Esempio n. 1
0
def landmarks(object_points, object_poses, camera_params):
    # go through all object points
    lms = {}
    for i, pt_obj in enumerate(object_points):
        # for every object pose, decide whether point was seen
        # transform point to current pose
        # project onto camera + add some noise
        observations = []
        for pose_id, pose in object_poses.items():
            if RNG.normal(0.8, 0.5) <= 0.5:
                # point isn't observed at this pose
                continue
            pt_3d = from_homogeneous(pose @ to_homogeneous(pt_obj))
            pt_2d = (project(camera_params, pt_3d) + RNG.random() * 2).reshape(
                (2, ))  # up to two pixel error
            observations.append(
                Observation(descriptor=None,
                            pt_2d=pt_2d,
                            timecam_id=(pose_id, 0)))
        landmark = Landmark(pt_obj, observations)
        lms[i] = landmark
    return lms
Esempio n. 2
0
def _write_3d_detections(
    writer_data_3d: Union[queue.Queue, mp.Queue],
    scene: str,
    kitti_path: Path,
    tags: List[str],
):
    path = kitti_path / "3d_tracking"
    for tag in tags:
        path /= tag
    path /= "data"  # to adhere to dir structure expected by ab3dmot
    path.mkdir(parents=True, exist_ok=True)
    fname = path / (scene + ".txt")
    # overwrite file if exists
    if fname.exists():
        fname.unlink()
    while True:
        with open(fname, "a") as fp:
            track_data = writer_data_3d.get(block=True)
            writer_data_3d.task_done()
            if not track_data:
                LOGGER.debug("Finished writing 3d detections")
                break
            img_id = track_data["img_id"]
            LOGGER.debug("Got 3d detection data for image %d", img_id)
            T_world_cam = track_data["T_world_cam"]
            for track_id, track in track_data["tracks"].items():
                obj_type = track.cls.lower()
                dims = config.PED_DIMS if obj_type == "pedestrian" else config.CAR_DIMS
                location = track.locations.get(img_id)
                if location is None:
                    continue
                rot_angle = np.array(track.rot_angle.get(img_id))
                mask = track.masks[0]
                y_top_left, x_top_left = map(min, np.where(mask != 0))
                y_bottom_right, x_bottom_right = map(max, np.where(mask != 0))
                bbox2d = [
                    x_top_left, y_top_left, x_bottom_right, y_bottom_right
                ]
                # beta is angle between z and location dir vector
                loc_cam = from_homogeneous(
                    np.linalg.inv(T_world_cam) @ to_homogeneous(location))
                # kitti locations are given as bottom of bounding box
                # positive y direction is downward, hence add half of the dimensions
                loc_cam[1] += dims[0] / 2
                dir_vec = loc_cam[[0, 2]].reshape(2, 1)
                dir_vec /= np.linalg.norm(dir_vec)
                beta = np.arccos(
                    np.dot(dir_vec.T,
                           np.array([0, 1]).reshape(2, 1)))
                if dir_vec[0] < 0:
                    beta = -beta
                if not np.isfinite(rot_angle):
                    rot_angle = np.array([0])
                alpha = rot_angle - beta

                # number of badly tracked frames negatively effects confidence
                btf_score = get_confidence(
                    max_point=config.KEEP_TRACK_FOR_N_FRAMES_AFTER_LOST,
                    value=track.badly_tracked_frames,
                    upward_sloping=False,
                )

                # number of landmarks positively effects confidence
                num_lm_score = get_confidence(max_point=120,
                                              value=len(track.landmarks))

                # number of poses positively effects confidence
                num_pose_score = get_confidence(max_point=10,
                                                value=len(track.poses))

                # dist from camera negatively effects confidence
                dist_cam_score = get_confidence(
                    max_point=100,
                    value=track.dist_from_cam,
                    upward_sloping=False,
                )

                confidence_score = (btf_score * num_lm_score * num_pose_score *
                                    dist_cam_score)

