def main(conf): train_set = WhamDataset( conf["data"]["train_dir"], conf["data"]["task"], sample_rate=conf["data"]["sample_rate"], segment=conf["data"]["segment"], nondefault_nsrc=conf["data"]["nondefault_nsrc"], ) val_set = WhamDataset( conf["data"]["valid_dir"], conf["data"]["task"], sample_rate=conf["data"]["sample_rate"], nondefault_nsrc=conf["data"]["nondefault_nsrc"], ) train_loader = DataLoader( train_set, shuffle=True, batch_size=conf["training"]["batch_size"], num_workers=conf["training"]["num_workers"], drop_last=True, ) val_loader = DataLoader( val_set, shuffle=False, batch_size=conf["training"]["batch_size"], num_workers=conf["training"]["num_workers"], drop_last=True, ) # Update number of source values (It depends on the task) conf["masknet"].update({"n_src": train_set.n_src}) model = DPTNet(**conf["filterbank"], **conf["masknet"]) optimizer = make_optimizer(model.parameters(), **conf["optim"]) from asteroid.engine.schedulers import DPTNetScheduler schedulers = { "scheduler": DPTNetScheduler(optimizer, len(train_loader) // conf["training"]["batch_size"], 64), "interval": "step", } # Just after instantiating, save the args. Easy loading in the future. exp_dir = conf["main_args"]["exp_dir"] os.makedirs(exp_dir, exist_ok=True) conf_path = os.path.join(exp_dir, "conf.yml") with open(conf_path, "w") as outfile: yaml.safe_dump(conf, outfile) # Define Loss function. loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx") system = System( model=model, loss_func=loss_func, optimizer=optimizer, scheduler=schedulers, train_loader=train_loader, val_loader=val_loader, config=conf, ) # Define callbacks checkpoint_dir = os.path.join(exp_dir, "checkpoints/") checkpoint = ModelCheckpoint(checkpoint_dir, monitor="val_loss", mode="min", save_top_k=5, verbose=True) early_stopping = False if conf["training"]["early_stop"]: early_stopping = EarlyStopping(monitor="val_loss", patience=30, verbose=True) # Don't ask GPU if they are not available. gpus = -1 if torch.cuda.is_available() else None trainer = pl.Trainer( max_epochs=conf["training"]["epochs"], checkpoint_callback=checkpoint, early_stop_callback=early_stopping, default_root_dir=exp_dir, gpus=gpus, distributed_backend="ddp", gradient_clip_val=conf["training"]["gradient_clipping"], ) trainer.fit(system) best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()} with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f: json.dump(best_k, f, indent=0) state_dict = torch.load(checkpoint.best_model_path) system.load_state_dict(state_dict=state_dict["state_dict"]) system.cpu() to_save = system.model.serialize() to_save.update(train_set.get_infos()) torch.save(to_save, os.path.join(exp_dir, "best_model.pth"))
def main(conf): model_path = os.path.join(conf["exp_dir"], "best_model.pth") model = DPTNet.from_pretrained(model_path) # Handle device placement if conf["use_gpu"]: model.cuda() model_device = next(model.parameters()).device test_set = WhamDataset( conf["test_dir"], conf["task"], sample_rate=conf["sample_rate"], nondefault_nsrc=model.masker.n_src, segment=None, ) # Uses all segment length # Used to reorder sources only loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx") # Randomly choose the indexes of sentences to save. ex_save_dir = os.path.join(conf["exp_dir"], "examples/") if conf["n_save_ex"] == -1: conf["n_save_ex"] = len(test_set) save_idx = random.sample(range(len(test_set)), conf["n_save_ex"]) series_list = [] torch.no_grad().