Esempio n. 1
0
def plot_cosmology(zs, mu_mcmc, mu_minuit, std_mcmc, std_minuit, n):
    import matplotlib.pyplot as plt
    from matplotlib import gridspec
    from matplotlib.ticker import MaxNLocator
    fig = plt.figure(figsize=(4.5, 5.5))
    gs = gridspec.GridSpec(2, 1, height_ratios=[2, 1], hspace=0.0, wspace=0.0)
    ax0 = fig.add_subplot(gs[0])
    ax1 = fig.add_subplot(gs[1], sharex=ax0)
    axes = [ax0, ax1]
    zsort = sorted(zs)
    distmod = WMAP9.distmod(zsort).value - 19.3
    distmod2 = WMAP9.distmod(zs).value - 19.3
    ms = 2
    alpha = 0.4
    axes[0].errorbar(zs, mu_minuit, yerr=np.sqrt(std_minuit*std_minuit + 0.1*0.1),
                     ms=ms, fmt='o', label=r"Max. Likelihood", color="r", alpha=alpha)
    axes[0].errorbar(zs, mu_mcmc, yerr=np.sqrt(std_mcmc*std_mcmc + 0.1*0.1), fmt='o',
                     ms=ms, label=r"MCMC", color="b", alpha=alpha)
    axes[1].errorbar(zs, mu_minuit - distmod2, yerr=np.sqrt(std_minuit*std_minuit + 0.1*0.1),
                     ms=ms, fmt='o', label=r"Max. Likelihood", color="r", alpha=alpha)
    axes[1].errorbar(zs, mu_mcmc - distmod2, yerr=np.sqrt(std_mcmc*std_mcmc + 0.1*0.1), fmt='o',
                     ms=ms, label=r"MCMC", color="b", alpha=alpha)
    axes[0].plot(zsort, distmod, 'k')
    axes[1].axhline(0, color='k')
    axes[1].set_xlabel("$z$")
    axes[0].set_ylabel(r"$\mu$")
    axes[1].set_ylabel(r"$\mu_{\rm obs} - \mu(\mathcal{C})$")
    axes[0].legend(loc=2, frameon=False)
    plt.setp(ax0.get_xticklabels(), visible=False)
    ax0.yaxis.set_major_locator(MaxNLocator(7, prune="lower"))
    ax1.yaxis.set_major_locator(MaxNLocator(3))

    fig.savefig("output/obs_cosmology_%s.png" % n, bbox_inches="tight", dpi=300, transparent=True)
    fig.savefig("output/obs_cosmology_%s.pdf" % n, bbox_inches="tight", dpi=300, transparent=True)
Esempio n. 2
0
def  get_distance_modulos(SN_df, z = 'CMB', cosmo = 'WMAP9'):

    if cosmo == 'WMAP9':
        from astropy.cosmology import WMAP9 as cosmo
    else:
        from astropy.cosmology import WMAP7 as cosmo

    if z == 'CMB':
        z_distmod = cosmo.distmod(SN_df['z_cmb_salt'].values)
    else:
        z_distmod = cosmo.distmod(SN_df['zhel_spec'].values)

    return z_distmod
Esempio n. 3
0
def get_catalog(params, map_struct):

    cat, = Vizier.get_catalogs('J/ApJS/199/26/table3')

    completeness = 0.5
    alpha = -1.0
    MK_star = -23.55
    MK_max = MK_star + 2.5 * np.log10(gammaincinv(alpha + 2, completeness))

    z = (u.Quantity(cat['cz']) / c.c).to(u.dimensionless_unscaled)
    MK = cat['Ktmag'] - cosmo.distmod(z)
    keep = (z > 0) & (MK < MK_max)

    cat = cat[keep]
    z = z[keep]

    r = cosmo.luminosity_distance(z).to('Mpc').value
    theta = 0.5 * np.pi - cat['DEJ2000'].to('rad').value
    phi = cat['RAJ2000'].to('rad').value
    ipix = hp.ang2pix(map_struct["nside"], theta, phi)

    if "distnorm" in map_struct:
        dp_dV = map_struct["prob"][ipix] * map_struct["distnorm"][ipix] * norm(
            map_struct["distmu"][ipix],
            map_struct["distsigma"][ipix]).pdf(r) / map_struct["pixarea"]
        top50 = cat[np.flipud(np.argsort(dp_dV))][:50]
    else:
        top50 = cat[np.flipud(np.argsort(map_struct["prob"][ipix]))][:50]

    catalogfile = os.path.join(params["outputDir"], 'catalog.dat')
    top50['RAJ2000', 'DEJ2000', 'Ktmag'].write(catalogfile, format='ascii')

    return top50
Esempio n. 4
0
def volume_limit(sample,zmax,magcol,appmag):

    # Volume-limit the sample based on the detection limit and redshift
    
    appmag_lim = appmag * u.mag
    
    distmod = WMAP9.distmod(zmax)
    absmag_lim = appmag_lim - distmod

    absmags = sample[magcol] - WMAP9.distmod(sample['Z_BEST']).value

    #print sample['imaging'][0]
    #print 'absmag_lim',absmag_lim
    #print 'appmag_lim',appmag_lim
    #print 'distmod',distmod

    vl_ind = (absmags < absmag_lim.value) & (sample['Z_BEST'] > 0) & (sample['Z_BEST'] < zmax)
    
    return sample[vl_ind]
Esempio n. 5
0
def SNcosmo_template():
    # Pick cosmology
    from astropy.cosmology import WMAP9 as cosmo
    #from astropy.cosmology import FlatLambdaCDM
    #cosmo = FlatLambdaCDM(H0=69.6, Om0=0.286)

    from astropy import units as u
    import astropy.constants as const

    # Parameters
    obsfilter = inst.filter   # This is the name of the sample band we use

    # Other defined things
    absmag_V = -19.3           # We use this to normalize (needed?)
    magsystem = 'ab'           # The magnitude system (both ab and vega should work)
    modelphase = 0             # The phase of the SN
    template = I.Source        # The name of the SN template (e.g. salt2 or hsiao)

    # When using new bands, assuming these are in newband directory
    # e.g. from WFC3IR from http://www.stsci.edu/~WFC3/UVIS/SystemThroughput/
    bandinfo = {}
    for filterfile in os.listdir(I.Inst):
        if filterfile == '.DS_Store':  
                pass
        else:
            words = re.split('\.',filterfile)
            filterdata = np.genfromtxt(I.Inst+'/'+filterfile )
            # Remove regions with zero throughput
            #iNonzero = np.where( filterdata[:,1]>0 )[0]
            band = sncosmo.Bandpass(i_wave,np.ones(len(i_wave)),name=words[0])
            #band = sncosmo.Bandpass(filterdata[:,0],filterdata[:,1],name=words[0])
            sncosmo.registry.register(band)

    # Scale template to chosen absolute V (Vega)
    model = sncosmo.Model(source=template)
    model.set(z=0)
    magdiff = model.bandmag('bessellv','vega',[0])-absmag_V
    templatescale = 10**(0.4*magdiff)
    print 'Get scale %s to match absolute mag.'%(templatescale)
    
    # Get distance modulus
    DM = cosmo.distmod(z)
    print 'Get Distance Modulus %s'%(DM)

    # Create a model assuming both of these scales
    model = sncosmo.Model(source=template)
    print model
    model.set(x0=templatescale*10**(-0.4*DM.value),z=z) #this only works for salt2 model. need amplitude for hsiao model
    
    # Derive the observed magnitude and flux in chosen filter
    obsmag = model.bandmag(obsfilter,magsystem,[modelphase])
    bandflux = model.bandflux(obsfilter, modelphase ) # Flux in photons/s/cm^2
    print 'We get mag %s (%s) and flux %s photons/s/cm^2'%(obsmag,magsystem,bandflux)

    return model.flux(modelphase,i_wave) #wave is in observer frame
Esempio n. 6
0
def vl_plot():

    # Plot the volume-limited samples split by survey

    tasca = fits.getdata('{0}/comparisons/COSMOS/cosmos_tasca_gzh.fits'.format(gzh_path),1)
    cassata = fits.getdata('{0}/comparisons/COSMOS/cosmos_cassata_gzh.fits'.format(gzh_path),1)
    zest = fits.getdata('{0}/comparisons/COSMOS/cosmos_zest_gzh.fits'.format(gzh_path),1)
    aegis = fits.getdata('{0}/comparisons/AEGIS/aegis_gzh.fits'.format(gzh_path),1)
    gems = fits.getdata('{0}/comparisons/GEMS/gems_gzh.fits'.format(gzh_path),1)
    goods = fits.getdata('{0}/comparisons/GOODS/goods_gzh.fits'.format(gzh_path),1)


    dlist = get_dlist(aegis,gems,goods,cassata,tasca,zest)

    fig,axarr = plt.subplots(3,2,sharex=True,sharey=True,figsize=(12,12))

    for s,ax in zip(dlist,axarr.ravel()):
        d = s['data']
        newdata = volume_limit(d,1.0,s['magcol'],s['maglim'])
        olddata = d[d['Z_BEST'] > 0.]
        absmag_old = olddata[s['magcol']] - WMAP9.distmod(olddata['Z_BEST']).value
        absmag_new = newdata[s['magcol']] - WMAP9.distmod(newdata['Z_BEST']).value
        appmag_old = olddata[s['magcol']]
        appmag_new = newdata[s['magcol']]

        s['data'] = newdata
        ax.scatter(olddata['Z_BEST'],absmag_old,c='gray')
        ax.scatter(newdata['Z_BEST'],absmag_new,c='red')
        ax.set_xlim(-0.5,4)
        ax.set_ylim(-15,-25)
        ax.set_xlabel(r'$z$',fontsize=20)
        ax.set_ylabel(r'$M$',fontsize=20)
        ax.set_title("{0} ".format(s['survey'])+r'$m_\mathrm{I|i|z}<$'+'{0:.1f}'.format(s['maglim']),fontsize=20)


    fig.tight_layout()

    plt.show()

    plt.close()

    return None
Esempio n. 7
0
def get_supernova_data(n=1500, nact=1000, ston_thresh=5, shallow=True):
    zp, name = get_zp_and_name(shallow)
    temp_dir = os.path.dirname(__file__) + "/output/supernova_data_%s" % name
    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)
    ress = Parallel(n_jobs=4, max_nbytes="20M", batch_size=5)(delayed(get_result)(
        temp_dir, zp, i, 0.1, False, False) for i in range(n))
    res = np.array([r for r in ress if r is not None])
    ston = res[:, 6]
    res = res[ston > ston_thresh, :]
    res = res[:nact, :]
    diff = np.abs(res[:, 7] - (WMAP9.distmod(res[:, 1]).value - 19.3))
    res = res[(diff < 4), :]
    # [seed, z, t0, x0, x1, c, ston] + mus + stds)
    #            zs, mu_mcmc, mu_minuit, std_mcmc, std_minuit
    print("Supernova data", res.shape)
    return res[:, 1], res[:, 7], res[:, 8], res[:, 9], res[:, 10]
Esempio n. 8
0
def cosmoDistMod(redshift, WMAP9=False, H0=70.0, Om0=0.30, Planck15=False):
    """
    Get the Distance Module at redshift=z.

