Esempio n. 1
0
def start_device():
    # Connect to BITalino
    device = BITalino(settings.bitalino.mac_address)

    # Set battery threshold
    device.battery(settings.bitalino.battery_led_threshold)

    # Read BITalino version
    logger.info(device.version())

    # Start Acquisition
    device.start(settings.sampling.base_sample_rate, [0, 1, 2, 3])

    return device
Esempio n. 2
0
def launch_acquisition(msg):
    global isAcquiring
    isAcquiring = 1
    macAddress = msg['payload']['macAddress']

    # This example will collect data for 5 sec.
    running_time = 9

    batteryThreshold = 30
    acqChannels = [0, 1, 2, 3, 4, 5]
    samplingRate = 1000
    nSamples = 10
    digitalOutput = [1, 1]

    # Connect to BITalino
    device = BITalino(macAddress)

    # Set battery threshold
    device.battery(batteryThreshold)

    # Read BITalino version
    print(device.version())

    # ON/OFF
    device.trigger([1, 1])
    device.trigger([0, 0])

    # Start Acquisition
    device.start(samplingRate, acqChannels)

    start = time.time()
    end = time.time()
    while (end - start) < running_time and isAcquiring == 1:
        # Read samples
        data = device.read(nSamples)
        print(data)
        msg['payload']['val'] = data.tolist()
        end = time.time()

    # Stop acquisition
    device.stop()

    # Close connection
    device.close()
    isAcquiring = 0
    return ("success")
Esempio n. 3
0
# switch from one-offset to zero-offset
for i in range(nchans):
    channels[i]-=1;

datatype  = FieldTrip.DATATYPE_FLOAT32
ft_output.putHeader(nchans, float(fsample), datatype)

try:
    # Connect to BITalino
    device = BITalino(device)
except:
    print "Error: cannot connect to BITalino"
    exit()

# Read BITalino version
print(device.version())

# Set battery threshold
device.battery(batterythreshold)

# Start Acquisition
device.start(fsample, channels)

# Turn BITalino led on
digitalOutput = [1,1]
device.trigger(digitalOutput)

startfeedback = time.time();
countfeedback = 0;

print "STARTING STREAM"
Esempio n. 4
0
# switch from one-offset to zero-offset
for i in range(nchans):
    channels[i]-=1;

datatype  = FieldTrip.DATATYPE_FLOAT32
ft_output.putHeader(nchans, float(fsample), datatype)

try:
    # Connect to BITalino
    device = BITalino(device)
except:
    print("Error: cannot connect to BITalino")
    exit()

# Read BITalino version
print((device.version()))

# Set battery threshold
device.battery(batterythreshold)

# Start Acquisition
device.start(fsample, channels)

# Turn BITalino led on
digitalOutput = [1,1]
device.trigger(digitalOutput)

startfeedback = time.time()
countfeedback = 0

print("STARTING STREAM")
Esempio n. 5
0
def _start():
    """Start the module
    This uses the global variables from setup and adds a set of global variables
    """
    global parser, args, config, r, response, patch, name
    global  monitor, debug, device, fsample, blocksize, channels, batterythreshold, nchans, startfeedback, countfeedback, ft_host, ft_port, ft_output, datatype, digitalOutput

    # this can be used to show parameters that have changed
    monitor = EEGsynth.monitor(name=name, debug=patch.getint("general", "debug"))

    # get the options from the configuration file
    debug = patch.getint("general", "debug")
    device = patch.getstring("bitalino", "device")
    fsample = patch.getfloat("bitalino", "fsample", default=1000)
    blocksize = patch.getint("bitalino", "blocksize", default=10)
    channels = patch.getint("bitalino", "channels", multiple=True)  # these should be one-offset
    batterythreshold = patch.getint("bitalino", "batterythreshold", default=30)

    # switch from one-offset to zero-offset
    nchans = len(channels)
    for i in range(nchans):
        channels[i] -= 1

    monitor.info("fsample = " + str(fsample))
    monitor.info("channels = " + str(channels))
    monitor.info("nchans = " + str(nchans))
    monitor.info("blocksize = " + str(blocksize))

    try:
        ft_host = patch.getstring("fieldtrip", "hostname")
        ft_port = patch.getint("fieldtrip", "port")
        monitor.success("Trying to connect to buffer on %s:%i ..." % (ft_host, ft_port))
        ft_output = FieldTrip.Client()
        ft_output.connect(ft_host, ft_port)
        monitor.success("Connected to output FieldTrip buffer")
    except:
        raise RuntimeError("cannot connect to output FieldTrip buffer")

    datatype = FieldTrip.DATATYPE_FLOAT32
    ft_output.putHeader(nchans, float(fsample), datatype)

    try:
        # Connect to BITalino
        device = BITalino(device)
        monitor.success((device.version()))
    except:
        raise RuntimeError("cannot connect to BITalino")

