def main(): # Use first line of file docstring as description if a file docstring exists. parser = argparse.ArgumentParser( description=__doc__.split('\n')[0] if __doc__ else '', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--bitmask', type=str, required=True) parser.add_argument('--output', type=str, required=True) parser.add_argument('--snapshot_prefix', default='{output}/models/alexnet_{bitmask}') parser.add_argument('--solver', default='models/bvlc_alexnet/solver.prototxt') parser.add_argument('--trainval', default='models/bvlc_alexnet/train_val.prototxt') # Do we need the deploy? parser.add_argument('--deploy', default='models/bvlc_alexnet/deploy.prototxt') args = parser.parse_args() args.snapshot_prefix = args.snapshot_prefix.format(output=args.output, bitmask=args.bitmask) bitmask = args.bitmask assert len(bitmask) == len(LAYERS), ( 'Expected {} bits in bitmask, received {}.'.format( len(LAYERS), len(bitmask))) try: int(bitmask) except ValueError: raise Exception('Invalid bitmask: {}'.format(bitmask)) zeroed_layers = set(layer for i, layer in enumerate(LAYERS) if bitmask[i] == '0') # Parse solver solver = SolverParameter() parse_prototxt(solver, args.solver) solver.snapshot_prefix = args.snapshot_prefix solver.net = '{}/train_val.prototxt'.format(args.output) # Parse trainval NetParameter trainval = NetParameter() parse_prototxt(trainval, args.trainval) for layer in trainval.layer: if layer.name in zeroed_layers: print('Zeroing {}'.format(layer.name)) for param in layer.param: param.lr_mult = 0 param.decay_mult = 0 mkdir_p(args.output) write_prototxt(trainval, '{}/train_val.prototxt'.format(args.output)) write_prototxt(solver, '{}/solver.prototxt'.format(args.output)) copyfile(args.deploy, '{}/deploy.prototxt'.format(args.output))
def new_solver(learning_rate): param = SolverParameter() param.solver_type = SolverParameter.ADAM param.momentum = 0.95 param.base_lr = learning_rate param.lr_policy = "step" param.gamma = 0.1 param.stepsize = 10000000 param.max_iter = 10000000 param.display = 0 param.clip_gradients = 10 return param
def init_solver(self): """ Helper method to initialize the solver. """ solver_param = SolverParameter() solver_param.snapshot_prefix = self._hyperparams['weights_file_prefix'] solver_param.display = 0 # Don't display anything. solver_param.base_lr = self._hyperparams['lr'] solver_param.lr_policy = self._hyperparams['lr_policy'] solver_param.momentum = self._hyperparams['momentum'] solver_param.weight_decay = self._hyperparams['weight_decay'] solver_param.type = self._hyperparams['solver_type'] solver_param.random_seed = self._hyperparams['random_seed'] # Pass in net parameter either by filename or protostring. if isinstance(self._hyperparams['network_model'], basestring): self.solver = caffe.get_solver(self._hyperparams['network_model']) else: network_arch_params = self._hyperparams['network_arch_params'] network_arch_params['dim_input'] = self._dO network_arch_params['dim_output'] = self._dU network_arch_params['batch_size'] = self.batch_size network_arch_params['phase'] = TRAIN solver_param.train_net_param.CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # For running forward in python. network_arch_params['batch_size'] = 1 network_arch_params['phase'] = TEST solver_param.test_net_param.add().CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # For running forward on the robot. network_arch_params['batch_size'] = 1 network_arch_params['phase'] = 'deploy' solver_param.test_net_param.add().CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # These are required by Caffe to be set, but not used. solver_param.test_iter.append(1) solver_param.test_iter.append(1) solver_param.test_interval = 1000000 f = tempfile.NamedTemporaryFile(mode='w+', delete=False) f.write(MessageToString(solver_param)) f.close() self.solver = caffe.get_solver(f.name)