                line = get_3d_track_line(
                    img_id=img_id,
                    track_id=track_id,
                    obj_type=obj_type,
                    dims=dims,
                    loc=loc_cam.flatten().tolist(),
                    rot=rot_angle.flatten()[0],
                    bbox_2d=bbox2d,
                    confidence_score=confidence_score,
                    alpha=alpha.flatten()[0],
                )
                fp.write(line + "\n")
Esempio n. 3
0
def get_gt_detection_data_from_kitti(
    kitti_path: Union[str, Path],
    scene: Union[str, int],
    poses: List[np.ndarray],
    offset: int = 0,
    indexed_by_image_id: bool = False,
) -> DetectionData:
    kitti_path = _convert_to_path_if_needed(kitti_path)
    scene = _convert_to_str_scene(scene)
    detection_file = _get_detection_file(kitti_path, scene)
    if not detection_file.exists():
        raise FileNotFoundError(
            f"Detection file {detection_file.as_posix()} doesn't exist"
        )
    detection_data: DetectionData = {}
    with open(detection_file, "r") as fp:
        for line in fp:
            cols = line.split(" ")
            frame = int(cols[0])
            if frame < offset:
                continue
            track_id = int(cols[1])
            if track_id == -1:
                continue
            object_class = str(cols[2])
            if object_class.lower() not in ["car", "pedestrian"]:
                continue
            truncation_level = int(cols[3])
            occlusion_level = int(cols[4])
            # cols[5] is observation angle of object
            bbox = list(map(float, cols[6:10]))  # in left image coordinates
            dim_3d = list(map(float, cols[10:13]))  # in camera coordinates
            location_cam2 = np.array(list(map(float, cols[13:16]))).reshape(
                (3, 1)
            )  # in camera coordinates
            rot_angle = float(cols[16])  # in camera coordinates
            T_w_cam2 = poses[frame]

            dir_vec = location_cam2[[0, 2]].reshape(2, 1)
            dir_vec /= np.linalg.norm(dir_vec)
            beta = np.arccos(np.dot(dir_vec.T, np.array([0, 1]).reshape(2, 1)))
            if dir_vec[0] < 0:
                beta = -beta
            location_world = from_homogeneous(T_w_cam2 @ to_homogeneous(location_cam2))
            if indexed_by_image_id:
                if not detection_data.get(frame):
                    detection_data[frame] = {}
            else:
                if not detection_data.get(track_id):
                    detection_data[track_id] = {}

            detection_row = DetectionDataRow(
                world_pos=location_world.reshape(-1).tolist(),
                cam_pos=location_cam2.reshape(-1).tolist(),
                occ_lvl=occlusion_level,
                trunc_lvl=truncation_level,
                object_class=object_class,
                bbox2d=bbox,
                dim_3d=dim_3d,
                rot_angle=rot_angle,
            )
            if indexed_by_image_id:
                detection_data[frame][track_id] = detection_row
            else:
                detection_data[track_id][frame] = detection_row

    LOGGER.debug("Extracted trajectories for %d objects", len(detection_data))
    return detection_data
Esempio n. 4
0
def _write_obb_data(
    writer_obb_data: Union[queue.Queue, mp.Queue],
    scene: str,
    kitti_path: Path,
    tags: List[str],
):
    path = kitti_path / "obb_data"
    for tag in tags:
        path /= tag
    path.mkdir(parents=True, exist_ok=True)
    pcl_dir = path / scene
    pcl_dir.mkdir(exist_ok=True)
    fname = path / (scene + ".csv")
    columns = [
        "scene",
        "img_id",
        "track_id",
        "x",
        "y",
        "z",
        "yaw",
        "num_poses",
        "badly_tracked_frames",
        "num_points",
        "dist_from_cam",
    ]
    # overwrite file if exists
    with open(fname, "w") as fp:
        fp.write(",".join(columns) + "\n")
    while True:
        with open(fname, "a") as fp:
            track_data = writer_obb_data.get(block=True)
            writer_obb_data.task_done()
            img_id = track_data["img_id"]
            LOGGER.debug("Got 3d obb data for image %d", img_id)
            T_world_cam = track_data["T_world_cam"]
            dims = config.CAR_DIMS
            for track_id, track in track_data["tracks"].items():
                dist_from_cam = track.dist_from_cam
                pos = track.locations.get(img_id)
                if pos is None:
                    continue
                rot_angle = np.array(track.rot_angle.get(img_id))
                if not np.isfinite(rot_angle):
                    rot_angle = np.array([0])
                pos_cam = from_homogeneous(
                    np.linalg.inv(T_world_cam) @ to_homogeneous(pos))
                # kitti locations are given as bottom of bounding box
                # positive y direction is downward, hence add half of the dimensions
                pos_cam[1] += dims[0] / 2
                num_poses = len(track.poses)
                num_landmarks = len(track.landmarks)
                badly_tracked_frames = track.badly_tracked_frames
                line = (
                    f"{scene}, {img_id}, {track_id}, {', '.join(map(str, pos_cam.flatten().tolist()))}, {rot_angle.flatten().tolist()[0]}, {num_poses}, "
                    f"{badly_tracked_frames}, {num_landmarks}, {dist_from_cam}"
                )
                fp.write(line + "\n")
                pcl_fname = pcl_dir / f"{img_id}_{track_id}.npy"
                points = np.array([
                    lm.pt_3d for lm in track.landmarks.values()
                ]).reshape(-1, 3)
                np.save(pcl_fname, points)
Esempio n. 5
0
def _compute_bounding_box(location, rot_angle, dimensions, T_world_cam):
    vec = np.array([*location, rot_angle, *dimensions]).reshape(7, 1)
    corners_cam = get_corners_from_vector(vec)
    corners_world = from_homogeneous(T_world_cam @ to_homogeneous(corners_cam))

