Esempio n. 1
0
def write_solver_file(solver_file, train_model, test_models, type, base_lr, momentum, weight_decay,
                      lr_policy, gamma, power, random_seed, max_iter, clip_gradients, snapshot_prefix,display=0):
    '''Writes a solver prototxt file with parameters set to the
    corresponding argument values. In particular, the train_net
    parameter is set to train_model, and a test_net parameter is
    added for each of test_models, which should be a list.'''
    param = SolverParameter()
    param.train_net = train_model
    for test_model in test_models:
        param.test_net.append(test_model)
        param.test_iter.append(0) #don't test automatically
    param.test_interval = max_iter
    param.type = type
    param.base_lr = base_lr
    param.momentum = momentum
    param.weight_decay = weight_decay
    param.lr_policy = lr_policy
    param.gamma = gamma
    param.power = power
    param.display = display #don't print solver iterations unless requested
    param.random_seed = random_seed
    param.max_iter = max_iter
    if clip_gradients > 0:
        param.clip_gradients = clip_gradients
    param.snapshot_prefix = snapshot_prefix
    print "WRITING",solver_file
    with open(solver_file,'w') as f:
        f.write(str(param))
Esempio n. 2
0
def write_solver_file(solver_file, train_model, test_models, type, base_lr,
                      momentum, weight_decay, lr_policy, gamma, power,
                      random_seed, max_iter, clip_gradients, snapshot_prefix):
    '''Writes a solver prototxt file with parameters set to the
    corresponding argument values. In particular, the train_net
    parameter is set to train_model, and a test_net parameter is
    added for each of test_models, which should be a list.'''
    param = SolverParameter()
    param.train_net = train_model
    for test_model in test_models:
        param.test_net.append(test_model)
        param.test_iter.append(0)  #don't test automatically
    param.test_interval = max_iter
    param.type = type
    param.base_lr = base_lr
    param.momentum = momentum
    param.weight_decay = weight_decay
    param.lr_policy = lr_policy
    param.gamma = gamma
    param.power = power
    param.display = 0  #don't print solver iterations
    param.random_seed = random_seed
    param.max_iter = max_iter
    if clip_gradients > 0:
        param.clip_gradients = clip_gradients
    param.snapshot_prefix = snapshot_prefix
    print "WRITING", solver_file
    with open(solver_file, 'w') as f:
        f.write(str(param))
Esempio n. 3
0
def lenet_solver():
    """A simple version of LeNet's solver proto"""
    parser = argparse.ArgumentParser()

    parser.add_argument(
        '--train_net',
        default='../../Lenet/lenet_auto_train.prototxt',
        help=
        'path to train net prototxt. [DEFAULT=../../Section4/caffenet_train.prototxt]'
    )
    parser.add_argument(
        '--test_net',
        default='../../Lenet/lenet_auto_test.prototxt',
        help=
        'path to validation net prototxt. [DEFAULT=../../Section4/caffenet_valid.prototxt]'
    )
    parser.add_argument('--solver_target_folder',
                        default='../../Lenet/',
                        help='solver target FOLDER. [DEFAULT=../../Section5/]')
    parser.add_argument(
        '--solver_filename',
        default='Lenet_solver.prototxt',
        help='solver prototxt NAME. [DEFAULT=caffenet_solver.prototxt]')
    parser.add_argument(
        '--snapshot_target_folder',
        default='../../Lenet/',
        help='snapshot target FOLDER. [DEFAULT=../../Section6/')
    parser.add_argument('--snapshot_prefix',
                        default='Lenet',
                        help='snapshot NAME prefix, [DEFAULT=caffenet]')
    args = parser.parse_args()

    SOLVER_FULL_PATH = args.solver_target_folder + args.solver_filename
    SNAPSHOT_FULL_PATH = args.snapshot_target_folder + args.snapshot_prefix
    os.system('rm -rf ' + SOLVER_FULL_PATH)
    os.system('rm -rf ' + SNAPSHOT_FULL_PATH + '*')

    solver = SolverParameter()

    solver.train_net = 'lenet_auto_train.prototxt'
    solver.test_net.append('lenet_auto_test.prototxt')
    solver.test_iter.append(100)
    solver.test_interval = 500
    solver.base_lr = 0.01
    solver.momentum = 0.9
    solver.weight_decay = 0.0005
    solver.lr_policy = 'inv'
    solver.gamma = 0.0001
    solver.power = 0.75
    # solver.stepsize = 2500
    solver.display = 100
    solver.max_iter = 10000
    solver.snapshot = 5000
    solver.snapshot_prefix = SNAPSHOT_FULL_PATH
    solver.solver_mode = SolverParameter.GPU

    with open(args.solver_filename, 'w') as f:  # generating prototxt
        f.write(str(solver))
Esempio n. 4
0
def new_solver(learning_rate):
    param = SolverParameter()
    param.solver_type = SolverParameter.ADAM
    param.momentum = 0.95
    param.base_lr = learning_rate
    param.lr_policy = "step"
    param.gamma = 0.1
    param.stepsize = 10000000
    param.max_iter = 10000000
    param.display = 0
    param.clip_gradients = 10
    return param
Esempio n. 5
0
def lenet_solver_simple():
    """A simple version of LeNet's solver proto"""
    solver = SolverParameter()

    solver.train_net = 'lenet_auto_train.prototxt'
    solver.test_net.append('lenet_auto_test.prototxt')
    solver.test_iter.append(100)
    solver.test_interval = 500
    solver.base_lr = 0.01
    solver.momentum = 0.9
    solver.weight_decay = 0.0005
    solver.lr_policy = 'inv'
    solver.gamma = 0.0001
    solver.power = 0.75
    # solver.stepsize = 2500
    solver.display = 100
    solver.max_iter = 10000
    solver.snapshot = 5000
    solver.snapshot_prefix = 'SNAPSHOT_FULL_PATH'
    solver.solver_mode = SolverParameter.GPU

    with open('SOLVER_FULL_PATH', 'w') as f:  # generating prototxt
        f.write(str(solver))