__enter__() for idx in tqdm(range(len(test_set))): # Forward the network on the mixture. mix, sources = tensors_to_device(test_set[idx], device=model_device) est_sources = model(mix[None, None]) loss, reordered_sources = loss_func(est_sources, sources[None], return_est=True) mix_np = mix[None].cpu().data.numpy() sources_np = sources.cpu().data.numpy() est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy() utt_metrics = get_metrics( mix_np, sources_np, est_sources_np, sample_rate=conf["sample_rate"], metrics_list=compute_metrics, ) utt_metrics["mix_path"] = test_set.mix[idx][0] series_list.append(pd.Series(utt_metrics)) # Save some examples in a folder. Wav files and metrics as text. if idx in save_idx: local_save_dir = os.path.join(ex_save_dir, "ex_{}/".format(idx)) os.makedirs(local_save_dir, exist_ok=True) sf.write(local_save_dir + "mixture.wav", mix_np[0], conf["sample_rate"]) # Loop over the sources and estimates for src_idx, src in enumerate(sources_np): sf.write(local_save_dir + "s{}.wav".format(src_idx + 1), src, conf["sample_rate"]) for src_idx, est_src in enumerate(est_sources_np): sf.write( local_save_dir + "s{}_estimate.wav".format(src_idx + 1), est_src, conf["sample_rate"], ) # Write local metrics to the example folder. with open(local_save_dir + "metrics.json", "w") as f: json.dump(utt_metrics, f, indent=0) # Save all metrics to the experiment folder. all_metrics_df = pd.DataFrame(series_list) all_metrics_df.to_csv(os.path.join(conf["exp_dir"], "all_metrics.csv")) # Print and save summary metrics final_results = {} for metric_name in compute_metrics: input_metric_name = "input_" + metric_name ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name] final_results[metric_name] = all_metrics_df[metric_name].mean() final_results[metric_name + "_imp"] = ldf.mean() print("Overall metrics :") pprint(final_results) with open(os.path.join(conf["exp_dir"], "final_metrics.json"), "w") as f: json.dump(final_results, f, indent=0) model_dict = torch.load(model_path, map_location="cpu") publishable = save_publishable( os.path.join(conf["exp_dir"], "publish_dir"), model_dict, metrics=final_results, train_conf=train_conf, )
drop_last=True) val_loader = DataLoader(timit_val, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, drop_last=True) # some random parameters, does it look sensible? LR = 1e-3 REDUCE_LR_PATIENCE = 3 EARLY_STOP_PATIENCE = 10 MAX_EPOCHS = 300 # the model here should be constructed in the script accordingly to the passed config (including the model type) # most of the models accept `sample_rate` parameter for encoders, which is important (default is 16000, override) #model = DCUNet("DCUNet-20", fix_length_mode="trim", sample_rate=SAMPLE_RATE) model = DPTNet(n_src=1) from pytorch_lightning.callbacks import ModelCheckpoint checkpoint = ModelCheckpoint(filename='{epoch:02d}-{val_loss:.2f}', monitor="val_loss", mode="min", save_top_k=5, verbose=True) optimizer = optim.Adam(model.parameters(), lr=LR) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=REDUCE_LR_PATIENCE) early_stopping = EarlyStopping(monitor='val_loss', patience=EARLY_STOP_PATIENCE) # Probably we also need to subclass `System`, in order to log the target metrics on the validation set (PESQ/STOI) system = System(model, optimizer, sisdr_loss_wrapper, train_loader,
total_df = total_df.round({'SI-SDR': 3, 'PESQ': 3, 'STOI': 3}) print(total_df) return total_df models = { 'input': None, 'baseline': RegressionFCNN.from_pretrained('models/baseline_model_v1.pt'), 'vae': VAE.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/workspace/models/VAE.pt'), 'auto_encoder': VAE.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/workspace/models/AutoEncoder.pt'), 'waveunet_v1': WaveUNet.from_pretrained('models/waveunet_model_adapt.pt'), 'dcunet_20': DCUNet.from_pretrained('models/dcunet_20_random_v2.pt'), 'dccrn': DCCRNet.from_pretrained('models/dccrn_random_v1.pt'), 'smolnet': SMoLnet.from_pretrained('models/SMoLnet.pt'), 'dprnn': DPRNNTasNet.from_pretrained('models/dprnn_model.pt'), 'conv_tasnet': ConvTasNet.from_pretrained('models/convtasnet_model.pt'), 'dptnet': DPTNet.from_pretrained('models/dptnet_model.pt'), 'demucs': Demucs.from_pretrained('models/Demucs.pt'), } def eval_all_and_plot(models, test_set, directory, plot_name): results_dfs = {} for model_name, model in models.items(): print(f'Evaluating {model_labels[model_name]}') csv_path = f'/jmain01/home/JAD007/txk02/aaa18-txk02/DRONE_project/asteroid/notebooks/{directory}/{model_name}.csv' if os.path.isfile(csv_path): print('Results already available') df = pd.read_csv(csv_path) else: df = evaluate_model(model, test_set)
