Esempio n. 1
0
def test_gp_regression_with_noise():

    def f(x):
        return anp.sin(x)/x

    anp.random.seed(7)

    x_train = anp.arange(-5, 5, 0.2)# [-5, -4.8, -4.6,..., 4.8]
    x_test = anp.arange(-4.9, 5, 0.2)# [-4.9, -4.7, -4.5,..., 4.9], note that train and test points do not overlap
    y_train = f(x_train)
    y_test = f(x_test)

    std_noise = 0.01
    noise_train = anp.random.normal(0.0, std_noise,size=y_train.shape)

    # to anp.ndarray
    y_train_np_ndarray = anp.array(y_train)
    noise_train_np_ndarray = anp.array(noise_train)
    x_train_np_ndarray = anp.array(x_train)
    x_test_np_ndarray = anp.array(x_test)

    model = GaussianProcessRegression(kernel=Matern52(dimension=1))
    model.fit(x_train_np_ndarray, y_train_np_ndarray + noise_train_np_ndarray)

    # Check that the value of the residual noise variance learned by empirical Bayes is in the same order as std_noise^2
    noise_variance = model.likelihood.get_noise_variance()
    numpy.testing.assert_almost_equal(noise_variance, std_noise**2, decimal=4)

    mu_train, _ = model.predict(x_train_np_ndarray)[0]
    mu_test, _ = model.predict(x_test_np_ndarray)[0]

    numpy.testing.assert_almost_equal(mu_train, y_train, decimal=2)
    numpy.testing.assert_almost_equal(mu_test, y_test, decimal=2)
Esempio n. 2
0
def test_gp_regression_no_noise():

    def f(x):
        return anp.sin(x)/x

    x_train = anp.arange(-5, 5, 0.2)# [-5,-4.8,-4.6,...,4.8]
    x_test = anp.arange(-4.9, 5, 0.2)# [-4.9, -4.7, -4.5,...,4.9], note that train and test points do not overlap
    y_train = f(x_train)
    y_test = f(x_test)

    # to np.ndarray
    y_train_np_ndarray = anp.array(y_train)
    x_train_np_ndarray = anp.array(x_train)
    x_test_np_ndarray = anp.array(x_test)

    model = GaussianProcessRegression(kernel=Matern52(dimension=1))
    model.fit(x_train_np_ndarray, y_train_np_ndarray)

    # Check that the value of the residual noise variance learned by empirical Bayes is in the same order
    # as the smallest allowed value (since there is no noise)
    noise_variance = model.likelihood.get_noise_variance()
    numpy.testing.assert_almost_equal(noise_variance, NOISE_VARIANCE_LOWER_BOUND)

    mu_train, var_train = model.predict(x_train_np_ndarray)[0]
    mu_test, var_test = model.predict(x_test_np_ndarray)[0]

    numpy.testing.assert_almost_equal(mu_train, y_train, decimal=4)
    numpy.testing.assert_almost_equal(var_train, [0.0] * len(var_train), decimal=4)
    # Fewer decimals imposed for the test points
    numpy.testing.assert_almost_equal(mu_test, y_test, decimal=3)
Esempio n. 3
0
def test_gp_regression_2d_with_ard():

    def f(x):
        # Only dependent on the first column of x
        return anp.sin(x[:,0])/x[:,0]

    anp.random.seed(7)

    dimension = 3

    # 30 train and test points in R^3
    x_train = anp.random.uniform(-5, 5, size=(30,dimension))
    x_test = anp.random.uniform(-5, 5, size=(30,dimension))
    y_train = f(x_train)
    y_test = f(x_test)

    # to np.ndarray
    y_train_np_ndarray = anp.array(y_train)
    x_train_np_ndarray = anp.array(x_train)
    x_test_np_ndarray = anp.array(x_test)

    model = GaussianProcessRegression(kernel=Matern52(dimension=dimension, ARD=True))
    model.fit(x_train_np_ndarray, y_train_np_ndarray)