    This is simply a wrapper of astropy.cosmology
    The input redsfhit can be an array
    """
    if WMAP9:
        from astropy.cosmology import WMAP9 as cosmo
    elif Planck15:
        from astropy.cosmology import Planck15 as cosmo
    else:
        from astropy.cosmology import FlatLambdaCDM
        cosmo = FlatLambdaCDM(H0=H0, Om0=Om0)

    dm = cosmo.distmod(redshift)

    return dm.value
Esempio n. 9
0
def cosmoDistMod(redshift, WMAP9=False, H0=70.0, Om0=0.30, Planck15=False):
    """
    Get the Distance Module at redshift=z.

    This is simply a wrapper of astropy.cosmology
    The input redsfhit can be an array
    """
    if WMAP9:
        from astropy.cosmology import WMAP9 as cosmo
    elif Planck15:
        from astropy.cosmology import Planck15 as cosmo
    else:
        from astropy.cosmology import FlatLambdaCDM
        cosmo = FlatLambdaCDM(H0=H0, Om0=Om0)

    dm = cosmo.distmod(redshift)

    return dm.value
Esempio n. 10
0
def color_mag_plots(mgs, s82, decals, savefig=False):

    # Make paneled histograms of the color distribution for several magnitude bins of Galaxy Zoo data.
    """
    SDSS main sample (GZ2)
    Stripe 82 coadded data (GZ2)
    DECaLS
    """

    redshifts = (0.12, 0.08, 0.05)
    appmag_lim = 17.0
    # Work out the magnitude limit from cosmology

    fig, axarr = plt.subplots(num=1, nrows=3, ncols=3, figsize=(12, 10))

    for z, ax in zip(redshifts, axarr.ravel()):
        absmag_lim = appmag_lim - WMAP9.distmod(z).value
        maglim = (mgs['PETROMAG_MR'] < absmag_lim) & (mgs['REDSHIFT'] <= z)
        spiral = mgs[
            't01_smooth_or_features_a02_features_or_disk_weighted_fraction'] >= 0.8
        elliptical = mgs[
            't01_smooth_or_features_a01_smooth_weighted_fraction'] >= 0.8
        ax.hist(mgs[maglim & spiral]['PETROMAG_U'] -
                mgs[maglim & spiral]['PETROMAG_R'],
                range=(0, 4),
                bins=25,
                color='blue',
                histtype='step',
                label='spiral')
        ax.hist(mgs[maglim & elliptical]['PETROMAG_U'] -
                mgs[maglim & elliptical]['PETROMAG_R'],
                range=(0, 4),
                bins=25,
                color='red',
                histtype='step',
                label='elliptical')

        ax.set_xlabel(r'$(u-r)$', fontsize=16)
        ax.set_title(r'$M_r<{0:.2f}, z<{1:.2f}$'.format(absmag_lim, z),
                     fontsize=16)
        ax.text(0.95,
                0.95,
                'MGS',
                ha='right',
                va='top',
                transform=ax.transAxes)

        if ax == axarr.ravel()[0]:
            ax.legend(loc='upper left', fontsize=10)

    s82_lim = 17.77
    for z, ax in zip(redshifts, axarr.ravel()[3:6]):
        absmag_lim = s82_lim - WMAP9.distmod(z).value
        maglim = (s82['PETROMAG_MR'] < absmag_lim) & (s82['REDSHIFT'] <= z)
        spiral = s82[
            't01_smooth_or_features_a02_features_or_disk_weighted_fraction'] >= 0.8
        elliptical = s82[
            't01_smooth_or_features_a01_smooth_weighted_fraction'] >= 0.8
        ax.hist(s82[maglim & spiral]['PETROMAG_U'] -
                s82[maglim & spiral]['PETROMAG_R'],
                range=(0, 4),
                bins=25,
                color='blue',
                histtype='step',
                label='spiral')
        ax.hist(s82[maglim & elliptical]['PETROMAG_U'] -
                s82[maglim & elliptical]['PETROMAG_R'],
                range=(0, 4),
                bins=25,
                color='red',
                histtype='step',
                label='elliptical')

        ax.set_xlabel(r'$(u-r)$', fontsize=16)
        ax.set_title(r'$M_r<{0:.2f}, z<{1:.2f}$'.format(absmag_lim, z),
                     fontsize=16)
        ax.text(0.95,
                0.95,
                'Stripe 82',
                ha='right',
                va='top',
                transform=ax.transAxes)

    decals_lim = 17.77
    for z, ax in zip(redshifts, axarr.ravel()[6:]):
        absmag_lim = decals_lim - WMAP9.distmod(z).value
        maglim = (decals['metadata.mag.abs_r'] <
                  absmag_lim) & (decals['metadata.redshift'] <= z)
        spiral = decals['t00_smooth_or_features_a1_features_frac'] >= 0.8
        elliptical = decals['t00_smooth_or_features_a0_smooth_frac'] >= 0.8
        ax.hist(decals[maglim & spiral]['metadata.mag.u'] -
                decals[maglim & spiral]['metadata.mag.r'],
                range=(0, 4),
                bins=25,
                color='blue',
                histtype='step',
                label='spiral')
        ax.hist(decals[maglim & elliptical]['metadata.mag.u'] -
                decals[maglim & elliptical]['metadata.mag.r'],
                range=(0, 4),
                bins=25,
                color='red',
                histtype='step',
                label='elliptical')

        ax.set_xlabel(r'$(u-r)$', fontsize=16)
        ax.set_title(r'$M_r<{0:.2f}, z<{1:.2f}$'.format(absmag_lim, z),
                     fontsize=16)
        ax.text(0.95,
                0.95,
                'DECaLS',
                ha='right',
                va='top',
                transform=ax.transAxes)

    fig.tight_layout()
    if savefig:
        plt.savefig('{0}/color_hist.pdf'.format(plot_path))
    else:
        plt.show()

    return None
Esempio n. 11
0
def color_mag_ratio(mgs, s82, decal, savefig=False):

    # Plot the spiral to elliptical ratio as a function of optical color.

    redshifts = (0.12, 0.08, 0.05)
    linestyles = ('solid', 'dashed', 'dashdot')

    datasets = ({
        'data': mgs,
        'title': 'MGS',
        'appmag': 17.0,
        'sp': 't01_smooth_or_features_a02_features_or_disk_weighted_fraction',
        'el': 't01_smooth_or_features_a01_smooth_weighted_fraction',
        'umag': 'PETROMAG_U',
        'rmag': 'PETROMAG_R',
        'absr': 'PETROMAG_MR',
        'redshift': 'REDSHIFT'
    }, {
        'data': s82,
        'title': 'Stripe 82',
        'appmag': 17.77,
        'sp': 't01_smooth_or_features_a02_features_or_disk_weighted_fraction',
        'el': 't01_smooth_or_features_a01_smooth_weighted_fraction',
        'umag': 'PETROMAG_U',
        'rmag': 'PETROMAG_R',
        'absr': 'PETROMAG_MR',
        'redshift': 'REDSHIFT'
    }, {
        'data': decals,
        'title': 'DECaLS',
        'appmag': 17.77,
        'sp': 't00_smooth_or_features_a1_features_frac',
        'el': 't00_smooth_or_features_a0_smooth_frac',
        'umag': 'metadata.mag.u',
        'rmag': 'metadata.mag.r',
        'absr': 'metadata.mag.abs_r',
        'redshift': 'metadata.redshift'
    })

    # Work out the magnitude limit from cosmology

    fig, axarr = plt.subplots(num=2, nrows=1, ncols=3, figsize=(12, 5))

    for ax, d in zip(axarr.ravel(), datasets):
        for z, ls in zip(redshifts, linestyles):
            absmag_lim = d['appmag'] - WMAP9.distmod(z).value
            maglim = (d['data'][d['absr']] <
                      absmag_lim) & (d['data'][d['redshift']] <= z)
            spiral = d['data'][d['sp']] >= 0.8
            elliptical = d['data'][d['el']] >= 0.8
            n_sp, bins_sp = np.histogram(
                d['data'][maglim & spiral][d['umag']] -
                d['data'][maglim & spiral][d['rmag']],
                range=(0, 4),
                bins=25)
            n_el, bins_el = np.histogram(
                d['data'][maglim & elliptical][d['umag']] -
                d['data'][maglim & elliptical][d['rmag']],
                range=(0, 4),
                bins=25)

            plotval = np.log10(n_sp * 1. / n_el)
            ax.plot(bins_sp[1:],
                    plotval,
                    linestyle=ls,
                    label=r'$M_r<{0:.2f}, z<{1:.2f}$'.format(absmag_lim, z))

        ax.set_xlabel(r'$(u-r)$', fontsize=16)
        ax.set_ylabel(r'$\log(n_{sp}/n_{el})$', fontsize=16)
        ax.set_ylim(-1.5, 1.5)
        ax.set_title(d['title'], fontsize=16)
        if ax == axarr.ravel()[0]:
            ax.legend(loc='upper left', fontsize=8)

    fig.tight_layout()

    if savefig:
        plt.savefig('{0}/feature_ratio.pdf'.format(plot_path))
    else:
        plt.show()

    return None
Esempio n. 12
0
            mask = np.isfinite(data[zcol])  & (data[zcol] > 0.) & np.logical_not(prevmask)
            blankz[mask] = data[zcol][mask]
            prevmask = mask

    return blankz

zarr = choose_redshift(data)

