예제 #1
0
def main(conf):
    train_set = WhamDataset(
        conf["data"]["train_dir"],
        conf["data"]["task"],
        sample_rate=conf["data"]["sample_rate"],
        segment=conf["data"]["segment"],
        nondefault_nsrc=conf["data"]["nondefault_nsrc"],
    )
    val_set = WhamDataset(
        conf["data"]["valid_dir"],
        conf["data"]["task"],
        sample_rate=conf["data"]["sample_rate"],
        nondefault_nsrc=conf["data"]["nondefault_nsrc"],
    )

    train_loader = DataLoader(
        train_set,
        shuffle=True,
        batch_size=conf["training"]["batch_size"],
        num_workers=conf["training"]["num_workers"],
        drop_last=True,
    )
    val_loader = DataLoader(
        val_set,
        shuffle=False,
        batch_size=conf["training"]["batch_size"],
        num_workers=conf["training"]["num_workers"],
        drop_last=True,
    )
    # Update number of source values (It depends on the task)
    conf["masknet"].update({"n_src": train_set.n_src})

    model = DPTNet(**conf["filterbank"], **conf["masknet"])
    optimizer = make_optimizer(model.parameters(), **conf["optim"])
    from asteroid.engine.schedulers import DPTNetScheduler

    schedulers = {
        "scheduler":
        DPTNetScheduler(optimizer,
                        len(train_loader) // conf["training"]["batch_size"],
                        64),
        "interval":
        "step",
    }

    # Just after instantiating, save the args. Easy loading in the future.
    exp_dir = conf["main_args"]["exp_dir"]
    os.makedirs(exp_dir, exist_ok=True)
    conf_path = os.path.join(exp_dir, "conf.yml")
    with open(conf_path, "w") as outfile:
        yaml.safe_dump(conf, outfile)

    # Define Loss function.
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx")
    system = System(
        model=model,
        loss_func=loss_func,
        optimizer=optimizer,
        scheduler=schedulers,
        train_loader=train_loader,
        val_loader=val_loader,
        config=conf,
    )

    # Define callbacks
    checkpoint_dir = os.path.join(exp_dir, "checkpoints/")
    checkpoint = ModelCheckpoint(checkpoint_dir,
                                 monitor="val_loss",
                                 mode="min",
                                 save_top_k=5,
                                 verbose=True)
    early_stopping = False
    if conf["training"]["early_stop"]:
        early_stopping = EarlyStopping(monitor="val_loss",
                                       patience=30,
                                       verbose=True)

    # Don't ask GPU if they are not available.
    gpus = -1 if torch.cuda.is_available() else None
    trainer = pl.Trainer(
        max_epochs=conf["training"]["epochs"],
        checkpoint_callback=checkpoint,
        early_stop_callback=early_stopping,
        default_root_dir=exp_dir,
        gpus=gpus,
        distributed_backend="ddp",
        gradient_clip_val=conf["training"]["gradient_clipping"],
    )
    trainer.fit(system)

    best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()}
    with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f:
        json.dump(best_k, f, indent=0)

    state_dict = torch.load(checkpoint.best_model_path)
    system.load_state_dict(state_dict=state_dict["state_dict"])
    system.cpu()

    to_save = system.model.serialize()
    to_save.update(train_set.get_infos())
    torch.save(to_save, os.path.join(exp_dir, "best_model.pth"))
예제 #2
0
def main(conf):
    model_path = os.path.join(conf["exp_dir"], "best_model.pth")
    model = DPTNet.from_pretrained(model_path)
    # Handle device placement
    if conf["use_gpu"]:
        model.cuda()
    model_device = next(model.parameters()).device
    test_set = WhamDataset(
        conf["test_dir"],
        conf["task"],
        sample_rate=conf["sample_rate"],
        nondefault_nsrc=model.masker.n_src,
        segment=None,
    )  # Uses all segment length
    # Used to reorder sources only
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx")