except ModuleNotFoundError: import warnings warnings.warn("Couldn't find espnet installation. Continuing without.") return metric_list return metric_list + ["wer"] def main(conf): compute_metrics = update_compute_metrics(conf["compute_wer"], COMPUTE_METRICS) anno_df = pd.read_csv(Path(conf["test_dir"]).parent.parent.parent / "test_annotations.csv") wer_tracker = ( MockWERTracker() if not conf["compute_wer"] else WERTracker(ASR_MODEL_PATH, anno_df) ) model_path = os.path.join(conf["exp_dir"], "best_model.pth") model = DPTNet.from_pretrained(model_path) >>>>>>> 210b5e4eb8ce24fe25780e008c89a4bb71bbd0ea # Handle device placement if conf["use_gpu"]: model.cuda() model_device = next(model.parameters()).device <<<<<<< HEAD test_set = WhamDataset( conf["test_dir"], conf["task"], sample_rate=conf["sample_rate"], nondefault_nsrc=model.masker.n_src, segment=None, ======= test_set = LibriMix( csv_dir=conf["test_dir"],
def denoise_audio(audio_path, model, denoised_file_path): noisy, sr = librosa.load(audio_path, sr=8000) noisy = torch.tensor(noisy) noisy = noisy.cuda() model = model.cuda() denoised = model(noisy).detach().flatten().cpu().numpy() sf.write(denoised_file_path, denoised, samplerate=8000) baseline_model = RegressionFCNN.from_pretrained( 'Drone_Models_selected/baseline_model_v1.pt') smolnet_model = SMoLnet.from_pretrained('Drone_Models_selected/SMoLnet.pt') dcunet_model = DCUNet.from_pretrained( 'Drone_Models_selected/dcunet_20_random_v2.pt') dptnet_model = DPTNet.from_pretrained('Drone_Models_selected/dptnet_model.pt') waveunet_model = WaveUNet.from_pretrained( 'Drone_Models_selected/waveunet_model_adapt.pt') # baseline_model = RegressionFCNN.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/baseline_model_v1.pt') # smolnet_model = SMoLnet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/SMoLnet.pt') # dcunet_model = DCUNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/dcunet_20_random_v2.pt') # dptnet_model = DPTNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/dptnet_model.pt') # waveunet_model = WaveUNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/waveunet_model_adapt.pt') models_dict = { 'RegressionFCNN': baseline_model, 'SMoLnet': smolnet_model, 'DCUNet': dcunet_model, 'DPTNet': dptnet_model, 'WaveUNet': waveunet_model
df = pd.read_csv(csv_path_tmp) denoised_file_paths = pd.Series(denoised_file_paths) df['denoised_path'] = denoised_file_paths df_csv_path = f'{save_enhanced_dir}/{str(model_name)}/{snr}dB/{model_name}_snr{snr}dB.csv' df.to_csv(df_csv_path) return None #directory to store evaluation results in #os.makedirs('evaluation', exist_ok=True) from asteroid import DPTNet, SMoLnet, RegressionFCNN, DCUNet, WaveUNet baseline_model = RegressionFCNN.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/baseline_model_v1.pt') smolnet_model = SMoLnet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/SMoLnet.pt') dcunet_model = DCUNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/dcunet_20_random_v2.pt') dptnet_model = DPTNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/dptnet_model.pt') waveunet_model = WaveUNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/waveunet_model_adapt.pt') print('get metrics for DPTNet') get_all_metrics_from_model(model=dptnet_model, test_sets=test_sets, model_name='DPTNet') print('get metrics for Regression model') get_all_metrics_from_model(model=baseline_model, test_sets=test_sets, model_name='RegressionFCNN') print('get metrics for SMoLnet model') get_all_metrics_from_model(model=smolnet_model, test_sets=test_sets, model_name='SMoLnet') print('get metrics for DCUNet model') get_all_metrics_from_model(model=dcunet_model, test_sets=test_sets, model_name='DCUNet') print('get metrics for WaveUNet model')