# Calculate absolute size in kpc

from astropy.cosmology import WMAP9
from astropy import units as u

size = [WMAP9.kpc_proper_per_arcmin(z).to(u.kpc/u.arcsec) * (r * u.arcsec) if z > 0 else -99. * u.kpc for z,r in zip(zarr,data['KRON_RADIUS_I'])]
#re = 0.162 * data['FLUX_RADIUS1_B_1']**1.87
absmag = [zmag * u.mag - WMAP9.distmod(z) if z > 0 else -99. * u.mag for z,zmag in zip(zarr,data['Z_1'])]

data.rename_column('hubble_id_1'     , 'hubble_id'      )
data.rename_column('coords_ra_1'     , 'ra')
data.rename_column('coords_dec_1'    , 'dec')
data.rename_column('KRON_RADIUS_I' , 'kron_radius_I')
data.rename_column('FLUX_RADIUS1_I', 'flux_radius1_I')
data.rename_column('B_1'             , 'B')
data.rename_column('V_1'             , 'V')
data.rename_column('I_1'             , 'I')
data.rename_column('Z_1'             , 'Z')
data.rename_column('group_type_1'    , 'group_type')
data.rename_column('retire_at_1'     , 'retire_at')
data.rename_column('survey_1'        , 'survey')
data.rename_column('depth_1'         , 'depth')
del data['KRON_RADIUS_B_1']
Esempio n. 13
0
    return data

# Plot the CMD as a function of GZ1 morphology for the RGZ 75% counterparts

data = ascii.read('/Users/willettk/Astronomy/Research/GalaxyZoo/rgz-analysis/rgz_wise_75_sdss_magerr.csv')

fname_spec = 'rgz_75_sdss_mags_spec.vot'
fname_nospec = 'rgz_75_sdss_mags_nospec.vot'

zoospec = votable_read('%s/%s' % (rgzdir,fname_spec))
zoonospec = votable_read('%s/%s' % (rgzdir,fname_nospec))

na10 = na10_read()

gr_na10 = na10['g-r']
distmod_na10 = WMAP9.distmod(na10['z'])
Mr_na10 = na10['r'] - distmod_na10.value
Mr_na10 = na10['M_g'] - gr_na10

# Generate contours of the NA10 sample

magbins = np.linspace(-24,-20,20)
colorbins = np.linspace(0.3,1.0,20)
hc,xc,yc = np.histogram2d(Mr_na10,gr_na10,bins=(magbins,colorbins))
levels=np.linspace(0,200,10)

# Make 2x2 figure

fig,axarr = plt.subplots(2,2,figsize=(10,10))

from scipy.ndimage.filters import gaussian_filter
Esempio n. 14
0
#!/usr/bin/env python2.7

import numpy as np
import matplotlib.pyplot as plt
from astropy.cosmology import WMAP9 as cosmo, get_current
import astropy
from background import *

zs = np.linspace(0, .35, 100)

plt.figure()
plt.plot(zs, mstar(zs) - cosmo.distmod(zs).value)
plt.xlabel('redshift')
plt.ylabel('Absolute Mag')
plt.grid()

plt.figure()
plt.plot(zs, mstar(zs))
plt.xlabel('redshift')
plt.ylabel('Apparent Mag')
plt.grid()

plt.figure()
plt.plot(zs, -cosmo.distmod(zs).value)
plt.xlabel('redshift')
plt.ylabel('Distance Modulus')
plt.grid()

plt.show()
Esempio n. 15
0
def get_catalog(params, map_struct):
    if not os.path.isdir(params["catalogDir"]):
        os.makedirs(params["catalogDir"])

    catalogFile = os.path.join(params["catalogDir"],
                               "%s.hdf5" % params["galaxy_catalog"])

    """AB Magnitude zero point."""
    MAB0 = -2.5 * np.log10(3631.e-23)
    pc_cm = 3.08568025e18
    const = 4. * np.pi * (10. * pc_cm)**2.

    if params["galaxy_catalog"] == "2MRS":
        if not os.path.isfile(catalogFile):
            import astropy.constants as c

            cat, = Vizier.get_catalogs('J/ApJS/199/26/table3')

            ra, dec = cat["RAJ2000"], cat["DEJ2000"]
            cz = cat["cz"]
            magk = cat["Ktmag"]

            z = (u.Quantity(cat['cz']) / c.c).to(u.dimensionless_unscaled)

            completeness = 0.5
            alpha = -1.0
            MK_star = -23.55
            MK_max = MK_star + 2.5 * np.log10(gammaincinv(alpha + 2,
                                                          completeness))
            MK = magk - cosmo.distmod(z)
            idx = (z > 0) & (MK < MK_max)

            ra, dec = ra[idx], dec[idx]
            z = z[idx]
            magk = magk[idx]

            distmpc = cosmo.luminosity_distance(z).to('Mpc').value

            with h5py.File(catalogFile, 'w') as f:
                f.create_dataset('ra', data=ra)
                f.create_dataset('dec', data=dec)
                f.create_dataset('z', data=z)
                f.create_dataset('magk', data=magk)
                f.create_dataset('distmpc', data=distmpc)

        else:
            with h5py.File(catalogFile, 'r') as f:
                ra, dec = f['ra'][:], f['dec'][:]
                z = f['z'][:]
                magk = f['magk'][:]
                distmpc = f['distmpc'][:]
        r = distmpc * 1.0
        mag = magk * 1.0

    elif params["galaxy_catalog"] == "GLADE":
        if not os.path.isfile(catalogFile):
            cat, = Vizier.get_catalogs('VII/281/glade2')

            ra, dec = cat["RAJ2000"], cat["DEJ2000"]
            distmpc, z = cat["Dist"], cat["z"]
            magb, magk = cat["Bmag"], cat["Kmag"]
            # Keep track of galaxy identifier
            GWGC, PGC, HyperLEDA = cat["GWGC"], cat["PGC"], cat["HyperLEDA"]
            _2MASS, SDSS = cat["_2MASS"], cat["SDSS-DR12"]

            idx = np.where(distmpc >= 0)[0]
            ra, dec = ra[idx], dec[idx]
            distmpc, z = distmpc[idx], z[idx]
            magb, magk = magb[idx], magk[idx]
            GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
            _2MASS, SDSS = _2MASS[idx], SDSS[idx]

            with h5py.File(catalogFile, 'w') as f:
                f.create_dataset('ra', data=ra)
                f.create_dataset('dec', data=dec)
                f.create_dataset('distmpc', data=distmpc)
                f.create_dataset('magb', data=magb)
                f.create_dataset('magk', data=magk)
                f.create_dataset('z', data=z)
                # Add galaxy identifier
                f.create_dataset('GWGC', data=GWGC)
                f.create_dataset('PGC', data=PGC)
                f.create_dataset('HyperLEDA', data=HyperLEDA)
                f.create_dataset('2MASS', data=_2MASS)
                f.create_dataset('SDSS', data=SDSS)

        else:
            with h5py.File(catalogFile, 'r') as f:
                ra, dec = f['ra'][:], f['dec'][:]
                distmpc, z = f['distmpc'][:], f['z'][:]
                magb, magk = f['magb'][:], f['magk'][:]
                GWGC, PGC, _2MASS = f['GWGC'][:], f['PGC'][:], f['2MASS'][:]
                HyperLEDA, SDSS = f['HyperLEDA'][:], f['SDSS'][:]
                # Convert bytestring to unicode
                GWGC = GWGC.astype('U')
                PGC = PGC.astype('U')
                HyperLEDA = HyperLEDA.astype('U')
                _2MASS = _2MASS.astype('U')
                SDSS = SDSS.astype('U')

        # Keep only galaxies with finite B mag when using it in the grade
        if params["galaxy_grade"] == "S":
            idx = np.where(~np.isnan(magb))[0]
            ra, dec, distmpc = ra[idx], dec[idx], distmpc[idx]
            magb, magk = magb[idx], magk[idx]
            GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
            _2MASS, SDSS = _2MASS[idx], SDSS[idx]

        r = distmpc * 1.0
        mag = magb * 1.0

    elif params["galaxy_catalog"] == "CLU":
        if not os.path.isfile(catalogFile):
            raise ValueError("Please add %s." % catalogFile)

        with h5py.File(catalogFile, 'r') as f:
            name = f['name'][:]
            ra, dec = f['ra'][:], f['dec'][:]
            sfr_fuv, mstar = f['sfr_fuv'][:], f['mstar'][:]
            distmpc, magb = f['distmpc'][:], f['magb'][:]
            a, b2a, pa = f['a'][:], f['b2a'][:], f['pa'][:]
            btc = f['btc'][:]

        idx = np.where(distmpc >= 0)[0]
        ra, dec = ra[idx], dec[idx]
        sfr_fuv, mstar = sfr_fuv[idx], mstar[idx]
        distmpc, magb = distmpc[idx], magb[idx]
        a, b2a, pa = a[idx], b2a[idx], pa[idx]
        btc = btc[idx]

        idx = np.where(~np.isnan(magb))[0]
        ra, dec = ra[idx], dec[idx]
        sfr_fuv, mstar = sfr_fuv[idx], mstar[idx]
        distmpc, magb = distmpc[idx], magb[idx]
        a, b2a, pa = a[idx], b2a[idx], pa[idx]
        btc = btc[idx]

        z = -1*np.ones(distmpc.shape)
        r = distmpc * 1.0
        mag = magb * 1.0

    n, cl = params["powerlaw_n"], params["powerlaw_cl"]
    dist_exp = params["powerlaw_dist_exp"]

    prob_scaled = copy.deepcopy(map_struct["prob"])
    prob_sorted = np.sort(prob_scaled)[::-1]
    prob_indexes = np.argsort(prob_scaled)[::-1]
    prob_cumsum = np.cumsum(prob_sorted)
    index = np.argmin(np.abs(prob_cumsum - cl)) + 1
    prob_scaled[prob_indexes[index:]] = 0.0
    prob_scaled = prob_scaled**n

    theta = 0.5 * np.pi - dec * 2 * np.pi / 360.0
    phi = ra * 2 * np.pi / 360.0
    ipix = hp.ang2pix(map_struct["nside"], ra, dec, lonlat=True)

    if "distnorm" in map_struct:
        if map_struct["distnorm"] is not None:
            
