def limit_cycle(self):
        """
        integrate the solution for one period, remembering each of time
        points along the way
        """

        self.ts = np.linspace(0, self.T, self.intoptions['lc_res'])

        intlc = cs.Integrator('cvodes',self.model)
        intlc.setOption("abstol"       , self.intoptions['lc_abstol'])
        intlc.setOption("reltol"       , self.intoptions['lc_reltol'])
        intlc.setOption("max_num_steps", self.intoptions['lc_maxnumsteps'])
        intlc.setOption("tf"           , self.T)

        intsim = cs.Simulator(intlc, self.ts)
        intsim.init()

        # Input Arguments
        intsim.setInput(self.y0, cs.INTEGRATOR_X0)
        intsim.setInput(self.param, cs.INTEGRATOR_P)
        intsim.evaluate()
        self.sol = intsim.output().toArray().T

        # create interpolation object
        self.lc = self.interp_sol(self.ts, self.sol.T)
    def int_odes(self, tf, y0=None, numsteps=10000, return_endpt=False, ts=0):
        """
        This function integrates the ODEs until well past the transients. 
        This uses Casadi's simulator class, C++ wrapped in swig. Inputs:
            tf          -   the final time of integration.
            numsteps    -   the number of steps in the integration is the second argument
        """
        if y0 is None: y0 = self.y0

        self.integrator = cs.Integrator('cvodes', self.model)

        #Set up the tolerances etc.
        self.integrator.setOption("abstol", self.intoptions['int_abstol'])
        self.integrator.setOption("reltol", self.intoptions['int_reltol'])
        self.integrator.setOption("max_num_steps",
                                  self.intoptions['int_maxstepcount'])
        self.integrator.setOption("tf", tf)

        #Let's integrate
        self.integrator.init()
        self.ts = np.linspace(ts, tf, numsteps, endpoint=True)
        self.simulator = cs.Simulator(self.integrator, self.ts)
        self.simulator.init()
        self.simulator.setInput(y0, cs.INTEGRATOR_X0)
        self.simulator.setInput(self.param, cs.INTEGRATOR_P)
        self.simulator.evaluate()

        sol = self.simulator.output().toArray().T

        if return_endpt == True:
            return sol[-1]
        else:
            return sol
    def phase_of_point(self, point, error=False, tol=1E-3):
        """ Finds the phase at which the distance from the point to the
        limit cycle is minimized. phi=0 corresponds to the definition of
        y0, returns the phase and the minimum distance to the limit
        cycle """

        point = np.asarray(point)

        #set up integrator so we only have to once...
        intr = cs.Integrator('cvodes',self.model)
        intr.setOption("abstol", self.intoptions['bvp_abstol'])
        intr.setOption("reltol", self.intoptions['bvp_reltol'])
        intr.setOption("tf", self.T)
        intr.setOption("max_num_steps",
                       self.intoptions['transmaxnumsteps'])
        intr.setOption("disable_internal_warnings", True)
        intr.init()
        for i in xrange(100):
            dist = cs.SX.sym("dist")
            x = self.model.inputExpr(cs.DAE_X)
            ode = self.model.outputExpr()[0]
            dist_ode = cs.sumAll(2.*(x - point)*ode)

            cat_x   = cs.vertcat([x, dist])
            cat_ode = cs.vertcat([ode, dist_ode])

            dist_model = cs.SXFunction(
                cs.daeIn(t=self.model.inputExpr(cs.DAE_T), x=cat_x,
                         p=self.model.inputExpr(cs.DAE_P)),
                cs.daeOut(ode=cat_ode))

            dist_model.setOption("name","distance model")

            dist_0 = ((self.y0 - point)**2).sum()
            if dist_0 < tol:
                # catch the case where we start at 0
                return 0.
            cat_y0 = np.hstack([self.y0, dist_0])

            roots_class = Oscillator(dist_model, self.param, cat_y0)
            roots_class.intoptions = self.intoptions
            #return roots_class
            roots_class.solve_bvp()
            roots_class.limit_cycle()
            roots_class.roots()

            phases = self._t_to_phi(roots_class.tmin[-1])
            distances = roots_class.ymin[-1]
            distance = np.min(distances)

            if distance < tol:
                phase_ind = np.argmin(distances) # for multiple minima
                return phases[phase_ind]#, roots_class

            intr.setInput(point, cs.INTEGRATOR_X0)
            intr.setInput(self.param, cs.INTEGRATOR_P)
            intr.evaluate()
            point = intr.output().toArray().flatten() #advance by one cycle