def init_solver(self): """ Helper method to initialize the solver. """ solver_param = SolverParameter() solver_param.snapshot_prefix = self._hyperparams['weights_file_prefix'] solver_param.display = 0 # Don't display anything. solver_param.base_lr = self._hyperparams['lr'] solver_param.lr_policy = self._hyperparams['lr_policy'] solver_param.momentum = self._hyperparams['momentum'] solver_param.weight_decay = self._hyperparams['weight_decay'] solver_param.type = self._hyperparams['solver_type'] # Pass in net parameter either by filename or protostring. if isinstance(self._hyperparams['network_model'], basestring): self.solver = caffe.get_solver(self._hyperparams['network_model']) else: network_arch_params = self._hyperparams['network_arch_params'] network_arch_params['dim_input'] = self._dO network_arch_params['dim_output'] = self._dU network_arch_params['batch_size'] = self.batch_size network_arch_params['phase'] = TRAIN solver_param.train_net_param.CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # For running forward in python. network_arch_params['batch_size'] = 1 network_arch_params['phase'] = TEST solver_param.test_net_param.add().CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # For running forward on the robot. network_arch_params['batch_size'] = 1 network_arch_params['phase'] = 'deploy' solver_param.test_net_param.add().CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # These are required by Caffe to be set, but not used. solver_param.test_iter.append(1) solver_param.test_iter.append(1) solver_param.test_interval = 1000000 f = tempfile.NamedTemporaryFile(mode='w+', delete=False) f.write(MessageToString(solver_param)) f.close() self.solver = caffe.get_solver(f.name)
def get_solver(args): from caffe.proto.caffe_pb2 import SolverParameter from google.protobuf.text_format import Merge solver = SolverParameter() Merge(open(args.solver, 'r').read(), solver) return solver
def _init_solver(self): """ Helper method to initialize the solver. """ solver_param = SolverParameter() solver_param.display = 0 # Don't display anything. solver_param.base_lr = self._hyperparams['lr'] solver_param.lr_policy = self._hyperparams['lr_policy'] solver_param.momentum = self._hyperparams['momentum'] solver_param.weight_decay = self._hyperparams['weight_decay'] solver_param.type = self._hyperparams['solver_type'] solver_param.random_seed = self._hyperparams['random_seed'] # Pass in net parameter by protostring (could add option to input prototxt file). network_arch_params = self._hyperparams['network_arch_params'] network_arch_params['dim_input'] = self._dO network_arch_params['demo_batch_size'] = self._hyperparams['demo_batch_size'] network_arch_params['sample_batch_size'] = self._hyperparams['sample_batch_size'] network_arch_params['T'] = self._T network_arch_params['phase'] = TRAIN solver_param.train_net_param.CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # For running forward in python. network_arch_params['phase'] = TEST solver_param.test_net_param.add().CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) network_arch_params['phase'] = 'forward_feat' solver_param.test_net_param.add().CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # These are required by Caffe to be set, but not used. solver_param.test_iter.append(1) solver_param.test_iter.append(1) solver_param.test_interval = 1000000 f = tempfile.NamedTemporaryFile(mode='w+', delete=False) f.write(MessageToString(solver_param)) f.close() self.solver = caffe.get_solver(f.name)
def write_solver_file(solver_file, train_model, test_models, type, base_lr, momentum, weight_decay, lr_policy, gamma, power, random_seed, max_iter, clip_gradients, snapshot_prefix,display=0): '''Writes a solver prototxt file with parameters set to the corresponding argument values. In particular, the train_net parameter is set to train_model, and a test_net parameter is added for each of test_models, which should be a list.''' param = SolverParameter() param.train_net = train_model for test_model in test_models: param.test_net.append(test_model) param.test_iter.append(0) #don't test automatically param.test_interval = max_iter param.type = type param.base_lr = base_lr param.momentum = momentum param.weight_decay = weight_decay param.lr_policy = lr_policy param.gamma = gamma param.power = power param.display = display #don't print solver iterations unless requested param.random_seed = random_seed param.max_iter = max_iter if clip_gradients > 0: param.clip_gradients = clip_gradients param.snapshot_prefix = snapshot_prefix print "WRITING",solver_file with open(solver_file,'w') as f: f.write(str(param))