    # Randomly choose the indexes of sentences to save.
    ex_save_dir = os.path.join(conf["exp_dir"], "examples/")
    if conf["n_save_ex"] == -1:
        conf["n_save_ex"] = len(test_set)
    save_idx = random.sample(range(len(test_set)), conf["n_save_ex"])
    series_list = []
    torch.no_grad().__enter__()
    for idx in tqdm(range(len(test_set))):
        # Forward the network on the mixture.
        mix, sources = tensors_to_device(test_set[idx], device=model_device)
        est_sources = model(mix[None, None])
        loss, reordered_sources = loss_func(est_sources,
                                            sources[None],
                                            return_est=True)
        mix_np = mix[None].cpu().data.numpy()
        sources_np = sources.cpu().data.numpy()
        est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy()
        utt_metrics = get_metrics(
            mix_np,
            sources_np,
            est_sources_np,
            sample_rate=conf["sample_rate"],
            metrics_list=compute_metrics,
        )
        utt_metrics["mix_path"] = test_set.mix[idx][0]
        series_list.append(pd.Series(utt_metrics))

        # Save some examples in a folder. Wav files and metrics as text.
        if idx in save_idx:
            local_save_dir = os.path.join(ex_save_dir, "ex_{}/".format(idx))
            os.makedirs(local_save_dir, exist_ok=True)
            sf.write(local_save_dir + "mixture.wav", mix_np[0],
                     conf["sample_rate"])
            # Loop over the sources and estimates
            for src_idx, src in enumerate(sources_np):
                sf.write(local_save_dir + "s{}.wav".format(src_idx + 1), src,
                         conf["sample_rate"])
            for src_idx, est_src in enumerate(est_sources_np):
                sf.write(
                    local_save_dir + "s{}_estimate.wav".format(src_idx + 1),
                    est_src,
                    conf["sample_rate"],
                )
            # Write local metrics to the example folder.
            with open(local_save_dir + "metrics.json", "w") as f:
                json.dump(utt_metrics, f, indent=0)

    # Save all metrics to the experiment folder.
    all_metrics_df = pd.DataFrame(series_list)
    all_metrics_df.to_csv(os.path.join(conf["exp_dir"], "all_metrics.csv"))

    # Print and save summary metrics
    final_results = {}
    for metric_name in compute_metrics:
        input_metric_name = "input_" + metric_name
        ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name]
        final_results[metric_name] = all_metrics_df[metric_name].mean()
        final_results[metric_name + "_imp"] = ldf.mean()
    print("Overall metrics :")
    pprint(final_results)
    with open(os.path.join(conf["exp_dir"], "final_metrics.json"), "w") as f:
        json.dump(final_results, f, indent=0)
    model_dict = torch.load(model_path, map_location="cpu")

    publishable = save_publishable(
        os.path.join(conf["exp_dir"], "publish_dir"),
        model_dict,
        metrics=final_results,
        train_conf=train_conf,
    )
예제 #3
0
                          drop_last=True)
val_loader = DataLoader(timit_val,
                        batch_size=BATCH_SIZE,
                        num_workers=NUM_WORKERS,
                        drop_last=True)

# some random parameters, does it look sensible?
LR = 1e-3
REDUCE_LR_PATIENCE = 3
EARLY_STOP_PATIENCE = 10
MAX_EPOCHS = 300

# the model here should be constructed in the script accordingly to the passed config (including the model type)
# most of the models accept `sample_rate` parameter for encoders, which is important (default is 16000, override)
#model = DCUNet("DCUNet-20", fix_length_mode="trim", sample_rate=SAMPLE_RATE)
model = DPTNet(n_src=1)

from pytorch_lightning.callbacks import ModelCheckpoint
checkpoint = ModelCheckpoint(filename='{epoch:02d}-{val_loss:.2f}',
                             monitor="val_loss",
                             mode="min",
                             save_top_k=5,
                             verbose=True)
optimizer = optim.Adam(model.parameters(), lr=LR)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                 patience=REDUCE_LR_PATIENCE)
early_stopping = EarlyStopping(monitor='val_loss',
                               patience=EARLY_STOP_PATIENCE)