    # Set battery threshold
    device.battery(batterythreshold)

    # Start Acquisition
    device.start(fsample, channels)

    # Turn BITalino led on
    digitalOutput = [1, 1]
    device.trigger(digitalOutput)

    startfeedback = time.time()
    countfeedback = 0

    # there should not be any local variables in this function, they should all be global
    if len(locals()):
        print("LOCALS: " + ", ".join(locals().keys()))
Esempio n. 6
0
    ft_port = patch.getint('fieldtrip', 'port')
    monitor.success('Trying to connect to buffer on %s:%i ...' %
                    (ft_host, ft_port))
    ft_output = FieldTrip.Client()
    ft_output.connect(ft_host, ft_port)
    monitor.success('Connected to output FieldTrip buffer')
except:
    raise RuntimeError("cannot connect to output FieldTrip buffer")

datatype = FieldTrip.DATATYPE_FLOAT32
ft_output.putHeader(nchans, float(fsample), datatype)

try:
    # Connect to BITalino
    device = BITalino(device)
    monitor.success((device.version()))
except:
    raise RuntimeError("cannot connect to BITalino")

# Set battery threshold
device.battery(batterythreshold)

# Start Acquisition
device.start(fsample, channels)

# Turn BITalino led on
digitalOutput = [1, 1]
device.trigger(digitalOutput)

startfeedback = time.time()
countfeedback = 0
Esempio n. 7
0
def main():
    
    # OS Specific Initializations
    clearCmd = "cls||clear"

    if platform.system() == 'Windows':
        clearCmd = "cls"
        print("Using Windows default console size 80x24")
        columns = 80
        rows = 24
    else:
        clearCmd = "clear"
        rows, columns = os.popen('stty size', 'r').read().split()

    print("Connecting to BITalino...")

    # Set MAC Address with argument
    defaultMACAddress = "20:16:12:21:98:56"

    if len(sys.argv) == 2:
        macAddress = sys.argv[1]
        print("Using address: " + macAddress)
    elif len(sys.argv) > 1:
        print("Please input only 1 argument, which is the address of the BITalino device.")
        print("Running without argument will use default MAC Address = " + defaultMACAddress)
        print("Exiting...")
        exit()
    else:
        macAddress = defaultMACAddress
        print("Using default MAC address: " + macAddress)

    # Setting other attributes
    batteryThreshold = 30
    acqChannels = [0,1]
    samplingRate = 100
    nSamples = 20
    digitalOutput = [1,1]

    # Connect to BITalino
    device = BITalino(macAddress)
    
    # Set battery threshold
    device.battery(batteryThreshold)

    # Read BITalino version
    os.system(clearCmd)
    print("Device Version:" + device.version())

    # Start Acquisition
    device.start(samplingRate, acqChannels)

    # Take baseline measurement
    p1Base = []
    p2Base = []

    start = time.time()
    end = time.time()

    samplingTime = 15

    print("Sampling for baseline...")

    while (end - start) < samplingTime:
        # Sampling for baseline
        baseSample = device.read(nSamples)
        p1Base.append(numpy.mean(baseSample[:,5]))
        p2Base.append(numpy.mean(baseSample[:,6]))
        end = time.time()

    p1B = numpy.mean(p1Base)
    p2B = numpy.mean(p2Base)

    print("\n")
    p1P = "Player 1 Baseline: " + str(p1B)
    print(p1P)
    p2P = "Player 2 Baseline: " + str(p2B)
    print(p2P)


    print("\n\n\n\n\n\n")
    print("Are you ready for the game? Type 'No' to exit".center(int(columns)," "))
    response = sys.stdin.readline().rstrip()
    if response == "No":
        sys.exit()

    print("\n")
    print("Starting Game...".center(int(columns), " "))

    time.sleep(5)