    return _get_points_and_lines_from_corners(corners_world)
Esempio n. 6
0
def _update_track_visualization(
    all_track_geometries,
    all_geometries,
    object_tracks,
    visualizer,
    show_online_trajs,
    show_offline_trajs,
    current_img_id,
    cached_colors,
    current_cam_pose,
):
    # display current track estimates
    inactive_tracks = []
    for ido in all_track_geometries:
        if ido not in object_tracks:
            inactive_tracks.append(ido)
    for ido, track in object_tracks.items():
        track_geometries = all_track_geometries.get(
            ido,
            TrackGeometries(
                pt_cloud=o3d.geometry.PointCloud(),
                offline_trajectory=o3d.geometry.LineSet(),
                online_trajectory=o3d.geometry.LineSet(),
                bbox=o3d.geometry.LineSet(),
                color=cached_colors.get(ido, get_color(only_bright=True)),
            ),
        )
        cached_colors[ido] = track_geometries.color
        # draw path
        path_points_offline = []
        path_points_online = []
        points = []
        color = track_geometries.color
        lighter_color = color + 0.25 * np.array(Colors.WHITE)
        darker_color = color - 0.25 * np.array(Colors.WHITE)
        lighter_color = np.clip(lighter_color, 0, 1)
        darker_color = np.clip(darker_color, 0, 1)
        track_size = 0
        dimensions = config.CAR_DIMS if track.cls == "car" else config.PED_DIMS
        for i, (img_id, pose_world_obj) in enumerate(track.poses.items()):
            # center = np.array([0.0, 0.0, 0.0]).reshape(3, 1)
            if i == len(track.poses) - 1:
                for lm in track.landmarks.values():
                    pt_world = from_homogeneous(
                        pose_world_obj @ to_homogeneous(lm.pt_3d))
                    # Ecenter += pt_world
                    if i == len(
                            track.poses) - 1 and np.isfinite(pt_world).all():
                        points.append(pt_world)
                if len(points) < 3:
                    continue
                try:
                    if track.rot_angle.get(current_img_id) is not None:
                        location = from_homogeneous(
                            np.linalg.inv(current_cam_pose) @ to_homogeneous(
                                track.locations[current_img_id]))
                        # kitti locations are given as bottom of bounding box
                        # positive y direction is downward, hence add half of the dimensions
                        location[1] += dimensions[0] / 2
                        bbox, lines = _compute_bounding_box(
                            location,
                            track.rot_angle[current_img_id],
                            dimensions,
                            current_cam_pose,
                        )
                        track_geometries.bbox.points = bbox
                        track_geometries.bbox.lines = lines