# Probably we also need to subclass `System`, in order to log the target metrics on the validation set (PESQ/STOI)
system = System(model, optimizer, sisdr_loss_wrapper, train_loader,
예제 #4
0
    total_df = total_df.round({'SI-SDR': 3, 'PESQ': 3, 'STOI': 3})
    print(total_df)
    return total_df

models = {
    'input': None,
    'baseline': RegressionFCNN.from_pretrained('models/baseline_model_v1.pt'),
    'vae': VAE.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/workspace/models/VAE.pt'),
    'auto_encoder': VAE.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/workspace/models/AutoEncoder.pt'),
    'waveunet_v1': WaveUNet.from_pretrained('models/waveunet_model_adapt.pt'),
    'dcunet_20': DCUNet.from_pretrained('models/dcunet_20_random_v2.pt'),
    'dccrn': DCCRNet.from_pretrained('models/dccrn_random_v1.pt'),
    'smolnet': SMoLnet.from_pretrained('models/SMoLnet.pt'),
    'dprnn': DPRNNTasNet.from_pretrained('models/dprnn_model.pt'),
    'conv_tasnet': ConvTasNet.from_pretrained('models/convtasnet_model.pt'),
    'dptnet': DPTNet.from_pretrained('models/dptnet_model.pt'),
    'demucs': Demucs.from_pretrained('models/Demucs.pt'),
}

def eval_all_and_plot(models, test_set, directory, plot_name):
    results_dfs = {}

    for model_name, model in models.items():
        print(f'Evaluating {model_labels[model_name]}')
        csv_path = f'/jmain01/home/JAD007/txk02/aaa18-txk02/DRONE_project/asteroid/notebooks/{directory}/{model_name}.csv'

        if os.path.isfile(csv_path):
            print('Results already available')
            df = pd.read_csv(csv_path)
        else:
            df = evaluate_model(model, test_set)
예제 #5
0
파일: eval.py 프로젝트: ChokJohn/SpeechX
    except ModuleNotFoundError:
        import warnings

        warnings.warn("Couldn't find espnet installation. Continuing without.")
        return metric_list
    return metric_list + ["wer"]


def main(conf):
    compute_metrics = update_compute_metrics(conf["compute_wer"], COMPUTE_METRICS)
    anno_df = pd.read_csv(Path(conf["test_dir"]).parent.parent.parent / "test_annotations.csv")
    wer_tracker = (
        MockWERTracker() if not conf["compute_wer"] else WERTracker(ASR_MODEL_PATH, anno_df)
    )
    model_path = os.path.join(conf["exp_dir"], "best_model.pth")
    model = DPTNet.from_pretrained(model_path)
>>>>>>> 210b5e4eb8ce24fe25780e008c89a4bb71bbd0ea
    # Handle device placement
    if conf["use_gpu"]:
        model.cuda()
    model_device = next(model.parameters()).device
<<<<<<< HEAD
    test_set = WhamDataset(
        conf["test_dir"],
        conf["task"],
        sample_rate=conf["sample_rate"],
        nondefault_nsrc=model.masker.n_src,
        segment=None,
=======
    test_set = LibriMix(
        csv_dir=conf["test_dir"],
예제 #6
0
def denoise_audio(audio_path, model, denoised_file_path):
    noisy, sr = librosa.load(audio_path, sr=8000)
    noisy = torch.tensor(noisy)
    noisy = noisy.cuda()
    model = model.cuda()
    denoised = model(noisy).detach().flatten().cpu().numpy()
    sf.write(denoised_file_path, denoised, samplerate=8000)


baseline_model = RegressionFCNN.from_pretrained(
    'Drone_Models_selected/baseline_model_v1.pt')
smolnet_model = SMoLnet.from_pretrained('Drone_Models_selected/SMoLnet.pt')
dcunet_model = DCUNet.from_pretrained(
    'Drone_Models_selected/dcunet_20_random_v2.pt')
dptnet_model = DPTNet.from_pretrained('Drone_Models_selected/dptnet_model.pt')
waveunet_model = WaveUNet.from_pretrained(
    'Drone_Models_selected/waveunet_model_adapt.pt')