    # Start Game

    os.system(clearCmd)

    gameRunning = True

    player1Progress = 28

    while gameRunning:
        # While not reaching runningTime, read samples
        rawData = device.read(nSamples)
        portA1 = rawData[:,5]
        #print "Port A1: ", portA1
        valueA1 = numpy.mean(portA1 - p1B)
        #print "Value A1: ", valueA1
        #print ""
        portA2 = rawData[:,6]
        #print "Port A2: ", portA2
        valueA2 = numpy.mean(portA2 - p2B)
        #print "Value A2: ", valueA2
        #print "\n"
        if (valueA2 - valueA1) > 10:
            player1Progress-=1
        elif (valueA2 - valueA1) > 20:
            plater1Progress-=2
        elif (valueA1 - valueA2) > 10:
            player1Progress+=1
        elif (valueA1 - valueA2) > 20:
            player1Progress+=2

        print("\n\n")
        print("Player 1 Reading:".center(int(columns)," "))
        print("\n")
        print(str(valueA1).center(int(columns)," "))
        print("\n\n\n")

        print("*****************************I*****************************".center(int(columns)," "))
        progress = "P1 *" + ' '*player1Progress + 'O' + ' '*(56-player1Progress) + '* P2'
        print(progress.center(int(columns)," "))
        print("*****************************I*****************************".center(int(columns)," "))
        print("\n\n\n")

        print("Player 2 Reading:".center(int(columns)," "))
        print("\n")
        print(str(valueA2).center(int(columns)," "))

        time.sleep(0.2)

        os.system(clearCmd)

        if player1Progress == 0:
            print("\n\n\n\n\n")
            print("Player 1 has won".center(int(columns)," "))
            gameRunning = False
        elif player1Progress == 56:
            print("\n\n\n\n\n")
            print("Player 2 has won".center(int(columns)," "))
            gameRunning = False

    # Turn BITalino LED on
    device.trigger(digitalOutput)

    # Stop acquisition
    device.stop()

    # Close connection
    device.close()
Esempio n. 8
0
class Bitalino(Node):
    """BITalino driver.

    This node connects to a BITalino device and streams data at a provided rate.
    It is based on the original BITalino Python library, with some performance
    improvements and careful timestamping.

    Two output streams are provided. The default output is the data read from the
    analog and digital channels. The ``o_offsets`` output provides continuous offsets
    between the local time and the estimated device time. This enables drift correction
    to be performed during post-processing, although no significant drift has been
    observed during testing.

    Attributes:
        o (Port): BITalino data, provides DataFrame.
        o_offsets (Port): Time offsets, provide DataFrame.

    Args:
        port (string): The serial port.
            e.g. ``COM3`` on Windows;  ``/dev/tty.bitalino-DevB`` on MacOS;
            ``/dev/ttyUSB0`` on GNU/Linux.
        rate (int): The device rate in Hz.
            Possible values: ``1``, ``10``, ``100``, ``1000``. Default: ``1000``.
        channels (tupple): The analog channels to read from.
            Default: ``('A1', 'A2', 'A3', 'A4', 'A5', 'A6')``.

    Example:
        .. literalinclude:: /../examples/bitalino.yaml
           :language: yaml

    Notes:

    .. attention::

        Make sure to set your graph rate to an high-enough value, otherwise the device
        internal buffer may saturate, and data may be lost. A 30Hz graph rate is
        recommended for a 1000Hz device rate.

    """
    def __init__(self,
                 port,
                 rate=1000,
                 channels=("A1", "A2", "A3", "A4", "A5", "A6")):

        # Check port
        if not port.startswith("/dev/") and not port.startswith("COM"):
            raise ValueError(f"Invalid serial port: {port}")

        # Check rate
        if rate not in (1, 10, 100, 1000):
            raise ValueError(f"Invalid rate: {rate}")

        # Check channels
        unique_channels = set(channels)
        analog_channels = ["A1", "A2", "A3", "A4", "A5", "A6"]
        channels = []
        for channel_num, channel_name in enumerate(analog_channels):
            if channel_name in unique_channels:
                channels.append(channel_num)

        # Set column names
        # Sequence number and numeric channels are always present
        self.columns = ["SEQ", "I1", "I2", "O1", "O2"]
        # Add required analog channels
        for channel in channels:
            self.columns.append(analog_channels[channel])

        # Compute the sample size in bytes
        self.channel_count = len(channels)
        if self.channel_count <= 4:
            self.sample_size = int(
                np.ceil((12.0 + 10.0 * self.channel_count) / 8.0))
        else:
            self.sample_size = int(
                np.ceil((52.0 + 6.0 * (self.channel_count - 4)) / 8.0))

        # Connect to BITalino
        try:
            self.device = BITalino(port)
        except UnicodeDecodeError:
            # This can happen after an internal buffer overflow.
            # The solution seems to power off the device and repair.
            raise WorkerInterrupt("Unstable state. Could not connect.")
        except Exception as e:
            raise WorkerInterrupt(e)