def lenet_solver_simple(): """A simple version of LeNet's solver proto""" solver = SolverParameter() solver.train_net = 'lenet_auto_train.prototxt' solver.test_net.append('lenet_auto_test.prototxt') solver.test_iter.append(100) solver.test_interval = 500 solver.base_lr = 0.01 solver.momentum = 0.9 solver.weight_decay = 0.0005 solver.lr_policy = 'inv' solver.gamma = 0.0001 solver.power = 0.75 # solver.stepsize = 2500 solver.display = 100 solver.max_iter = 10000 solver.snapshot = 5000 solver.snapshot_prefix = 'SNAPSHOT_FULL_PATH' solver.solver_mode = SolverParameter.GPU with open('SOLVER_FULL_PATH', 'w') as f: # generating prototxt f.write(str(solver))
def lenet_solver(): """A simple version of LeNet's solver proto""" parser = argparse.ArgumentParser() parser.add_argument( '--train_net', default='../../Lenet/lenet_auto_train.prototxt', help= 'path to train net prototxt. [DEFAULT=../../Section4/caffenet_train.prototxt]' ) parser.add_argument( '--test_net', default='../../Lenet/lenet_auto_test.prototxt', help= 'path to validation net prototxt. [DEFAULT=../../Section4/caffenet_valid.prototxt]' ) parser.add_argument('--solver_target_folder', default='../../Lenet/', help='solver target FOLDER. [DEFAULT=../../Section5/]') parser.add_argument( '--solver_filename', default='Lenet_solver.prototxt', help='solver prototxt NAME. [DEFAULT=caffenet_solver.prototxt]') parser.add_argument( '--snapshot_target_folder', default='../../Lenet/', help='snapshot target FOLDER. [DEFAULT=../../Section6/') parser.add_argument('--snapshot_prefix', default='Lenet', help='snapshot NAME prefix, [DEFAULT=caffenet]') args = parser.parse_args() SOLVER_FULL_PATH = args.solver_target_folder + args.solver_filename SNAPSHOT_FULL_PATH = args.snapshot_target_folder + args.snapshot_prefix os.system('rm -rf ' + SOLVER_FULL_PATH) os.system('rm -rf ' + SNAPSHOT_FULL_PATH + '*') solver = SolverParameter() solver.train_net = 'lenet_auto_train.prototxt' solver.test_net.append('lenet_auto_test.prototxt') solver.test_iter.append(100) solver.test_interval = 500 solver.base_lr = 0.01 solver.momentum = 0.9 solver.weight_decay = 0.0005 solver.lr_policy = 'inv' solver.gamma = 0.0001 solver.power = 0.75 # solver.stepsize = 2500 solver.display = 100 solver.max_iter = 10000 solver.snapshot = 5000 solver.snapshot_prefix = SNAPSHOT_FULL_PATH solver.solver_mode = SolverParameter.GPU with open(args.solver_filename, 'w') as f: # generating prototxt f.write(str(solver))
def write_solver_file(solver_file, train_model, test_models, type, base_lr, momentum, weight_decay, lr_policy, gamma, power, random_seed, max_iter, clip_gradients, snapshot_prefix): '''Writes a solver prototxt file with parameters set to the corresponding argument values. In particular, the train_net parameter is set to train_model, and a test_net parameter is added for each of test_models, which should be a list.''' param = SolverParameter() param.train_net = train_model for test_model in test_models: param.test_net.append(test_model) param.test_iter.append(0) #don't test automatically param.test_interval = max_iter param.type = type param.base_lr = base_lr param.momentum = momentum param.weight_decay = weight_decay param.lr_policy = lr_policy param.gamma = gamma param.power = power param.display = 0 #don't print solver iterations param.random_seed = random_seed param.max_iter = max_iter if clip_gradients > 0: param.clip_gradients = clip_gradients param.snapshot_prefix = snapshot_prefix print "WRITING", solver_file with open(solver_file, 'w') as f: f.write(str(param))
import ctypes from caffe_ext import layers as L from caffe.proto.caffe_pb2 import SolverParameter import numpy as np param = SolverParameter() param.solver_type = param.ADAM lib = ctypes.cdll.LoadLibrary("/root/code/dqn-info/build/libdqn-c-lib.so") lib.DQN_new.argtypes = [ ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_float, ] lib.DQN_new.returntype = ctypes.c_void_p lib.DQN_SelectAction.argtypes = [ ctypes.c_void_p, ctypes.POINTER(ctypes.c_float), ctypes.POINTER(ctypes.c_float), ] lib.DQN_SelectAction.returntype = None