        raise RuntimeError("Point failed to converge to limit cycle")
    def average(self):
        """
        integrate the solution with quadrature to find the average
        species concentration. outputs to self.avg
        """

        ffcn_in = self.model.inputExpr()
        ode = self.model.outputExpr()
        quad = cs.vertcat([ffcn_in[cs.DAE_X], ffcn_in[cs.DAE_X]**2])

        quadmodel = cs.SXFunction(ffcn_in, cs.daeOut(ode=ode[0], quad=quad))

        qint = cs.Integrator('cvodes',quadmodel)
        qint.setOption("abstol"        , self.intoptions['lc_abstol'])
        qint.setOption("reltol"        , self.intoptions['lc_reltol'])
        qint.setOption("max_num_steps" , self.intoptions['lc_maxnumsteps'])
        qint.setOption("tf",self.T)
        qint.init()
        qint.setInput(self.y0, cs.INTEGRATOR_X0)
        qint.setInput(self.param, cs.INTEGRATOR_P)
        qint.evaluate()
        quad_out = qint.output(cs.INTEGRATOR_QF).toArray().squeeze()
        self.avg = quad_out[:self.neq]/self.T
        self.rms = np.sqrt(quad_out[self.neq:]/self.T)
        self.std = np.sqrt(self.rms**2 - self.avg**2)
Esempio n. 5
0
    def solve_ode(self):
        """ Solve the ODE using casadi's CVODES wrapper to ensure that the
        collocated dynamics match the error-controlled dynamics of the ODE """

        self.ts.sort()  # Assert ts is increasing

        f_integrator = cs.SXFunction(
            'ode',
            cs.daeIn(t=self.dxdt.inputExpr(0),
                     x=self.dxdt.inputExpr(1),
                     p=self.dxdt.inputExpr(2)),
            cs.daeOut(ode=self.dxdt.outputExpr(0)))

        integrator = cs.Integrator('int', 'cvodes', f_integrator)
        simulator = cs.Simulator('sim', integrator, self.ts)
        simulator.setInput(self.sol[0], 'x0')
        simulator.setInput(self.var.p_op, 'p')
        simulator.evaluate()
        x_sim = self.sol_sim = np.array(simulator.getOutput()).T

        err = ((self.sol - x_sim).mean(0) / (self.sol.mean(0))).mean()

        if err > 1E-3:
            warn('Collocation does not match ODE Solution: \
                {:.2%} Error'.format(err))
    def solve_bvp_scipy(self, root_method='hybr'):
        """
        Use a scipy optimize function to optimize the BVP function
        """

        # Make sure inputs are the correct format
        paramset = list(self.param)

        # Here we create and initialize the integrator SXFunction
        self.bvpint = cs.Integrator('cvodes', self.modlT)
        self.bvpint.setOption('abstol', self.intoptions['bvp_abstol'])
        self.bvpint.setOption('reltol', self.intoptions['bvp_reltol'])
        self.bvpint.setOption('tf', 1)
        self.bvpint.setOption('disable_internal_warnings', True)
        self.bvpint.setOption('fsens_err_con', True)
        self.bvpint.init()

        def bvp_minimize_function(x):
            """ Minimization objective. X = [y0,T] """
            # perhaps penalize in try/catch?
            if all(
                [self.intoptions['constraints'] == 'positive',
                 np.any(x < 0)]):
                return np.ones(len(x))
            self.bvpint.setInput(x[:-1], cs.INTEGRATOR_X0)
            self.bvpint.setInput(paramset + [x[-1]], cs.INTEGRATOR_P)
            self.bvpint.evaluate()
            out = x[:-1] - self.bvpint.output().toArray().flatten()
            out = out.tolist()

            self.modlT.setInput(x[:-1], cs.DAE_X)
            self.modlT.setInput(paramset + [x[-1]], 2)
            self.modlT.evaluate()
            out += self.modlT.output()[0].toArray()[0].tolist()
            return np.array(out)

        from scipy.optimize import root

        options = {}

        root_out = root(bvp_minimize_function,
                        np.append(self.y0, self.T),
                        tol=self.intoptions['bvp_ftol'],
                        method=root_method,
                        options=options)

        # Check solve success
        if not root_out.status:
            raise RuntimeError("bvpsolve: " + root_out.message)

        # Check output convergence
        if np.linalg.norm(root_out.qtf) > self.intoptions['bvp_ftol'] * 1E4:
            raise RuntimeError("bvpsolve: nonconvergent")