# baseline_model = RegressionFCNN.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/baseline_model_v1.pt')
# smolnet_model = SMoLnet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/SMoLnet.pt')
# dcunet_model = DCUNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/dcunet_20_random_v2.pt')
# dptnet_model = DPTNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/dptnet_model.pt')
# waveunet_model = WaveUNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/waveunet_model_adapt.pt')

models_dict = {
    'RegressionFCNN': baseline_model,
    'SMoLnet': smolnet_model,
    'DCUNet': dcunet_model,
    'DPTNet': dptnet_model,
    'WaveUNet': waveunet_model
            df = pd.read_csv(csv_path_tmp)
            denoised_file_paths = pd.Series(denoised_file_paths)
            df['denoised_path'] = denoised_file_paths
            df_csv_path = f'{save_enhanced_dir}/{str(model_name)}/{snr}dB/{model_name}_snr{snr}dB.csv'
            df.to_csv(df_csv_path)
    return None


#directory to store evaluation results in
#os.makedirs('evaluation', exist_ok=True)

from asteroid import DPTNet, SMoLnet, RegressionFCNN, DCUNet, WaveUNet
baseline_model = RegressionFCNN.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/baseline_model_v1.pt')
smolnet_model = SMoLnet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/SMoLnet.pt')
dcunet_model = DCUNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/dcunet_20_random_v2.pt')
dptnet_model = DPTNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/dptnet_model.pt')
waveunet_model = WaveUNet.from_pretrained('/jmain01/home/JAD007/txk02/aaa18-txk02/Datasets/Drone_Models_selected/waveunet_model_adapt.pt')

print('get metrics for DPTNet')
get_all_metrics_from_model(model=dptnet_model, test_sets=test_sets, model_name='DPTNet')

print('get metrics for Regression model')
get_all_metrics_from_model(model=baseline_model, test_sets=test_sets, model_name='RegressionFCNN')

print('get metrics for SMoLnet model')
get_all_metrics_from_model(model=smolnet_model, test_sets=test_sets, model_name='SMoLnet')

print('get metrics for DCUNet model')
get_all_metrics_from_model(model=dcunet_model, test_sets=test_sets, model_name='DCUNet')

print('get metrics for WaveUNet model')
예제 #8
0
def main(conf):
    compute_metrics = update_compute_metrics(conf["compute_wer"], COMPUTE_METRICS)
    anno_df = pd.read_csv(Path(conf["test_dir"]).parent.parent.parent / "test_annotations.csv")
    wer_tracker = (
        MockWERTracker() if not conf["compute_wer"] else WERTracker(ASR_MODEL_PATH, anno_df)
    )
    model_path = os.path.join(conf["exp_dir"], "best_model.pth")
    model = DPTNet.from_pretrained(model_path)
    # Handle device placement
    if conf["use_gpu"]:
        model.cuda()
    model_device = next(model.parameters()).device
    test_set = LibriMix(
        csv_dir=conf["test_dir"],
        task=conf["task"],
        sample_rate=conf["sample_rate"],
        n_src=conf["train_conf"]["data"]["n_src"],
        segment=None,
        return_id=True,
    )  # Uses all segment length
    # Used to reorder sources only
    loss_func = PITLossWrapper(pairwise_neg_sisdr, pit_from="pw_mtx")