            #creat an mask to cut at 3 sigma in distance
            mask = np.zeros(len(r))

            condition_indexer = np.where( (r < (map_struct["distmu"][ipix] + (3*map_struct["distsigma"][ipix]))) & (r > (map_struct["distmu"][ipix] - (3*map_struct["distsigma"][ipix])) )) 
            mask[condition_indexer] = 1

            Sloc = prob_scaled[ipix] * (map_struct["distnorm"][ipix] *
                                        norm(map_struct["distmu"][ipix],
                                        map_struct["distsigma"][ipix]).pdf(r))**params["powerlaw_dist_exp"] / map_struct["pixarea"]
    
            #multiplie the Sloc by 1 or 0 according to the 3 sigma condistion
            Sloc = Sloc*mask
            idx = np.where(condition_indexer)[0]
        else:
            Sloc = copy.copy(prob_scaled[ipix])
            idx = np.arange(len(r)).astype(int)
    else:
        Sloc = copy.copy(prob_scaled[ipix])
        idx = np.arange(len(r)).astype(int)

    # this happens when we are using a tiny catalog...
    if np.all(Sloc == 0.0):
        Sloc[:] = 1.0

    L_nu = const * 10.**((mag + MAB0)/(-2.5))
    L_nu = L_nu / np.nanmax(L_nu[idx])
    L_nu = L_nu**params["catalog_n"]
    L_nu[L_nu < 0.001] = 0.001
    L_nu[L_nu > 1.0] = 1.0
    Slum = L_nu / np.sum(L_nu)

    mlim, M_KNmin, M_KNmax = 22, -17, -12
    L_KNmin = const * 10.**((M_KNmin + MAB0)/(-2.5))
    L_KNmax = const * 10.**((M_KNmax + MAB0)/(-2.5))

    Llim = 4. * np.pi * (r * 1e6 * pc_cm)**2. * 10.**((mlim + MAB0)/(-2.5))
    Sdet = (L_KNmax-Llim)/(L_KNmax-L_KNmin)
    Sdet[Sdet < 0.01] = 0.01
    Sdet[Sdet > 1.0] = 1.0

    # Set nan values to zero
    Sloc[np.isnan(Sloc)] = 0
    Slum[np.isnan(Slum)] = 0

    S = Sloc*Slum*Sdet

    prob = np.zeros(map_struct["prob"].shape)
    if params["galaxy_grade"] == "Sloc":     
        for j in range(len(ipix)):
            prob[ipix[j]] += Sloc[j]
        grade = Sloc
    elif params["galaxy_grade"] == "S":
        for j in range(len(ipix)):
            prob[ipix[j]] += S[j]
        grade = S

    #prob[prob==0] = 1e-10
    prob = prob / np.sum(prob)

    map_struct['prob_catalog'] = prob
    if params["doUseCatalog"]:
        map_struct['prob'] = prob

    idx = np.where(~np.isnan(grade))[0]
    grade = grade[idx]
    ra, dec, Sloc, S = ra[idx], dec[idx], Sloc[idx], S[idx]
    distmpc, z = distmpc[idx], z[idx]
    if params["galaxy_catalog"] == "GLADE":
        GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
        _2MASS, SDSS = _2MASS[idx], SDSS[idx]
    
    """
    Sthresh = np.max(grade)*0.01
    idx = np.where(grade >= Sthresh)[0]
    grade = grade[idx]
    ra, dec, Sloc, S = ra[idx], dec[idx], Sloc[idx], S[idx]
    distmpc, z = distmpc[idx], z[idx]
    if params["galaxy_catalog"] == "GLADE":
        GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
        _2MASS, SDSS = _2MASS[idx], SDSS[idx]
    """
    
    idx = np.argsort(grade)[::-1]
    grade = grade[idx]

    ra, dec, Sloc, S = ra[idx], dec[idx], Sloc[idx], S[idx]
    distmpc, z = distmpc[idx], z[idx]
    if params["galaxy_catalog"] == "GLADE":
        GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
        _2MASS, SDSS = _2MASS[idx], SDSS[idx]

    # Keep only galaxies within 3sigma in distance
    mask = Sloc > 0
    ra, dec, Sloc, S = ra[mask], dec[mask], Sloc[mask], S[mask]
    distmpc, z = distmpc[mask], z[mask]
    if params["galaxy_catalog"] == "GLADE":
        GWGC, PGC, HyperLEDA = GWGC[mask], PGC[mask], HyperLEDA[mask]
        _2MASS, SDSS = _2MASS[mask], SDSS[mask]

    if len(ra) > 2000:
        print('Cutting catalog to top 2000 galaxies...')
        idx = np.arange(2000).astype(int)
        ra, dec, Sloc, S = ra[idx], dec[idx], Sloc[idx], S[idx]
        distmpc, z = distmpc[idx], z[idx]
        if params["galaxy_catalog"] == "GLADE":
            GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
            _2MASS, SDSS = _2MASS[idx], SDSS[idx]

    # now normalize the distributions
    S = S / np.sum(S)
    Sloc = Sloc / np.sum(Sloc)
    
    catalog_struct = {}
    catalog_struct["ra"] = ra
    catalog_struct["dec"] = dec
    catalog_struct["Sloc"] = Sloc
    catalog_struct["S"] = S

    if params["writeCatalog"]:
        catalogfile = os.path.join(params["outputDir"], 'catalog.csv')
        fid = open(catalogfile, 'w')
        cnt = 1
        if params["galaxy_catalog"] == "GLADE":
            fid.write("id, RAJ2000, DEJ2000, Sloc, S, Dist, z, GWGC, PGC, HyperLEDA, 2MASS, SDSS\n")
            for a, b, c, d, e, f, g, h, i, j, k in zip(ra, dec, Sloc, S, distmpc, z, GWGC, PGC, HyperLEDA, _2MASS, SDSS):
                fid.write("%d, %.5f, %.5f, %.5e, %.5e, %.4f, %.4f, %s, %s, %s, %s, %s\n" % (cnt, a, b, c, d, e, f, g, h, i, j, k))
                cnt = cnt + 1
        else:
            fid.write("id, RAJ2000, DEJ2000, Sloc, S, Dist, z\n")
            for a, b, c, d, e, f in zip(ra, dec, Sloc, S, distmpc, z):
                fid.write("%d, %.5f, %.5f, %.5e, %.5e, %.4f, %.4f\n" % (cnt, a, b, c, d, e, f))
                cnt = cnt + 1

        fid.close()

    return map_struct, catalog_struct
Esempio n. 16
0
def color_mag_ratio(mgs,s82,decal,savefig=False):

    # Plot the spiral to elliptical ratio as a function of optical color.

    redshifts = (0.12,0.08,0.05)
    linestyles = ('solid','dashed','dashdot')

    datasets = ({'data':mgs,
                 'title':'MGS',
                 'appmag':17.0,
                 'sp':'t01_smooth_or_features_a02_features_or_disk_weighted_fraction',
                 'el':'t01_smooth_or_features_a01_smooth_weighted_fraction',
                 'umag':'PETROMAG_U',
                 'rmag':'PETROMAG_R',
                 'absr':'PETROMAG_MR',
                 'redshift':'REDSHIFT'},
                {'data':s82,
                 'title':'Stripe 82',
                 'appmag':17.77,
                 'sp':'t01_smooth_or_features_a02_features_or_disk_weighted_fraction',
                 'el':'t01_smooth_or_features_a01_smooth_weighted_fraction',
                 'umag':'PETROMAG_U',
                 'rmag':'PETROMAG_R',
                 'absr':'PETROMAG_MR',
                 'redshift':'REDSHIFT'},
                {'data':decals,
                 'title':'DECaLS',
                 'appmag':17.77,
                 'sp':'t00_smooth_or_features_a1_features_frac',
                 'el':'t00_smooth_or_features_a0_smooth_frac',
                 'umag':'metadata.mag.u',
                 'rmag':'metadata.mag.r',
                 'absr':'metadata.mag.abs_r',
                 'redshift':'metadata.redshift'})

    # Work out the magnitude limit from cosmology

    fig,axarr = plt.subplots(num=2,nrows=1,ncols=3,figsize=(12,5))

    for ax,d in zip(axarr.ravel(),datasets):
        for z,ls in zip(redshifts,linestyles):
            absmag_lim = d['appmag'] - WMAP9.distmod(z).value
            maglim = (d['data'][d['absr']] < absmag_lim) & (d['data'][d['redshift']] <= z)
            spiral = d['data'][d['sp']] >= 0.8
            elliptical = d['data'][d['el']] >= 0.8
            n_sp,bins_sp = np.histogram(d['data'][maglim & spiral][d['umag']] - d['data'][maglim & spiral][d['rmag']],range=(0,4),bins=25)
            n_el,bins_el = np.histogram(d['data'][maglim & elliptical][d['umag']] - d['data'][maglim & elliptical][d['rmag']],range=(0,4),bins=25)

            plotval = np.log10(n_sp * 1./n_el)
            ax.plot(bins_sp[1:],plotval,linestyle=ls,label=r'$M_r<{0:.2f}, z<{1:.2f}$'.format(absmag_lim,z))

        ax.set_xlabel(r'$(u-r)$',fontsize=16)
        ax.set_ylabel(r'$\log(n_{sp}/n_{el})$',fontsize=16)
        ax.set_ylim(-1.5,1.5)
        ax.set_title(d['title'],fontsize=16)
        if ax == axarr.ravel()[0]:
            ax.legend(loc='upper left',fontsize=8)

    fig.tight_layout()
    
    if savefig:
        plt.savefig('{0}/feature_ratio.pdf'.format(plot_path))
    else:
        plt.show()

    return None
Esempio n. 17
0
    # Remove regions with zero throughput
    iNonzero = np.where( filterdata[:,2]>0 )[0]
    band = sncosmo.Bandpass(filterdata[iNonzero,1],filterdata[iNonzero,2],name=words[0])
    sncosmo.registry.register(band)