        # Set battery threshold
        # The red led will light up at 5-10%
        self.device.battery(30)

        # Read BITalino version
        self.logger.info(self.device.version())

        # Read state and show battery level
        # http://forum.bitalino.com/viewtopic.php?t=448
        state = self.device.state()
        battery = round(
            1 + (state["battery"] - 511) * ((99 - 1) / (645 - 511)), 2)
        self.logger.info("Battery: %.2f%%", battery)

        # Start Acquisition
        self.device.start(rate, channels)

        # Initialize counters for timestamp indices and continuity checks
        self.last_sample_counter = 15
        self.time_device = np.datetime64(int(time.time() * 1e6), "us")
        self.time_local = self.time_device
        self.time_delta = np.timedelta64(int(1000 / rate), "ms")

        # Set meta
        self.meta = {"rate": rate}

    def update(self):
        # Send BITalino data
        data, timestamps = self._read_all()
        self.o.set(data, timestamps, self.columns, self.meta)
        # Send time offsets
        if len(timestamps) > 0:
            offset = (self.time_local - self.time_device).astype(int)
            self.o_offsets.set(
                [[self.time_device, offset]],
                [self.time_local],
                ["time_device", "time_offset"],
            )

    def _read_all(self):
        """Read all available data"""

        # Make sure the device is in aquisition mode
        if not self.device.started:
            raise Exception(ExceptionCode.DEVICE_NOT_IN_ACQUISITION)

        # We only support serial connections
        if not self.device.serial:
            raise Exception("Device must be opened in serial mode.")

        # Check buffer size and limits
        buffer_size = self.device.socket.in_waiting
        if buffer_size == 1020:
            # The device buffer can hold up to 1020 bytes
            self.logger.warn(
                "OS serial buffer saturated. Increase graph rate or decrease device rate."
            )

        # Compute the maximum number of samples we can get
        sample_count = int(buffer_size / self.sample_size)

        # Infer timestamps from sample count and rate
        # Will fail dramatically if too much packets are lost
        # Tests show that there is no significant drift during a 2-hour session
        start = self.time_device
        stop = start + self.time_delta * sample_count
        self.time_device = stop
        timestamps = np.arange(start, stop, self.time_delta)
        self.time_local = np.datetime64(int(time.time() * 1e6), "us")

        # Infer timestamps from local time and rate
        # /!\ Not monotonic
        # stop = np.datetime64(int(time.time() * 1e6), 'us')
        # start = stop - (sample_count * self.time_delta)
        # timestamps = np.arange(start, stop, self.time_delta)

        # Read raw samples from device
        raw = self.device.socket.read(sample_count * self.sample_size)

        # Initialize the output matrix
        data = np.full((sample_count, 5 + self.channel_count), np.nan)

        # Parse the raw data
        # http://bitalino.com/datasheets/REVOLUTION_MCU_Block_Datasheet.pdf
        for sample_number in range(sample_count):

            # Extract sample
            start = sample_number * self.sample_size
            stop = start + self.sample_size
            sample = list(
                struct.unpack(self.sample_size * "B ", raw[start:stop]))

            # Is the sample corrupted?
            crc = sample[-1] & 0x0F
            sample[-1] = sample[-1] & 0xF0
            x = 0
            for i in range(self.sample_size):
                for bit in range(7, -1, -1):
                    x = x << 1
                    if x & 0x10:
                        x = x ^ 0x03
                    x = x ^ ((sample[i] >> bit) & 0x01)
            if crc != x & 0x0F:
                self.logger.warn("Checksum failed.")
                continue

            # Parse sample
            data[sample_number, 0] = sample[-1] >> 4
            data[sample_number, 1] = sample[-2] >> 7 & 0x01
            data[sample_number, 2] = sample[-2] >> 6 & 0x01
            data[sample_number, 3] = sample[-2] >> 5 & 0x01
            data[sample_number, 4] = sample[-2] >> 4 & 0x01
            if self.channel_count > 0:
                data[sample_number,
                     5] = ((sample[-2] & 0x0F) << 6) | (sample[-3] >> 2)
            if self.channel_count > 1:
                data[sample_number,
                     6] = ((sample[-3] & 0x03) << 8) | sample[-4]
            if self.channel_count > 2:
                data[sample_number, 7] = (sample[-5] << 2) | (sample[-6] >> 6)
            if self.channel_count > 3:
                data[sample_number,
                     8] = ((sample[-6] & 0x3F) << 4) | (sample[-7] >> 4)
            if self.channel_count > 4:
                data[sample_number,
                     9] = ((sample[-7] & 0x0F) << 2) | (sample[-8] >> 6)
            if self.channel_count > 5:
                data[sample_number, 10] = sample[-8] & 0x3F