def main(conf): compute_metrics = update_compute_metrics(conf["compute_wer"], COMPUTE_METRICS) anno_df = pd.read_csv(Path(conf["test_dir"]).parent.parent.parent / "test_annotations.csv") wer_tracker = ( MockWERTracker() if not conf["compute_wer"] else WERTracker(ASR_MODEL_PATH, anno_df) ) model_path = os.path.join(conf["exp_dir"], "best_model.pth") model = DPTNet.from_pretrained(model_path) # Handle device placement if conf["use_gpu"]: model.cuda() model_device = next(model.parameters()).device test_set = LibriMix( csv_dir=conf["test_dir"], task=conf["task"], sample_rate=conf["sample_rate"], n_src=conf["train_conf"]["data"]["n_src"], segment=None, return_id=True, ) # Uses all segment length # Used to reorder sources only loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx") # Randomly choose the indexes of sentences to save. eval_save_dir = os.path.join(conf["exp_dir"], conf["out_dir"]) ex_save_dir = os.path.join(eval_save_dir, "examples/") if conf["n_save_ex"] == -1: conf["n_save_ex"] = len(test_set) save_idx = random.sample(range(len(test_set)), conf["n_save_ex"]) series_list = [] torch.no_grad().__enter__() for idx in tqdm(range(len(test_set))): # Forward the network on the mixture. mix, sources, ids = test_set[idx] mix, sources = tensors_to_device([mix, sources], device=model_device) est_sources = model(mix.unsqueeze(0)) loss, reordered_sources = loss_func(est_sources, sources[None], return_est=True) mix_np = mix.cpu().data.numpy() sources_np = sources.cpu().data.numpy() est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy() # For each utterance, we get a dictionary with the mixture path, # the input and output metrics utt_metrics = get_metrics( mix_np, sources_np, est_sources_np, sample_rate=conf["sample_rate"], metrics_list=COMPUTE_METRICS, ) utt_metrics["mix_path"] = test_set.mixture_path est_sources_np_normalized = normalize_estimates(est_sources_np, mix_np) utt_metrics.update( **wer_tracker( mix=mix_np, clean=sources_np, estimate=est_sources_np_normalized, wav_id=ids, sample_rate=conf["sample_rate"], ) ) series_list.append(pd.Series(utt_metrics)) # Save some examples in a folder. Wav files and metrics as text. if idx in save_idx: local_save_dir = os.path.join(ex_save_dir, "ex_{}/".format(idx)) os.makedirs(local_save_dir, exist_ok=True) sf.write(local_save_dir + "mixture.wav", mix_np, conf["sample_rate"]) # Loop over the sources and estimates for src_idx, src in enumerate(sources_np): sf.write(local_save_dir + "s{}.wav".format(src_idx), src, conf["sample_rate"]) for src_idx, est_src in enumerate(est_sources_np_normalized): sf.write( local_save_dir + "s{}_estimate.wav".format(src_idx), est_src, conf["sample_rate"], ) # Write local metrics to the example folder. with open(local_save_dir + "metrics.json", "w") as f: json.dump(utt_metrics, f, indent=0) # Save all metrics to the experiment folder. all_metrics_df = pd.DataFrame(series_list) all_metrics_df.to_csv(os.path.join(eval_save_dir, "all_metrics.csv")) # Print and save summary metrics final_results = {} for metric_name in compute_metrics: input_metric_name = "input_" + metric_name ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name] final_results[metric_name] = all_metrics_df[metric_name].mean() final_results[metric_name + "_imp"] = ldf.mean() print("Overall metrics :") pprint(final_results) if conf["compute_wer"]: print("\nWER report") wer_card = wer_tracker.final_report_as_markdown() print(wer_card) # Save the report with open(os.path.join(eval_save_dir, "final_wer.md"), "w") as f: f.write(wer_card) with open(os.path.join(eval_save_dir, "final_metrics.json"), "w") as f: json.dump(final_results, f, indent=0) model_dict = torch.load(model_path, map_location="cpu") os.makedirs(os.path.join(conf["exp_dir"], "publish_dir"), exist_ok=True) publishable = save_publishable( os.path.join(conf["exp_dir"], "publish_dir"), model_dict, metrics=final_results, train_conf=train_conf, )