# Scale template to chosen absolute V (Vega)
model = sncosmo.Model(source=template)
model.set(z=0)
magdiff = model.bandmag('bessellv','vega',[0])-absmag_V
templatescale = 10**(0.4*magdiff)
print 'Get scale %s to match absolute mag.'%(templatescale)

# Get distance modulus
DM = cosmo.distmod(z)
print 'Get Distance Modulus %s'%(DM)

# Create a model assuming both of these scales
model = sncosmo.Model(source=template)
model.set(x0=templatescale*10**(-0.4*DM.value),z=z) #this only works for salt2 model. need amplitude for hsiao model
# Derive the observed magnitude and flux in chosen filter
obsmag = model.bandmag(obsfilter,magsystem,[modelphase])
bandflux = model.bandflux(obsfilter, modelphase ) # Flux in photons/s/cm^2
print 'We get mag %s (%s) and flux %s photons/s/cm^2'%(obsmag,magsystem,bandflux)

# Get fluxes (in ergs/s/cm^2/A)
spectrum = model.flux(modelphase,wave)

plt.figure(1)
plt.plot(wave,spectrum)
Esempio n. 18
0
# Histograms of PWV values and airmasses
hist_args = dict(plot_width=400, color='white')
pwv_hist = lc_sims.snat_sim_bokeh.histogram('pwv', 'Simulated PWV', line_color='#3A5785', bins=np.arange(0, 35),
                                            **hist_args)
model_hist = lc_sims.snat_sim_bokeh.histogram('pwv_model', 'Modeled PWV', line_color='orange', bins=np.arange(0, 35),
                                              **hist_args)
airmass_hist = lc_sims.snat_sim_bokeh.histogram('airmass', 'Airmass', line_color='grey', bins=np.arange(1, 1.75, .01),
                                                **hist_args)

#  Plot the apparent mag and distance modulus
mag_scatter = pipeline_output.snat_sim_bokeh.scatter('sim_z', 'mb', 'z', 'Apparent B-band', plot_width=600)
mu_scatter = pipeline_output.snat_sim_bokeh.scatter('sim_z', 'mu', 'z', 'Fitted Distance Modulus', plot_width=600)

z = np.arange(pipeline_output.sim_z.min(), pipeline_output.sim_z.max() + .005, .005)
mu_scatter.line(z, betoule_cosmo.distmod(z), color='red', legend_label='Betoule et al. 2014')
mu_scatter.line(z, wmap9.distmod(z), color='grey', legend_label='WMAP9')
mu_scatter.legend.click_policy = 'hide'

# Plot the simulated light-curves and their fits
bands = 'ugrizy'
sources = [ColumnDataSource(data=dict(time=[], flux=[], fitted_flux=[], lower_err=[], upper_err=[])) for _ in bands]
colors = ('blue', 'orange', 'green', 'red', 'purple', 'black')

lc_figs = []
for source, color, band in zip(sources, colors, bands):
    lc_plot = plotting.figure(plot_height=400, plot_width=400, title="", toolbar_location=None)
    lc_plot.renderers.append(Span(location=0, dimension='width', line_color='grey', line_dash='dotted', line_width=1))
    lc_plot.add_layout(
        Whisker(source=source, base='time', upper='upper_err', lower='lower_err', line_alpha=.5)
        # Error bars on flux values
    )
Esempio n. 19
0
#!/usr/bin/env python

import matplotlib.pyplot as plt
import numpy
from astropy.cosmology import WMAP9 as cosmo

xr = (0.007, 0.21)

zline = numpy.arange(xr[0], xr[1], 0.001)
m_line = -19.5 + cosmo.distmod(zline).value

z_cosmo = numpy.arange(numpy.log(0.01), numpy.log(0.2), 0.1)
z_cosmo = numpy.exp(z_cosmo)
m = -19.5 + cosmo.distmod(z_cosmo).value

num = len(z_cosmo)
numpy.random.seed(1)
pv = numpy.random.normal(0, 1500., num) / 3e5

plt.plot(zline, m_line)
plt.scatter(z_cosmo, m, color='b', label=r'Cosmological $z$')

z_obs = (1 + z_cosmo) * (1 + pv) - 1
plt.xscale("log", nonposx='clip')
plt.xlabel(r"$z$", fontsize=22)
plt.xlim(xr)
plt.ylabel("$m$", fontsize=22)
plt.legend(loc=2)
plt.savefig('hubble.pdf')

plt.clf()
Esempio n. 20
0
Friedman_data9 = Table.read('friedman_table9.fit')

print(Friedman_data9)

#redshift value
z_values = Friedman_data9["zCMB"]

#Luminosity distance calculation
lum_dis = cosmo.luminosity_distance(z_values)
lum_dis = lum_dis.value
print " Luminosity-distance after calculated:", lum_dis

#Luminosity distance module calculation

lum_dist_modulus = cosmo.distmod(z_values)
print "Luminosity distance modulus values are :", lum_dist_modulus
lum_dist_modulus = lum_dist_modulus.value
print "Luminosity distance modulus values are :", lum_dist_modulus

# Method 1 without eliminating Mpc

plt.figure(1)
plt.errorbar(z_values,
             lum_dis,
             0 * Friedman_data9["e_zCMB"],
             Friedman_data9["e_zCMB"],
             fmt='o')
#plt.scatter(z_values,lum_dis)
plt.xlabel("Red Shift")
plt.ylabel("Luminosity Distance - Mpc ")
Esempio n. 21
0
def PCA_mag(dapall,
            filter_obs,
            plateifu=None,
            filename=None,
            vec_file=None,
            vec_data=None,
            pca_data_dir=None):
    """
    Return absolute AB Magnitude in filter provided

    Parameters
    ----------
    dapall: 'Table', 'dict'
        DAPALL file data
    filter_obs: 'str', 'speclite.filters.FilterSequence'
        observational filter to use
    plateifu: 'str', list, optional, must be keyword
        plate-ifu of galaxy desired
    filename: 'str', optional, must be keyword
        pca data file to read in, ignores plateifu if provided
    vec_file: 'str', optional, must be keyword
        pca data file containing eigenvectors
    vec_data: 'tuple', optional, must be keyword
        eigenvector data (mean_spec, evec_spec, lam_spec)
    """

    # Check filter status

    # CHECK PLATEIFU
    if plateifu is None:
        plateifu = dapall["plateifu"]

    if filter_obs.__class__ is not filters.FilterSequence:
        if filter_obs in ["GALEX-NUV", "GALEX-FUV"]:
            wav, resp = np.loadtxt(
                "{}/data/GALEX_GALEX.NUV.dat".format(directory)).T
            galex_nuv = filters.FilterResponse(wavelength=wav * u.Angstrom,
                                               response=resp,
                                               meta=dict(group_name='GALEX',
                                                         band_name='NUV'))

            wav, resp = np.loadtxt(
                "{}/data/GALEX_GALEX.FUV.dat".format(directory)).T
            galex_fuv = filters.FilterResponse(wavelength=wav * u.Angstrom,
                                               response=resp,
                                               meta=dict(group_name='GALEX',
                                                         band_name='FUV'))
        try:
            filter_obs = filters.load_filters(filter_obs)
        except ValueError:
            logging.warnings("Invalid filter, using default of 'sdss2010-i'")
            filter_obs = filters.load_filters("sdss2010-i")

    if filename is None:
        if plateifu is None:
            raise ValueError("No input file or plateifu provided")
        else:
            filename = os.path.join(pca_data_dir, plateifu,
                                    "{}_res.fits".format(plateifu))

    spectrum, wlen = PCA_Spectrum(plateifu=plateifu,
                                  filename=filename,
                                  vec_file=vec_file,
                                  vec_data=vec_data,
                                  pca_data_dir=pca_data_dir)

    mag = filter_obs.get_ab_magnitudes(
        spectrum, wlen, axis=0)[filter_obs.names[0]].data * u.ABmag
    mag_abs = mag - WMAP9.distmod(dapall["nsa_zdist"])

    return mag_abs
Esempio n. 22
0
def color_mag_plots(mgs,s82,decals,savefig=False):

    # Make paneled histograms of the color distribution for several magnitude bins of Galaxy Zoo data.

    """
    SDSS main sample (GZ2)
    Stripe 82 coadded data (GZ2)
    DECaLS
    """

    redshifts = (0.12,0.08,0.05)
    appmag_lim = 17.0
    # Work out the magnitude limit from cosmology

    fig,axarr = plt.subplots(num=1,nrows=3,ncols=3,figsize=(12,10))

    for z,ax in zip(redshifts,axarr.ravel()):
        absmag_lim = appmag_lim - WMAP9.distmod(z).value
        maglim = (mgs['PETROMAG_MR'] < absmag_lim) & (mgs['REDSHIFT'] <= z)
        spiral = mgs['t01_smooth_or_features_a02_features_or_disk_weighted_fraction'] >= 0.8
        elliptical = mgs['t01_smooth_or_features_a01_smooth_weighted_fraction'] >= 0.8
        ax.hist(mgs[maglim & spiral]['PETROMAG_U'] - mgs[maglim & spiral]['PETROMAG_R'],range=(0,4),bins=25,color='blue',histtype='step',label='spiral')
        ax.hist(mgs[maglim & elliptical]['PETROMAG_U'] - mgs[maglim & elliptical]['PETROMAG_R'],range=(0,4),bins=25,color='red',histtype='step',label='elliptical')

        ax.set_xlabel(r'$(u-r)$',fontsize=16)
        ax.set_title(r'$M_r<{0:.2f}, z<{1:.2f}$'.format(absmag_lim,z),fontsize=16)
        ax.text(0.95,0.95,'MGS',ha='right',va='top',transform=ax.transAxes)

        if ax == axarr.ravel()[0]:
            ax.legend(loc='upper left',fontsize=10)