        # save output to self.y0
        self.y0 = root_out.x[:-1]
        self.T = root_out.x[-1]
Esempio n. 7
0
    def _initialize_polynomial_coefs(self):
        """ Setup radau polynomials and initialize the weight factor matricies
        """
        self.col_vars['tau_root'] = cs.collocationPoints(self.d, "radau")

        # Dimensionless time inside one control interval
        tau = cs.SX.sym("tau")

        # For all collocation points
        L = [[]]*(self.d+1)
        for j in range(self.d+1):
            # Construct Lagrange polynomials to get the polynomial basis at the
            # collocation point
            L[j] = 1
            for r in range(self.d+1):
                if r != j:
                    L[j] *= (
                        (tau - self.col_vars['tau_root'][r]) / 
                        (self.col_vars['tau_root'][j] -
                         self.col_vars['tau_root'][r]))

        self.col_vars['lfcn'] = lfcn = cs.SXFunction(
            'lfcn', [tau], [cs.vertcat(L)])

        # Evaluate the polynomial at the final time to get the coefficients of
        # the continuity equation
        # Coefficients of the continuity equation
        self.col_vars['D'] = lfcn([1.0])[0].toArray().squeeze()

        # Evaluate the time derivative of the polynomial at all collocation
        # points to get the coefficients of the continuity equation
        tfcn = lfcn.tangent()

        # Coefficients of the collocation equation
        self.col_vars['C'] = np.zeros((self.d+1, self.d+1))
        for r in range(self.d+1):
            self.col_vars['C'][:,r] = tfcn([self.col_vars['tau_root'][r]]
                                           )[0].toArray().squeeze()

        # Find weights for gaussian quadrature: approximate int_0^1 f(x) by
        # Sum(
        xtau = cs.SX.sym("xtau")

        Phi = [[]] * (self.d+1)

        for j in range(self.d+1):
            tau_f_integrator = cs.SXFunction('ode', cs.daeIn(t=tau, x=xtau),
                                             cs.daeOut(ode=L[j]))
            tau_integrator = cs.Integrator(
                "integrator", "cvodes", tau_f_integrator, {'t0':0., 'tf':1})
            Phi[j] = np.asarray(tau_integrator({'x0' : 0})['xf'])[0][0]

        self.col_vars['Phi'] = np.array(Phi)
    def solve_bvp_casadi(self):
        """
        Uses casadi's interface to sundials to solve the boundary value
        problem using a single-shooting method with automatic differen-
        tiation.
        
        Related to PCSJ code. 
        """

        self.bvpint = cs.Integrator('cvodes', self.modlT)
        self.bvpint.setOption('abstol', self.intoptions['bvp_abstol'])
        self.bvpint.setOption('reltol', self.intoptions['bvp_reltol'])
        self.bvpint.setOption('tf', 1)
        self.bvpint.setOption('disable_internal_warnings', True)
        self.bvpint.setOption('fsens_err_con', True)
        self.bvpint.init()

        # Vector of unknowns [y0, T]
        V = cs.MX.sym("V", self.neq + 1)
        y0 = V[:-1]
        T = V[-1]
        param = cs.vertcat([self.param, T])
        yf = self.bvpint.call(cs.integratorIn(x0=y0, p=param))[0]
        fout = self.modlT.call(cs.daeIn(t=T, x=y0, p=param))[0]

        # objective: continuity
        obj = (yf -
               y0)**2  # yf and y0 are the same ..i.e. 2 ends of periodic fcn
        obj.append(
            fout[0])  # y0 is a peak for state 0, i.e. fout[0] is slope state 0

        #set up the matrix we want to solve
        F = cs.MXFunction([V], [obj])
        F.init()
        guess = np.append(self.y0, self.T)
        solver = cs.ImplicitFunction('kinsol', F)
        solver.setOption('abstol', self.intoptions['bvp_ftol'])
        solver.setOption('strategy', 'linesearch')
        solver.setOption('exact_jacobian', False)
        solver.setOption('pretype', 'both')
        solver.setOption('use_preconditioner', True)
        if self.intoptions['constraints'] == 'positive':
            solver.setOption('constraints', (2, ) * (self.neq + 1))
        solver.setOption('linear_solver_type', 'dense')
        solver.init()
        solver.setInput(guess)
        solver.evaluate()