    # Randomly choose the indexes of sentences to save.
    eval_save_dir = os.path.join(conf["exp_dir"], conf["out_dir"])
    ex_save_dir = os.path.join(eval_save_dir, "examples/")
    if conf["n_save_ex"] == -1:
        conf["n_save_ex"] = len(test_set)
    save_idx = random.sample(range(len(test_set)), conf["n_save_ex"])
    series_list = []
    torch.no_grad().__enter__()
    for idx in tqdm(range(len(test_set))):
        # Forward the network on the mixture.
        mix, sources, ids = test_set[idx]
        mix, sources = tensors_to_device([mix, sources], device=model_device)
        est_sources = model(mix.unsqueeze(0))
        loss, reordered_sources = loss_func(est_sources, sources[None], return_est=True)
        mix_np = mix.cpu().data.numpy()
        sources_np = sources.cpu().data.numpy()
        est_sources_np = reordered_sources.squeeze(0).cpu().data.numpy()
        # For each utterance, we get a dictionary with the mixture path,
        # the input and output metrics
        utt_metrics = get_metrics(
            mix_np,
            sources_np,
            est_sources_np,
            sample_rate=conf["sample_rate"],
            metrics_list=COMPUTE_METRICS,
        )
        utt_metrics["mix_path"] = test_set.mixture_path
        est_sources_np_normalized = normalize_estimates(est_sources_np, mix_np)
        utt_metrics.update(
            **wer_tracker(
                mix=mix_np,
                clean=sources_np,
                estimate=est_sources_np_normalized,
                wav_id=ids,
                sample_rate=conf["sample_rate"],
            )
        )
        series_list.append(pd.Series(utt_metrics))

        # Save some examples in a folder. Wav files and metrics as text.
        if idx in save_idx:
            local_save_dir = os.path.join(ex_save_dir, "ex_{}/".format(idx))
            os.makedirs(local_save_dir, exist_ok=True)
            sf.write(local_save_dir + "mixture.wav", mix_np, conf["sample_rate"])
            # Loop over the sources and estimates
            for src_idx, src in enumerate(sources_np):
                sf.write(local_save_dir + "s{}.wav".format(src_idx), src, conf["sample_rate"])
            for src_idx, est_src in enumerate(est_sources_np_normalized):
                sf.write(
                    local_save_dir + "s{}_estimate.wav".format(src_idx),
                    est_src,
                    conf["sample_rate"],
                )
            # Write local metrics to the example folder.
            with open(local_save_dir + "metrics.json", "w") as f:
                json.dump(utt_metrics, f, indent=0)

    # Save all metrics to the experiment folder.
    all_metrics_df = pd.DataFrame(series_list)
    all_metrics_df.to_csv(os.path.join(eval_save_dir, "all_metrics.csv"))

    # Print and save summary metrics
    final_results = {}
    for metric_name in compute_metrics:
        input_metric_name = "input_" + metric_name
        ldf = all_metrics_df[metric_name] - all_metrics_df[input_metric_name]
        final_results[metric_name] = all_metrics_df[metric_name].mean()
        final_results[metric_name + "_imp"] = ldf.mean()

    print("Overall metrics :")
    pprint(final_results)
    if conf["compute_wer"]:
        print("\nWER report")
        wer_card = wer_tracker.final_report_as_markdown()
        print(wer_card)
        # Save the report
        with open(os.path.join(eval_save_dir, "final_wer.md"), "w") as f:
            f.write(wer_card)

    with open(os.path.join(eval_save_dir, "final_metrics.json"), "w") as f:
        json.dump(final_results, f, indent=0)

    model_dict = torch.load(model_path, map_location="cpu")
    os.makedirs(os.path.join(conf["exp_dir"], "publish_dir"), exist_ok=True)
    publishable = save_publishable(
        os.path.join(conf["exp_dir"], "publish_dir"),
        model_dict,
        metrics=final_results,
        train_conf=train_conf,
    )