def test_gp_regression_with_noise(): def f(x): return anp.sin(x)/x anp.random.seed(7) x_train = anp.arange(-5, 5, 0.2)# [-5, -4.8, -4.6,..., 4.8] x_test = anp.arange(-4.9, 5, 0.2)# [-4.9, -4.7, -4.5,..., 4.9], note that train and test points do not overlap y_train = f(x_train) y_test = f(x_test) std_noise = 0.01 noise_train = anp.random.normal(0.0, std_noise,size=y_train.shape) # to anp.ndarray y_train_np_ndarray = anp.array(y_train) noise_train_np_ndarray = anp.array(noise_train) x_train_np_ndarray = anp.array(x_train) x_test_np_ndarray = anp.array(x_test) model = GaussianProcessRegression(kernel=Matern52(dimension=1)) model.fit(x_train_np_ndarray, y_train_np_ndarray + noise_train_np_ndarray) # Check that the value of the residual noise variance learned by empirical Bayes is in the same order as std_noise^2 noise_variance = model.likelihood.get_noise_variance() numpy.testing.assert_almost_equal(noise_variance, std_noise**2, decimal=4) mu_train, _ = model.predict(x_train_np_ndarray)[0] mu_test, _ = model.predict(x_test_np_ndarray)[0] numpy.testing.assert_almost_equal(mu_train, y_train, decimal=2) numpy.testing.assert_almost_equal(mu_test, y_test, decimal=2)
def test_gp_regression_no_noise(): def f(x): return anp.sin(x)/x x_train = anp.arange(-5, 5, 0.2)# [-5,-4.8,-4.6,...,4.8] x_test = anp.arange(-4.9, 5, 0.2)# [-4.9, -4.7, -4.5,...,4.9], note that train and test points do not overlap y_train = f(x_train) y_test = f(x_test) # to np.ndarray y_train_np_ndarray = anp.array(y_train) x_train_np_ndarray = anp.array(x_train) x_test_np_ndarray = anp.array(x_test) model = GaussianProcessRegression(kernel=Matern52(dimension=1)) model.fit(x_train_np_ndarray, y_train_np_ndarray) # Check that the value of the residual noise variance learned by empirical Bayes is in the same order # as the smallest allowed value (since there is no noise) noise_variance = model.likelihood.get_noise_variance() numpy.testing.assert_almost_equal(noise_variance, NOISE_VARIANCE_LOWER_BOUND) mu_train, var_train = model.predict(x_train_np_ndarray)[0] mu_test, var_test = model.predict(x_test_np_ndarray)[0] numpy.testing.assert_almost_equal(mu_train, y_train, decimal=4) numpy.testing.assert_almost_equal(var_train, [0.0] * len(var_train), decimal=4) # Fewer decimals imposed for the test points numpy.testing.assert_almost_equal(mu_test, y_test, decimal=3)
def test_gp_regression_2d_with_ard(): def f(x): # Only dependent on the first column of x return anp.sin(x[:,0])/x[:,0] anp.random.seed(7) dimension = 3 # 30 train and test points in R^3 x_train = anp.random.uniform(-5, 5, size=(30,dimension)) x_test = anp.random.uniform(-5, 5, size=(30,dimension)) y_train = f(x_train) y_test = f(x_test) # to np.ndarray y_train_np_ndarray = anp.array(y_train) x_train_np_ndarray = anp.array(x_train) x_test_np_ndarray = anp.array(x_test) model = GaussianProcessRegression(kernel=Matern52(dimension=dimension, ARD=True)) model.fit(x_train_np_ndarray, y_train_np_ndarray) # Check that the value of the residual noise variance learned by empirical Bayes is in the same order as the smallest allowed value (since there is no noise) noise_variance = model.likelihood.get_noise_variance() numpy.testing.assert_almost_equal(noise_variance, NOISE_VARIANCE_LOWER_BOUND) # Check that the bandwidths learned by empirical Bayes reflect the fact that only the first column is useful # In particular, for the useless dimensions indexed by {1,2}, the inverse bandwidths should be close to INVERSE_BANDWIDTHS_LOWER_BOUND # (or conversely, bandwidths should be close to their highest allowed values) sqd = model.likelihood.kernel.squared_distance inverse_bandwidths = sqd.encoding.get(sqd.inverse_bandwidths_internal.data()) assert inverse_bandwidths[0] > inverse_bandwidths[1] and inverse_bandwidths[0] > inverse_bandwidths[2] numpy.testing.assert_almost_equal(inverse_bandwidths[1], INVERSE_BANDWIDTHS_LOWER_BOUND) numpy.testing.assert_almost_equal(inverse_bandwidths[2], INVERSE_BANDWIDTHS_LOWER_BOUND) mu_train, _ = model.predict(x_train_np_ndarray)[0] mu_test, _ = model.predict(x_test_np_ndarray)[0] numpy.testing.assert_almost_equal(mu_train, y_train, decimal=2) # Fewer decimals imposed for the test points numpy.testing.assert_almost_equal(mu_test, y_test, decimal=1)
def test_incremental_update(): def f(x): return anp.sin(x) / x numpy.random.seed(298424) std_noise = 0.01 # Sample data features_list = [] targets_list = [] num_incr_list = [] for rep in range(10): num_train = anp.random.randint(low=5, high=15) num_incr = anp.random.randint(low=1, high=7) num_incr_list.append(num_incr) sizes = [num_train, num_incr] features = [] targets = [] for sz in sizes: feats = anp.random.uniform(low=-1.0, high=1.0, size=sz).reshape( (-1, 1)) features.append(feats) targs = f(feats) targs += anp.random.normal(0.0, std_noise, size=targs.shape) targets.append(targs) features_list.append(features) targets_list.append(targets) for rep in range(10): model = GaussianProcessRegression(kernel=Matern52(dimension=1)) features = features_list[rep] targets = targets_list[rep] # Posterior state by incremental updating train_features = features[0] train_targets = targets[0] model.fit(train_features, train_targets) noise_variance_1 = model.likelihood.get_noise_variance() state_incr = IncrementalUpdateGPPosteriorState( features=train_features, targets=train_targets, mean=model.likelihood.mean, kernel=model.likelihood.kernel, noise_variance=model.likelihood.get_noise_variance( as_ndarray=True)) num_incr = num_incr_list[rep] for i in range(num_incr): state_incr = state_incr.update(features[1][i].reshape((1, -1)), targets[1][i].reshape((1, -1))) noise_variance_2 = state_incr.noise_variance[0] # Posterior state by direct computation state_comp = GaussProcPosteriorState( features=anp.concatenate(features, axis=0), targets=anp.concatenate(targets, axis=0), mean=model.likelihood.mean, kernel=model.likelihood.kernel, noise_variance=state_incr.noise_variance) # Compare them assert noise_variance_1 == noise_variance_2, "noise_variance_1 = {} != {} = noise_variance_2".format( noise_variance_1, noise_variance_2) chol_fact_incr = state_incr.chol_fact chol_fact_comp = state_comp.chol_fact numpy.testing.assert_almost_equal(chol_fact_incr, chol_fact_comp, decimal=2) pred_mat_incr = state_incr.pred_mat pred_mat_comp = state_comp.pred_mat numpy.testing.assert_almost_equal(pred_mat_incr, pred_mat_comp, decimal=2)