        sol = solver.output().toArray().squeeze()

        self.y0 = sol[:-1]
        self.T = sol[-1]
    def first_order_sensitivity(self):
        """
        Function to calculate the first order period sensitivity
        matricies using the direct method. See Wilkins et al. 2009. Only
        calculates initial conditions and period sensitivities.
        """

        self.check_monodromy()
        monodromy = self.monodromy

        integrator = cs.Integrator('cvodes',self.model)
        integrator.setOption("abstol", self.intoptions['sensabstol'])
        integrator.setOption("reltol", self.intoptions['sensreltol'])
        integrator.setOption("max_num_steps",
                             self.intoptions['sensmaxnumsteps'])
        integrator.setOption("sensitivity_method",
                             self.intoptions['sensmethod']);
        integrator.setOption("t0", 0)
        integrator.setOption("tf", self.T)
        integrator.setOption("fsens_err_con", 1)
        integrator.setOption("fsens_abstol", self.intoptions['sensabstol'])
        integrator.setOption("fsens_reltol", self.intoptions['sensreltol'])
        integrator.init()
        integrator.setInput(self.y0,cs.INTEGRATOR_X0)
        integrator.setInput(self.param,cs.INTEGRATOR_P)

        intdyfdp = integrator.jacobian(cs.INTEGRATOR_P, cs.INTEGRATOR_XF)
        intdyfdp.init()
        intdyfdp.setInput(self.y0,"x0")
        intdyfdp.setInput(self.param,"p")
        intdyfdp.evaluate()
        s0 = intdyfdp.output().toArray()

        self.model.init()
        self.model.setInput(self.y0,cs.DAE_X)
        self.model.setInput(self.param,cs.DAE_P)
        self.model.evaluate()
        ydot0 = self.model.output().toArray().squeeze()

        LHS = np.zeros([(self.neq + 1), (self.neq + 1)])
        LHS[:-1,:-1] = monodromy - np.eye(len(monodromy))
        LHS[-1,:-1] = self.dfdy(self.y0)[0]
        LHS[:-1,-1] = ydot0

        RHS = np.zeros([(self.neq + 1), self.np])
        RHS[:-1] = -s0
        RHS[-1] = self.dfdp(self.y0)[0]

        unk = np.linalg.solve(LHS,RHS)
        self.S0 = unk[:-1]
        self.dTdp = unk[-1]
        self.reldTdp = self.dTdp*self.param/self.T
    def findARC_whole(self, res=100, trans=3):
        """ Calculate entire sARC matrix, which will be faster than
        calcualting for each parameter """

        # Calculate necessary quantities
        if not hasattr(self, 'avg'): self.average()
        if not hasattr(self, 'sPRC'): self.find_prc(res)

        # Set up quadrature integrator
        self.sarc_int = cs.Integrator(
            'cvodes', self._create_ARC_model(numstates=self.neq))
        self.sarc_int.setOption("abstol", self.intoptions['sensabstol'])
        self.sarc_int.setOption("reltol", self.intoptions['sensreltol'])
        self.sarc_int.setOption("max_num_steps",
                                self.intoptions['sensmaxnumsteps'])
        self.sarc_int.setOption("t0", 0)
        self.sarc_int.setOption("tf", trans * self.T)
        #self.sarc_int.setOption("numeric_jacobian", True)
        self.sarc_int.init()

        self.arc_ts = np.linspace(0, self.T, res)

        amp_change = []
        for t in self.arc_ts:
            # Initialize model and sensitivity states
            x0 = np.zeros(self.neq * (self.neq + 1))
            x0[:self.neq] = self.lc(t)
            x0[self.neq:] = np.eye(self.neq).flatten()

            # Add dphi/dt from seed perturbation
            param = np.zeros(self.np + self.neq)
            param[:self.np] = self.param
            param[self.np:] = self.sPRC_interp(t)

            # Evaluate model
            self.sarc_int.setInput(x0, cs.INTEGRATOR_X0)
            self.sarc_int.setInput(param, cs.INTEGRATOR_P)
            self.sarc_int.evaluate()
            out = self.sarc_int.output(cs.INTEGRATOR_QF).toArray()
            # amp_change += [out]
            amp_change += [out * 2 * np.pi / self.T]