    s82_lim = 17.77
    for z,ax in zip(redshifts,axarr.ravel()[3:6]):
        absmag_lim = s82_lim - WMAP9.distmod(z).value
        maglim = (s82['PETROMAG_MR'] < absmag_lim) & (s82['REDSHIFT'] <= z)
        spiral = s82['t01_smooth_or_features_a02_features_or_disk_weighted_fraction'] >= 0.8
        elliptical = s82['t01_smooth_or_features_a01_smooth_weighted_fraction'] >= 0.8
        ax.hist(s82[maglim & spiral]['PETROMAG_U'] - s82[maglim & spiral]['PETROMAG_R'],range=(0,4),bins=25,color='blue',histtype='step',label='spiral')
        ax.hist(s82[maglim & elliptical]['PETROMAG_U'] - s82[maglim & elliptical]['PETROMAG_R'],range=(0,4),bins=25,color='red',histtype='step',label='elliptical')

        ax.set_xlabel(r'$(u-r)$',fontsize=16)
        ax.set_title(r'$M_r<{0:.2f}, z<{1:.2f}$'.format(absmag_lim,z),fontsize=16)
        ax.text(0.95,0.95,'Stripe 82',ha='right',va='top',transform=ax.transAxes)

    decals_lim = 17.77
    for z,ax in zip(redshifts,axarr.ravel()[6:]):
        absmag_lim = decals_lim - WMAP9.distmod(z).value
        maglim = (decals['metadata.mag.abs_r'] < absmag_lim) & (decals['metadata.redshift'] <= z)
        spiral = decals['t00_smooth_or_features_a1_features_frac'] >= 0.8
        elliptical = decals['t00_smooth_or_features_a0_smooth_frac'] >= 0.8
        ax.hist(decals[maglim & spiral]['metadata.mag.u'] - decals[maglim & spiral]['metadata.mag.r'],range=(0,4),bins=25,color='blue',histtype='step',label='spiral')
        ax.hist(decals[maglim & elliptical]['metadata.mag.u'] - decals[maglim & elliptical]['metadata.mag.r'],range=(0,4),bins=25,color='red',histtype='step',label='elliptical')

        ax.set_xlabel(r'$(u-r)$',fontsize=16)
        ax.set_title(r'$M_r<{0:.2f}, z<{1:.2f}$'.format(absmag_lim,z),fontsize=16)
        ax.text(0.95,0.95,'DECaLS',ha='right',va='top',transform=ax.transAxes)

    fig.tight_layout()
    if savefig:
        plt.savefig('{0}/color_hist.pdf'.format(plot_path))
    else:
        plt.show()

    return None
Esempio n. 23
0
    def correct_for_distance(self, flux, fluxerr):
        dlmu = cosmo.distmod(self.redshift).value
        flux, fluxerr = helpers.calc_luminosity(flux, fluxerr, dlmu)

        return flux, fluxerr
Esempio n. 24
0
# Plot the CMD as a function of GZ1 morphology for the RGZ 75% counterparts

data = ascii.read(
    '/Users/willettk/Astronomy/Research/GalaxyZoo/rgz-analysis/rgz_wise_75_sdss_magerr.csv'
)

fname_spec = 'rgz_75_sdss_mags_spec.vot'
fname_nospec = 'rgz_75_sdss_mags_nospec.vot'

zoospec = votable_read('%s/%s' % (rgzdir, fname_spec))
zoonospec = votable_read('%s/%s' % (rgzdir, fname_nospec))

na10 = na10_read()

gr_na10 = na10['g-r']
distmod_na10 = WMAP9.distmod(na10['z'])
Mr_na10 = na10['r'] - distmod_na10.value
Mr_na10 = na10['M_g'] - gr_na10

# Generate contours of the NA10 sample

magbins = np.linspace(-24, -20, 20)
colorbins = np.linspace(0.3, 1.0, 20)
hc, xc, yc = np.histogram2d(Mr_na10, gr_na10, bins=(magbins, colorbins))
levels = np.linspace(0, 200, 10)

# Make 2x2 figure

fig, axarr = plt.subplots(2, 2, figsize=(10, 10))

from scipy.ndimage.filters import gaussian_filter
Esempio n. 25
0
def get_catalog(params, map_struct):
    if not os.path.isdir(params["catalogDir"]):
        os.makedirs(params["catalogDir"])

    catalogFile = os.path.join(params["catalogDir"],
                               "%s.hdf5" % params["galaxy_catalog"])

    """AB Magnitude zero point."""
    MAB0 = -2.5 * np.log10(3631.e-23)
    pc_cm = 3.08568025e18
    const = 4. * np.pi * (10. * pc_cm)**2.

    if params["galaxy_catalog"] == "2MRS":
        if not os.path.isfile(catalogFile):
            import astropy.constants as c

            cat, = Vizier.get_catalogs('J/ApJS/199/26/table3')

            ra, dec = cat["RAJ2000"], cat["DEJ2000"]
            cz = cat["cz"]
            magk = cat["Ktmag"]

            z = (u.Quantity(cat['cz']) / c.c).to(u.dimensionless_unscaled)

            completeness = 0.5
            alpha = -1.0
            MK_star = -23.55
            MK_max = MK_star + 2.5 * np.log10(gammaincinv(alpha + 2,
                                                          completeness))
            MK = magk - cosmo.distmod(z)
            idx = (z > 0) & (MK < MK_max)

            ra, dec = ra[idx], dec[idx]
            z = z[idx]
            magk = magk[idx]

            distmpc = cosmo.luminosity_distance(z).to('Mpc').value

            with h5py.File(catalogFile, 'w') as f:
                f.create_dataset('ra', data=ra)
                f.create_dataset('dec', data=dec)
                f.create_dataset('z', data=z)
                f.create_dataset('magk', data=magk)
                f.create_dataset('distmpc', data=distmpc)

        else:
            with h5py.File(catalogFile, 'r') as f:
                ra, dec = f['ra'][:], f['dec'][:]
                z = f['z'][:]
                magk = f['magk'][:]
                distmpc = f['distmpc'][:]
        r = distmpc * 1.0
        mag = magk * 1.0

    elif params["galaxy_catalog"] == "GLADE":
        if not os.path.isfile(catalogFile):
            cat, = Vizier.get_catalogs('VII/281/glade2')

            ra, dec = cat["RAJ2000"], cat["DEJ2000"]
            distmpc, z = cat["Dist"], cat["z"]
            magb, magk = cat["Bmag"], cat["Kmag"]
            # Keep track of galaxy identifier
            GWGC, PGC, HyperLEDA = cat["GWGC"], cat["PGC"], cat["HyperLEDA"]
            _2MASS, SDSS = cat["_2MASS"], cat["SDSS-DR12"]

            idx = np.where(distmpc >= 0)[0]
            ra, dec = ra[idx], dec[idx]
            distmpc, z = distmpc[idx], z[idx]
            magb, magk = magb[idx], magk[idx]
            GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
            _2MASS, SDSS = _2MASS[idx], SDSS[idx]

            
            with h5py.File(catalogFile, 'w') as f:
                f.create_dataset('ra', data=ra)
                f.create_dataset('dec', data=dec)
                f.create_dataset('distmpc', data=distmpc)
                f.create_dataset('magb', data=magb)
                f.create_dataset('magk', data=magk)
                f.create_dataset('z', data=z)
                # Add galaxy identifier
                f.create_dataset('GWGC', data=GWGC)
                f.create_dataset('PGC', data=PGC)
                f.create_dataset('HyperLEDA', data=HyperLEDA)
                f.create_dataset('2MASS', data=_2MASS)
                f.create_dataset('SDSS', data=SDSS)

        else:
            with h5py.File(catalogFile, 'r') as f:
                ra, dec = f['ra'][:], f['dec'][:]
                distmpc, z = f['distmpc'][:], f['z'][:]
                magb, magk = f['magb'][:], f['magk'][:]
                GWGC, PGC, _2MASS = f['GWGC'][:], f['PGC'][:], f['2MASS'][:]
                HyperLEDA, SDSS = f['HyperLEDA'][:], f['SDSS'][:]
                # Convert bytestring to unicode
                GWGC = GWGC.astype('U')
                PGC = PGC.astype('U')
                HyperLEDA = HyperLEDA.astype('U')
                _2MASS = _2MASS.astype('U')
                SDSS = SDSS.astype('U')

        # Keep only galaxies with finite B mag when using it in the grade
        if params["galaxy_grade"] == "S":
            idx = np.where(~np.isnan(magb))[0]
            ra, dec, distmpc = ra[idx], dec[idx], distmpc[idx]
            magb, magk = magb[idx], magk[idx]
            GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
            _2MASS, SDSS = _2MASS[idx], SDSS[idx]

        r = distmpc * 1.0
        mag = magb * 1.0

    elif params["galaxy_catalog"] == "CLU":
        if not os.path.isfile(catalogFile):
            raise ValueError("Please add %s." % catalogFile)

        cat = Table.read(catalogFile)
        name = cat['name']
        ra, dec = cat['ra'], cat['dec']
        sfr_fuv, mstar = cat['sfr_fuv'], cat['mstar']
        distmpc, magb = cat['distmpc'], cat['magb']
        a, b2a, pa = cat['a'], cat['b2a'], cat['pa']
        btc = cat['btc']

        idx = np.where(distmpc >= 0)[0]
        ra, dec = ra[idx], dec[idx]
        sfr_fuv, mstar = sfr_fuv[idx], mstar[idx]
        distmpc, magb = distmpc[idx], magb[idx]
        a, b2a, pa = a[idx], b2a[idx], pa[idx]
        btc = btc[idx]

        idx = np.where(~np.isnan(magb))[0]
        ra, dec = ra[idx], dec[idx]
        sfr_fuv, mstar = sfr_fuv[idx], mstar[idx]
        distmpc, magb = distmpc[idx], magb[idx]
        a, b2a, pa = a[idx], b2a[idx], pa[idx]
        btc = btc[idx]

        z = -1*np.ones(distmpc.shape)
        r = distmpc * 1.0
        mag = magb * 1.0


    elif params["galaxy_catalog"] == "mangrove":
        catalogFile = os.path.join(params["catalogDir"],
                               "%s.hdf5" % params["galaxy_catalog"])
        
        if not os.path.isfile(catalogFile):
            print("mangrove catalog not found localy, start the automatic download")
            url = 'https://mangrove.lal.in2p3.fr/data/mangrove.hdf5'
            os.system("wget -O {}/mangrove.hdf5 {}".format(params["catalogDir"], url))
            
        cat = Table.read(catalogFile)
        
        ra, dec = cat["RA"], cat["dec"]
        distmpc, z = cat["dist"], cat["z"]
        magb, magk = cat["B_mag"], cat["K_mag"]
        magW1, magW2, magW3, magW4 = cat["w1mpro"], cat["w2mpro"], cat["w3mpro"], cat["w4mpro"]
        stellarmass = cat['stellarmass']
        # Keep track of galaxy identifier
        GWGC, PGC, HyperLEDA = cat["GWGC_name"], cat["PGC"], cat["HyperLEDA_name"]
        _2MASS, SDSS = cat["2MASS_name"], cat["SDSS-DR12_name"]
        #keep track of the AGN flag
        AGN_flag = cat["AGN_flag"]

        idx = np.where(distmpc >= 0)[0]
        ra, dec = ra[idx], dec[idx]
        distmpc, z = distmpc[idx], z[idx]
        magb, magk = magb[idx], magk[idx]
        magW1, magW2, magW3, magW4 = magW1[idx], magW2[idx], magW3[idx], magW4[idx]
        stellarmass = stellarmass[idx]
        GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
        _2MASS, SDSS = _2MASS[idx], SDSS[idx]
        AGN_flag = AGN_flag[idx]

