Ax), nufft_params) *
                nufft_scaling / 2)[pad_idx, pad_idx]

    #Move to CPU
    #Rescale result to match tomopy
    rec_sirt = np.array(x_recon, dtype=np.complex64)
    rec_sirt_final[slice_1] = np.array(rec_sirt.real, dtype=np.float32)
    rec_sirt_final[slice_2] = np.array(rec_sirt.imag, dtype=np.float32)
    return rec_sirt_final
示例#3
0
def test_isinf():
    b = 1.0*numpy.random.randint(0,2,(2,3))
    b[b == 0] = numpy.inf
    a = afnumpy.array(b)
    fassert(afnumpy.isnan(a), numpy.isnan(b))