    # Check that the value of the residual noise variance learned by empirical Bayes is in the same order as the smallest allowed value (since there is no noise)
    noise_variance = model.likelihood.get_noise_variance()
    numpy.testing.assert_almost_equal(noise_variance, NOISE_VARIANCE_LOWER_BOUND)

    # Check that the bandwidths learned by empirical Bayes reflect the fact that only the first column is useful
    # In particular, for the useless dimensions indexed by {1,2}, the inverse bandwidths should be close to INVERSE_BANDWIDTHS_LOWER_BOUND
    # (or conversely, bandwidths should be close to their highest allowed values)
    sqd = model.likelihood.kernel.squared_distance
    inverse_bandwidths = sqd.encoding.get(sqd.inverse_bandwidths_internal.data())

    assert inverse_bandwidths[0] > inverse_bandwidths[1] and inverse_bandwidths[0] > inverse_bandwidths[2]
    numpy.testing.assert_almost_equal(inverse_bandwidths[1], INVERSE_BANDWIDTHS_LOWER_BOUND)
    numpy.testing.assert_almost_equal(inverse_bandwidths[2], INVERSE_BANDWIDTHS_LOWER_BOUND)

    mu_train, _ = model.predict(x_train_np_ndarray)[0]
    mu_test, _ = model.predict(x_test_np_ndarray)[0]

    numpy.testing.assert_almost_equal(mu_train, y_train, decimal=2)
    # Fewer decimals imposed for the test points
    numpy.testing.assert_almost_equal(mu_test, y_test, decimal=1)
Esempio n. 4
0
def test_incremental_update():
    def f(x):
        return anp.sin(x) / x

    numpy.random.seed(298424)
    std_noise = 0.01

    # Sample data
    features_list = []
    targets_list = []
    num_incr_list = []
    for rep in range(10):
        num_train = anp.random.randint(low=5, high=15)
        num_incr = anp.random.randint(low=1, high=7)
        num_incr_list.append(num_incr)
        sizes = [num_train, num_incr]
        features = []
        targets = []
        for sz in sizes:
            feats = anp.random.uniform(low=-1.0, high=1.0, size=sz).reshape(
                (-1, 1))
            features.append(feats)
            targs = f(feats)
            targs += anp.random.normal(0.0, std_noise, size=targs.shape)
            targets.append(targs)

        features_list.append(features)
        targets_list.append(targets)

    for rep in range(10):
        model = GaussianProcessRegression(kernel=Matern52(dimension=1))
        features = features_list[rep]
        targets = targets_list[rep]
        # Posterior state by incremental updating
        train_features = features[0]
        train_targets = targets[0]
        model.fit(train_features, train_targets)
        noise_variance_1 = model.likelihood.get_noise_variance()
        state_incr = IncrementalUpdateGPPosteriorState(
            features=train_features,
            targets=train_targets,
            mean=model.likelihood.mean,
            kernel=model.likelihood.kernel,
            noise_variance=model.likelihood.get_noise_variance(
                as_ndarray=True))
        num_incr = num_incr_list[rep]
        for i in range(num_incr):
            state_incr = state_incr.update(features[1][i].reshape((1, -1)),
                                           targets[1][i].reshape((1, -1)))
        noise_variance_2 = state_incr.noise_variance[0]
        # Posterior state by direct computation
        state_comp = GaussProcPosteriorState(
            features=anp.concatenate(features, axis=0),
            targets=anp.concatenate(targets, axis=0),
            mean=model.likelihood.mean,
            kernel=model.likelihood.kernel,
            noise_variance=state_incr.noise_variance)
        # Compare them
        assert noise_variance_1 == noise_variance_2, "noise_variance_1 = {} != {} = noise_variance_2".format(
            noise_variance_1, noise_variance_2)
        chol_fact_incr = state_incr.chol_fact
        chol_fact_comp = state_comp.chol_fact
        numpy.testing.assert_almost_equal(chol_fact_incr,
                                          chol_fact_comp,
                                          decimal=2)
        pred_mat_incr = state_incr.pred_mat
        pred_mat_comp = state_comp.pred_mat
        numpy.testing.assert_almost_equal(pred_mat_incr,
                                          pred_mat_comp,
                                          decimal=2)