        # Convert bytestring to unicode
        GWGC = GWGC.astype('U')
        PGC = PGC.astype('U')
        HyperLEDA = HyperLEDA.astype('U')
        _2MASS = _2MASS.astype('U')
        SDSS = SDSS.astype('U')

        r = distmpc * 1.0
        mag = magb * 1.0

    n, cl = params["powerlaw_n"], params["powerlaw_cl"]
    dist_exp = params["powerlaw_dist_exp"]

    prob_scaled = copy.deepcopy(map_struct["prob"])
    prob_sorted = np.sort(prob_scaled)[::-1]
    prob_indexes = np.argsort(prob_scaled)[::-1]
    prob_cumsum = np.cumsum(prob_sorted)
    index = np.argmin(np.abs(prob_cumsum - cl)) + 1
    prob_scaled[prob_indexes[index:]] = 0.0
    prob_scaled = prob_scaled**n

    theta = 0.5 * np.pi - dec * 2 * np.pi / 360.0
    phi = ra * 2 * np.pi / 360.0
    ipix = hp.ang2pix(map_struct["nside"], ra, dec, lonlat=True)

    if "distnorm" in map_struct:
        if map_struct["distnorm"] is not None:
            
            #creat an mask to cut at 3 sigma in distance
            mask = np.zeros(len(r))
            
            #calculate the moments from distmu, distsigma and distnorm
            mom_mean, mom_std, mom_norm = distance.parameters_to_moments(map_struct["distmu"],map_struct["distsigma"])

            condition_indexer = np.where( (r < (mom_mean[ipix] + (3*mom_std[ipix]))) & (r > (mom_mean[ipix] - (3*mom_std[ipix])) )) 
            mask[condition_indexer] = 1

            Sloc = prob_scaled[ipix] * (map_struct["distnorm"][ipix] *
                                        norm(map_struct["distmu"][ipix],
                                        map_struct["distsigma"][ipix]).pdf(r))**params["powerlaw_dist_exp"] / map_struct["pixarea"]
    
            #multiplie the Sloc by 1 or 0 according to the 3 sigma condistion
            Sloc = Sloc*mask
            idx = np.where(condition_indexer)[0]
        else:
            Sloc = copy.copy(prob_scaled[ipix])
            idx = np.arange(len(r)).astype(int)
    else:
        Sloc = copy.copy(prob_scaled[ipix])
        idx = np.arange(len(r)).astype(int)

    # this happens when we are using a tiny catalog...
    CompatibleGal = True
    if np.all(Sloc == 0.0):
        Sloc[:] = 1.0
        CompatibleGal = False

    #new version of the Slum calcul (from HOGWARTs)
    Lsun = 3.828e26
    Msun = 4.83
    Mknmin = -19
    Mknmax = -12
    Lblist = []
    
    for i in range(0, len(r)):
        Mb = mag[i] - 5 * np.log10((r[i] * 10 ** 6)) + 5
        #L = Lsun * 2.512 ** (Msun - Mb)
        Lb = Lsun * 2.512 ** (Msun - Mb)
        Lblist.append(Lb)
        
                           
    #set 0 when Sloc is 0 (keep compatible galaxies for normalization)
    Lblist = np.array(Lblist)
    
    Lblist[Sloc == 0] = 0

    Slum = Lblist / np.nansum(np.array(Lblist))
   
  
    """
    L_nu = const * 10.**((mag + MAB0)/(-2.5))
    L_nu = L_nu / np.nanmax(L_nu[idx])
    L_nu = L_nu**params["catalog_n"]
    L_nu[L_nu < 0.001] = 0.001
    L_nu[L_nu > 1.0] = 1.0
    Slum = L_nu / np.sum(L_nu)
    """


    mlim, M_KNmin, M_KNmax = 22, -17, -12
    L_KNmin = const * 10.**((M_KNmin + MAB0)/(-2.5))
    L_KNmax = const * 10.**((M_KNmax + MAB0)/(-2.5))

    Llim = 4. * np.pi * (r * 1e6 * pc_cm)**2. * 10.**((mlim + MAB0)/(-2.5))
    Sdet = (L_KNmax-Llim)/(L_KNmax-L_KNmin)
    Sdet[Sdet < 0.01] = 0.01
    Sdet[Sdet > 1.0] = 1.0

    # Set nan values to zero
    Sloc[np.isnan(Sloc)] = 0
    Slum[np.isnan(Slum)] = 0

    if params["galaxy_grade"] == "Smass":
        
        if params["galaxy_catalog"] != "mangrove":
            raise ValueError("You are trying to use the stellar mass information (Smass), please select the mangrove catalog for such use.")

        #set Smass
        Smass = np.array(stellarmass)
        
        #put null values to nan
        Smass[np.where(Smass == 0)] = np.nan

        #go back to linear scaling and not log
        Smass = 10**Smass

        # Keep only galaxies with finite stellarmass when using it in the grade
        #set nan values to 0
        Smass[~np.isfinite(Smass)] = 0  
 
        #set Smass
        Smass = Smass / np.sum(Smass)
        
	#alpha is defined only with non null mass galaxies, we set a mask for that
        ind_without_mass = np.where(Smass == 0)
        Sloc_temp = copy.deepcopy(Sloc)
        Sloc_temp[ind_without_mass] = 0

        #alpha_mass parameter is defined in such way that in mean Sloc count in as much as Sloc*alpha*Smass
        alpha_mass = (np.sum(Sloc_temp) / np.sum( Sloc_temp*Smass ) )
        print("You chose to use the grade using stellar mass, the parameters values are:")
        print("alpha_mass =", alpha_mass)

	#beta_mass is a parameter allowing to change the importance of Sloc according to Sloc*alpha*Smass
        #beta_mass should be fitted in the futur on real GW event for which we have the host galaxy
        #fixed to one at the moment
        beta_mass = 1
        print("beta_mass =", beta_mass)

        Smass = Sloc*(1+ (alpha_mass*beta_mass*Smass) )
        #Smass = Sloc*Smass
        
    S = Sloc*Slum*Sdet

    prob = np.zeros(map_struct["prob"].shape)
    if params["galaxy_grade"] == "Sloc":     
        for j in range(len(ipix)):
            prob[ipix[j]] += Sloc[j]
        grade = Sloc
    elif params["galaxy_grade"] == "S":
        for j in range(len(ipix)):
            prob[ipix[j]] += S[j]
        grade = S
    elif params["galaxy_grade"] == "Smass":
        for j in range(len(ipix)):
            prob[ipix[j]] += Smass[j]
        grade = Smass
 
    prob = prob / np.sum(prob)

    map_struct['prob_catalog'] = prob
    if params["doUseCatalog"]:
        map_struct['prob'] = prob

    Lblist = np.array(Lblist)

    idx = np.where(~np.isnan(grade))[0]
    grade = grade[idx]
    ra, dec, Sloc, S = ra[idx], dec[idx], Sloc[idx], S[idx]
    distmpc, z = distmpc[idx], z[idx]

    if params["galaxy_catalog"] == "GLADE":
        GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
        _2MASS, SDSS = _2MASS[idx], SDSS[idx]
        Lblist = Lblist[idx]
        magb = magb[idx]
 
    if params["galaxy_catalog"] == "mangrove":
        GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
        _2MASS, SDSS = _2MASS[idx], SDSS[idx]   
        stellarmass, magb = stellarmass[idx], magb[idx]
        AGN_flag = AGN_flag[idx]
        if params["galaxy_grade"] == "Smass":
            Smass = Smass[idx]

    """
    Sthresh = np.max(grade)*0.01
    idx = np.where(grade >= Sthresh)[0]
    grade = grade[idx]
    ra, dec, Sloc, S = ra[idx], dec[idx], Sloc[idx], S[idx]
    distmpc, z = distmpc[idx], z[idx]
    if params["galaxy_catalog"] == "GLADE":
        GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
        _2MASS, SDSS = _2MASS[idx], SDSS[idx]
    """
    
    idx = np.argsort(grade)[::-1]
    grade = grade[idx]

    ra, dec, Sloc, S = ra[idx], dec[idx], Sloc[idx], S[idx]
    distmpc, z = distmpc[idx], z[idx]
    if params["galaxy_catalog"] == "GLADE":
        GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
        _2MASS, SDSS = _2MASS[idx], SDSS[idx]
        Lblist = Lblist[idx]
        magb = magb[idx]

    if params["galaxy_catalog"] == "mangrove":
        GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
        _2MASS, SDSS = _2MASS[idx], SDSS[idx]
        stellarmass, magb = stellarmass[idx], magb[idx]
        AGN_flag = AGN_flag[idx]
        if params["galaxy_grade"] == "Smass":
            Smass = Smass[idx]
       