            # Did we miss any sample?
            # Check for discontinuity in the internal sample counter, encoded to 4 bits.
            sample_counter = data[sample_number, 0]
            if sample_counter == self.last_sample_counter + 1:
                pass
            elif sample_counter == 0 and self.last_sample_counter == 15:
                pass
            else:
                self.logger.warn("Missed sample.")
            self.last_sample_counter = sample_counter

        return data, timestamps

    def terminate(self):
        self.device.stop()
        self.device.close()
Esempio n. 9
0
                macAddress) + "_" + time.strftime("%Y-%m-%d_%H-%M-%S") + ".txt"
            print("Using default filename:\n" + filename)

# Setting other attributes
batteryThreshold = 30

# Connect to BITalino
print("\nConnecting to BITalino using MAC Address: " + macAddress)
device = BITalino(macAddress)
print("\nDevice Connected.\n")

# Set battery threshold
device.battery(batteryThreshold)

# Read BITalino version
print("Device Version: " + str(device.version()))

# Show channels monitored
print("Monitoring channels: " + str(acqChannels))

# Show sampling rate
print("Sampling Rate: " + str(samplingRate) + " Hz.\n")

# Start Acquisition
device.start(samplingRate, acqChannels)

# Sample for baseline: 1 min
outputFile = dc.initOutput(filename, macAddress, acqChannels, samplingRate)
dc.writeOutTimed(outputFile, device, acqChannels, samplingRate, 60)

# Open Video and record data
Esempio n. 10
0
# coding: utf_8

from bitalino import BITalino

macAddress = "20:16:12:21:35:82"  # MACアドレス

device = BITalino(macAddress)  # デバイスの取得
print(device.version())  # バージョンの表示

samplingRate = 1000  # サンプリングレート
acqChannels = [0]  # 取得チャネル(A1)
nSamples = 10  # 取得サンプル数

device.start(samplingRate, acqChannels)  # データ取得開始
data = device.read(nSamples)
print(data)

device.stop()
device.close()
Esempio n. 11
0
	try:
		print "connecting to BITalino(%s)..." %macAddress
		device = BITalino(macAddress)
		connection=1;
		break
	except TypeError:
		print "MAC address (%s) is not defined..." %macAddress
		print "connecting to BITalino(%s)..." 
	except ValueError:
		print "MAC address (%s) is not defined..." %macAddress
		print "connecting to BITalino(%s)..." 
	
# Set battery threshold
device.battery(batteryThreshold)
# Read BITalino version
print device.version()
print "connected to BITalino(%s)" %macAddress
print "creating Signal stream..."
info = StreamInfo('BiTalino','BiTalino',+len(acqChannels),samplingRate,'float32','myuid34234');
# next make an outlet
outlet = StreamOutlet(info)
print"created Signal stream : %s" %info.name()
print("starting acquisition...")
# Start Acquisition
device.start(samplingRate, acqChannels)
# Read samples
while 1:
	data=device.read(nSamples)
	print data
 	outlet.push_sample(data[0][defaultChannel+1:])
Esempio n. 12
0
 def connect(self):
     device = BITalino(self.MAC_ADDRESS)
     # Read BITalino version
     print("Connected to Device")
     print(device.version())
     return device
Esempio n. 13
0
                                    Float32,
                                    queue_size=10)
    dir_data_pub = rospy.Publisher("/bitalino/direction",
                                   Float32,
                                   queue_size=10)
    # dir_data_pub = rospy.Publisher("/bitalino/direction", Float32, queue_size=10)
    macAddress = "20:16:07:18:15:11"

    # Bitalino setup
    batteryThreshold = 30
    acqChannels = [2, 3]
    samplingRate = 1000
    nSamples = 50
    device = BITalino(macAddress)
    device.battery(batteryThreshold)
    rospy.loginfo(device.version())

    device.start(samplingRate, acqChannels)
    msg = Float32()
    cocontract_data = 0
    direction_data = 0
    rospy.on_shutdown(clean_shutdown)
    rospy.loginfo("Finding neutral direction signal")
    max_cnt = 100
    for i in range(0, max_cnt):
        # Read samples
        data = device.read(nSamples)
        # data = data[:]
        data = np.transpose(data)
        data = data[-2:]