                    else:
                        tmp_pt_cloud = o3d.geometry.PointCloud()
                        tmp_pt_cloud.points = o3d.utility.Vector3dVector(
                            points)
                        bbox = tmp_pt_cloud.get_oriented_bounding_box()
                        track_geometries.bbox.points = bbox.get_box_points()
                        track_geometries.bbox.lines = o3d.utility.Vector2iVector(
                            [
                                [0, 1],
                                [0, 2],
                                [0, 3],
                                [1, 6],
                                [1, 7],
                                [2, 5],
                                [2, 7],
                                [3, 5],
                                [3, 6],
                                [4, 5],
                                [4, 6],
                                [4, 7],
                            ])
                except RuntimeError:
                    # happens when points are too close to each other
                    pass
            # if track.landmarks:
            #    center /= len(track.landmarks)
            # offline_point = center.reshape(3,).tolist()
            offline_point = track.pcl_centers.get(img_id)
            if offline_point is not None:
                pt_world = from_homogeneous(
                    pose_world_obj @ to_homogeneous(offline_point))
                pt_world[2] -= dimensions[0] / 2
                path_points_offline.append(pt_world)
            online_point = track.locations.get(img_id).copy()
            if online_point is not None:
                online_point[2] -= dimensions[0] / 2
                path_points_online.append(online_point.reshape(3, ).tolist())
            if i == len(track.poses) - 1:
                track_size = len(points)
        path_lines_offline = [[i, i + 1]
                              for i in range(len(path_points_offline) - 1)]
        path_lines_online = [[i, i + 1]
                             for i in range(len(path_points_online) - 1)]
        # draw current landmarks
        LOGGER.debug("Track has %d points", track_size)
        track_geometries.pt_cloud.points = o3d.utility.Vector3dVector(points)
        if path_lines_offline:
            track_geometries.offline_trajectory.points = o3d.utility.Vector3dVector(
                path_points_offline)
            track_geometries.offline_trajectory.lines = o3d.utility.Vector2iVector(
                path_lines_offline)
        if path_lines_online:
            track_geometries.online_trajectory.points = o3d.utility.Vector3dVector(
                path_points_online)
            track_geometries.online_trajectory.lines = o3d.utility.Vector2iVector(
                path_lines_online)
        if track.active:
            track_geometries.pt_cloud.paint_uniform_color(color)
            if show_offline_trajs.val:
                track_geometries.offline_trajectory.paint_uniform_color(color)
            else:
                track_geometries.offline_trajectory.paint_uniform_color(
                    VIEWER_COLORS.background)
            if show_online_trajs.val:
                track_geometries.online_trajectory.paint_uniform_color(
                    darker_color)
            else:
                track_geometries.online_trajectory.paint_uniform_color(
                    VIEWER_COLORS.background)
            track_geometries.bbox.paint_uniform_color(color)
        else:
            LOGGER.debug("Track is inactive")
            track_geometries.pt_cloud.paint_uniform_color(
                VIEWER_COLORS.background)
            track_geometries.offline_trajectory.paint_uniform_color(
                VIEWER_COLORS.background)
            track_geometries.online_trajectory.paint_uniform_color(
                VIEWER_COLORS.background)
            track_geometries.bbox.paint_uniform_color(VIEWER_COLORS.background)
        if all_track_geometries.get(ido) is None:
            visualizer.add_geometry(track_geometries.pt_cloud,
                                    reset_bounding_box=False)
            visualizer.add_geometry(track_geometries.bbox,
                                    reset_bounding_box=False)
            all_geometries.add(track_geometries.pt_cloud)
            all_geometries.add(track_geometries.bbox)
            if (len(path_lines_online) >= 1 and
                    track_geometries.online_trajectory not in all_geometries):
                visualizer.add_geometry(track_geometries.online_trajectory,
                                        reset_bounding_box=False)
                all_geometries.add(track_geometries.online_trajectory)
            if (len(path_lines_offline) >= 1 and
                    track_geometries.offline_trajectory not in all_geometries):
                visualizer.add_geometry(track_geometries.offline_trajectory,
                                        reset_bounding_box=False)
                all_geometries.add(track_geometries.offline_trajectory)
            all_track_geometries[ido] = track_geometries
        else:
            visualizer.update_geometry(track_geometries.pt_cloud)
            if (len(path_lines_online) >= 1 and
                    track_geometries.online_trajectory not in all_geometries):
                visualizer.add_geometry(track_geometries.online_trajectory,
                                        reset_bounding_box=False)
                all_geometries.add(track_geometries.online_trajectory)
            else:
                visualizer.update_geometry(track_geometries.online_trajectory)
            if (len(path_lines_offline) >= 1 and
                    track_geometries.offline_trajectory not in all_geometries):
                visualizer.add_geometry(track_geometries.offline_trajectory,
                                        reset_bounding_box=False)
                all_geometries.add(track_geometries.offline_trajectory)
            else:
                visualizer.update_geometry(track_geometries.offline_trajectory)
            visualizer.update_geometry(track_geometries.bbox)

    for ido in inactive_tracks:
        track_geometry = all_track_geometries.get(ido)
        if track_geometry is not None:
            cached_colors[ido] = track_geometry.color
            visualizer.remove_geometry(track_geometry.pt_cloud,
                                       reset_bounding_box=False)
            visualizer.remove_geometry(track_geometry.bbox,
                                       reset_bounding_box=False)
            visualizer.remove_geometry(track_geometry.offline_trajectory,
                                       reset_bounding_box=False)
            visualizer.remove_geometry(track_geometry.online_trajectory,
                                       reset_bounding_box=False)

            all_geometries.remove(track_geometry.pt_cloud)
            all_geometries.remove(track_geometry.bbox)
            if track_geometry.offline_trajectory in all_geometries:
                all_geometries.remove(track_geometry.offline_trajectory)
            if track_geometry.online_trajectory in all_geometries:
                all_geometries.remove(track_geometry.online_trajectory)
            del all_track_geometries[ido]
            del cached_colors[ido]