    # Keep only galaxies within 3sigma in distance
    if params["galaxy_catalog"] != "mangrove":
        mask = Sloc > 0
        ra, dec, Sloc, S = ra[mask], dec[mask], Sloc[mask], S[mask],
        distmpc, z = distmpc[mask], z[mask]
        if params["galaxy_catalog"] == "GLADE":
            GWGC, PGC, HyperLEDA = GWGC[mask], PGC[mask], HyperLEDA[mask]
            _2MASS, SDSS = _2MASS[mask], SDSS[mask]
            Lblist = Lblist[mask]

    if params["galaxy_catalog"] == "mangrove":
        # Keep only galaxies within 3sigma in distance
        mask = Sloc > 0
        ra, dec, Sloc, S = ra[mask], dec[mask], Sloc[mask], S[mask]
        distmpc, z = distmpc[mask], z[mask]
        GWGC, PGC, HyperLEDA = GWGC[mask], PGC[mask], HyperLEDA[mask]
        _2MASS, SDSS = _2MASS[mask], SDSS[mask]
        stellarmass, magb = stellarmass[mask], magb[mask]
        AGN_flag = AGN_flag[mask]

        if params["galaxy_grade"] == "Smass":
            Smass = Smass[mask]

        
    if len(ra) > 2000:
        print('Cutting catalog to top 2000 galaxies...')
        idx = np.arange(2000).astype(int)
        ra, dec, Sloc, S = ra[idx], dec[idx], Sloc[idx], S[idx]
        distmpc, z = distmpc[idx], z[idx]
        if params["galaxy_catalog"] == "GLADE":
            GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
            _2MASS, SDSS = _2MASS[idx], SDSS[idx]
            Lblist = Lblist[idx]
            magb = magb[idx]

        elif params["galaxy_catalog"] == "mangrove":
            GWGC, PGC, HyperLEDA = GWGC[idx], PGC[idx], HyperLEDA[idx]
            _2MASS, SDSS = _2MASS[idx], SDSS[idx]
            stellarmass, magb = stellarmass[idx], magb[idx]
            AGN_flag = AGN_flag[idx]

            if params["galaxy_grade"] == "Smass":
                Smass = Smass[idx]

    # now normalize the distributions
    S = S / np.sum(S)
    Sloc = Sloc / np.sum(Sloc)

    if params["galaxy_grade"] == "Smass":
        Smass = Smass/np.sum(Smass)
    else:
        Smass = np.ones(Sloc.shape)
        Smass = Smass/np.sum(Smass)

    catalog_struct = {}
    catalog_struct["ra"] = ra
    catalog_struct["dec"] = dec
    catalog_struct["Sloc"] = Sloc
    catalog_struct["S"] = S
    catalog_struct["Smass"] = Smass

    catalog_struct["CompatibleGal"] = CompatibleGal


    if params["writeCatalog"]:
        catalogfile = os.path.join(params["outputDir"], 'catalog.csv')
        fid = open(catalogfile, 'w')
        cnt = 1
        if params["galaxy_catalog"] == "GLADE":

            if params["galaxy_grade"] == "S":
 
                fid.write("id, RAJ2000, DEJ2000, Sloc, S, Dist, z,GWGC, PGC, HyperLEDA, 2MASS, SDSS, BLum\n")
                for a, b, c, d, e, f, g, h, i, j, k, l in zip(ra, dec, Sloc, S, distmpc, z, GWGC, PGC, HyperLEDA, _2MASS, SDSS, Lblist):
                    fid.write("%d, %.5f, %.5f, %.5e, %.5e, %.4f, %.4f, %s, %s, %s, %s, %s, %.2E\n" % (cnt, a, b, c, d, e, f, g, h, i, j, k, l))
                    cnt = cnt + 1
                
            else:

                fid.write("id, RAJ2000, DEJ2000, Sloc, S, Dist, z, GWGC, PGC, HyperLEDA, 2MASS, SDSS\n")
                for a, b, c, d, e, f, g, h, i, j, k in zip(ra, dec, Sloc, S, distmpc, z, GWGC, PGC, HyperLEDA, _2MASS, SDSS):
                    fid.write("%d, %.5f, %.5f, %.5e, %.5e, %.4f, %.4f, %s, %s, %s, %s, %s\n" % (cnt, a, b, c, d, e, f, g, h, i, j, k))
                    cnt = cnt + 1

        elif params["galaxy_catalog"] == "mangrove":

            if params["galaxy_grade"] == "Smass":

                if params["AGN_flag"]:

                    fid.write("id, RAJ2000, DEJ2000, Smass, S, Sloc, Dist, z, GWGC, PGC, HyperLEDA, 2MASS, SDSS, B_mag, AGN_flag, stellarmass\n")
                    for a, b, c, d, e, f, g, h, i, j, k, l, m, n, o in zip(ra, dec, Smass, S, Sloc, distmpc, z, GWGC, PGC, HyperLEDA, _2MASS, SDSS, magb, AGN_flag,stellarmass):
                        fid.write("%d, %.5f, %.5f, %.5e, %.5e, %.5e, %.4f, %.4f, %s, %s, %s, %s, %s, %s, %s, %s\n" % (cnt, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o))
                        cnt = cnt + 1
                    
                else:

                    fid.write("id, RAJ2000, DEJ2000, Smass, S, Sloc, Dist, z, GWGC, PGC, HyperLEDA, 2MASS, SDSS, B_mag, stellarmass\n")
                    for a, b, c, d, e, f, g, h, i, j, k, l, m, n in zip(ra, dec, Smass, S, Sloc, distmpc, z, GWGC, PGC, HyperLEDA, _2MASS, SDSS, magb, stellarmass):
                        fid.write("%d, %.5f, %.5f, %.5e, %.5e, %.5e, %.4f, %.4f, %s, %s, %s, %s, %s, %s, %s\n" % (cnt, a, b, c, d, e, f, g, h, i, j, k, l, m, n))
                        cnt = cnt + 1


            else:

                if params["AGN_flag"]:

                    fid.write("id, RAJ2000, DEJ2000, Sloc, S, Dist, z, GWGC, PGC, HyperLEDA, 2MASS, SDSS, AGN_flag\n")
                    for a, b, c, d, e, f, g, h, i, j, k, l in zip(ra, dec, Sloc, S, distmpc, z, GWGC, PGC, HyperLEDA, _2MASS, SDSS, AGN_flag):
                        fid.write("%d, %.5f, %.5f, %.5e, %.5e, %.4f, %.4f, %s, %s, %s, %s, %s, %s\n" % (cnt, a, b, c, d, e, f, g, h, i, j, k, l))
                        cnt = cnt + 1

                else:

                    fid.write("id, RAJ2000, DEJ2000, Sloc, S, Dist, z, GWGC, PGC, HyperLEDA, 2MASS, SDSS\n")
                    for a, b, c, d, e, f, g, h, i, j, k in zip(ra, dec, Sloc, S, distmpc, z, GWGC, PGC, HyperLEDA, _2MASS, SDSS):
                        fid.write("%d, %.5f, %.5f, %.5e, %.5e, %.4f, %.4f, %s, %s, %s, %s, %s\n" % (cnt, a, b, c, d, e, f, g, h, i, j, k))
                        cnt = cnt + 1
                
        else:
            fid.write("id, RAJ2000, DEJ2000, Sloc, S, Dist, z\n")
            for a, b, c, d in zip(ra, dec, Sloc, S, distmpc, z):
                fid.write("%d, %.5f, %.5f, %.5e, %.5e, %.4f, %.4f\n" % (cnt, a, b, c, d, e, f))
                cnt = cnt + 1

        fid.close()

    return map_struct, catalog_struct
Esempio n. 26
0
def plot_rgz_sdss(rgzdata, nadata):

    # Plot comparison of the (g-r) CMD for both the RGZ 75% consensus sources (matched with WISE) and SDSS galaxies from NA10

    fig = plt.figure(1)
    fig.clf()
    ax = fig.add_subplot(111)

    gr_color = rgzdata['absmagG'] - rgzdata['absmagR']
    absmagR = rgzdata['absmagR']

    na_gr_color = nadata['g-r']
    dm = WMAP9.distmod(nadata['z'])
    na_absmagR = (nadata['r'] * u.mag - dm).value

    h, xedges, yedges, im = plt.hist2d(absmagR,
                                       gr_color,
                                       bins=30,
                                       range=[[-24, -18], [0, 1.5]],
                                       cmap=plt.cm.hot)
    #h,xedges,yedges = np.histogram2d(absmagR,gr_color,bins=20,range=[[-24,-18],[0,1.5]])
    xa, ya = np.array(xedges), np.array(yedges)
    xcen = xa[:-1] + (xa[1] - xa[0]) / 2.
    ycen = ya[:-1] + (ya[1] - ya[0]) / 2.

    #cs = plt.contour(xcen,ycen,h.T,10,vmin=0.,colors='k',linewidths=1)
    #ax.scatter(absmagR,gr_color,s=1,c='r')

    hn, xedgesn, yedgesn = np.histogram2d(na_absmagR,
                                          na_gr_color,
                                          bins=30,
                                          range=[[-24, -18], [0, 1.5]])

    csn = plt.contour(xcen, ycen, hn.T, 10, vmin=0., colors='g', linewidths=2)
    #ax.scatter(na_absmagR,na_gr_color,s=1,c='b')

    #Create custom artists for legend
    c = csn.collections[0]
    art1 = plt.Line2D((0, 1), (0, 0), color='g')

    legend = ax.legend([art1], ['Nair & Abraham (2010)'],
                       loc='upper left',
                       shadow=True)

    # Set final properties
    ax.set_xlim(-18, -24)
    ax.set_ylim(0.2, 1.0)

    ax.set_xlabel(r'$M_r$', fontsize=20)
    ax.set_ylabel(r'$(g-r)$', fontsize=20)

    plt.show()

    # Try linear fits to the data, see if slope of the red sequence is same

    ind1 = (gr_color > 0.6) & (gr_color < 1.0)
    ind2 = (na_gr_color > 0.6) & (na_gr_color < 1.0)
    x1, y1 = absmagR[ind1], gr_color[ind1]
    x2, y2 = na_absmagR[ind2], na_gr_color[ind2]

    slope1, intercept1, r_value1, p_value1, slope_std_error1 = stats.linregress(
        x1, y1)
    slope2, intercept2, r_value2, p_value2, slope_std_error2 = stats.linregress(
        x2, y2)

    print 'RGZ:  slope = %.2f +- %.5f' % (slope1, slope_std_error1)
    print 'NA10: slope = %.2f +- %.5f' % (slope2, slope_std_error2)

    return None