        #[time, state_out, state_in]
        self.sARC = np.array(amp_change)
        dfdp = np.array([self.dfdp(self.lc(t)) for t in self.arc_ts])
        self.pARC = np.array([
            self.sARC[i].dot(self._phi_to_t(dfdp[i]))
            for i in xrange(len(self.sARC))
        ])

        self.rel_pARC = (np.array(self.param) * self.pARC /
                         np.atleast_2d(self.avg).T)
Esempio n. 11
0
    def fwd_simulation(self,
                       dE_start,
                       condition,
                       detail=True,
                       reltol=1e-6,
                       abstol=1e-8):

        Tem = condition.Temperature
        time = condition.TimeGrid

        opts = {}
        opts['abstol'] = abstol
        opts['reltol'] = reltol
        opts['disable_internal_warnings'] = True
        opts['max_num_steps'] = 1e5

        P_dae = np.hstack([dE_start, Tem])

        # Partial Pressure
        Pinlet = np.zeros(self.ngas)
        for idx, spe in enumerate(self.specieslist):
            if spe.phase == 'gaseous':
                Pinlet[idx] = condition.PartialPressure[str(spe)]
        x0 = Pinlet.tolist() + [0] * (self.nsurf - 1) + [1]
        # print(x0)

        Fint = cas.Integrator('Fint', 'cvodes', self._dae_, opts)
        Fsim = cas.Simulator('Fsim', Fint, time)
        Fsim.setInput(x0, 'x0')
        Fsim.setInput(P_dae, 'p')
        Fsim.evaluate()

        # Evalu
        out = Fsim.getOutput().full()

        tor_list = {}
        for i, spe in enumerate(self.specieslist):
            if spe.phase == 'gaseous':
                nt = int(condition.Ntime / 2)
                slope, intercept, r_value, p_value, std_err = stats.linregress(
                    condition.TimeGrid[nt:], out[i, nt:])
                tor_list[spe.name] = slope
        return out, tor_list
    def check_monodromy(self):
        """
        Check the stability of the limit cycle by finding the
        eigenvalues of the monodromy matrix
        """

        integrator = cs.Integrator('cvodes', self.model)
        integrator.setOption("abstol", self.intoptions['sensabstol'])
        integrator.setOption("reltol", self.intoptions['sensreltol'])
        integrator.setOption("max_num_steps",
                             self.intoptions['int_maxstepcount'])
        integrator.setOption("sensitivity_method",
                             self.intoptions['sensmethod'])
        integrator.setOption("t0", 0)
        integrator.setOption("tf", self.T)
        integrator.setOption("fsens_err_con", 1)
        integrator.setOption("fsens_abstol", self.intoptions['sensabstol'])
        integrator.setOption("fsens_reltol", self.intoptions['sensreltol'])
        integrator.init()
        integrator.setInput(self.y0, cs.INTEGRATOR_X0)
        integrator.setInput(self.param, cs.INTEGRATOR_P)

        intdyfdy0 = integrator.jacobian(cs.INTEGRATOR_X0, cs.INTEGRATOR_XF)
        intdyfdy0.init()
        intdyfdy0.setInput(self.y0, "x0")
        intdyfdy0.setInput(self.param, "p")
        intdyfdy0.evaluate()
        monodromy = intdyfdy0.output().toArray()

        self.monodromy = monodromy

        # Calculate Floquet Multipliers, check if all (besides n_0 = 1)
        # are inside unit circle
        eigs = np.linalg.eigvals(monodromy)
        self.floquet_multipliers = np.abs(eigs)
        #self.floquet_multipliers.sort()
        idx = (np.abs(self.floquet_multipliers - 1.0)).argmin()
        f = self.floquet_multipliers.tolist()
        f.pop(idx)

        return np.all(np.array(f) < 1)
    def _findARC_seed(self, seeds, res=100, trans=3):

        # Calculate necessary quantities
        if not hasattr(self, 'avg'): self.average()
        if not hasattr(self, 'sPRC'): self.find_prc(res)

        # Set up quadrature integrator
        self.sarc_int = cs.Integrator('cvodes',self._create_ARC_model())
        self.sarc_int.setOption("abstol", self.intoptions['sensabstol'])
        self.sarc_int.setOption("reltol", self.intoptions['sensreltol'])
        self.sarc_int.setOption("max_num_steps",
                             self.intoptions['sensmaxnumsteps'])
        self.sarc_int.setOption("t0", 0)
        self.sarc_int.setOption("tf", trans*self.T)
        #self.sarc_int.setOption("numeric_jacobian", True)

        self.sarc_int.init()

        t_arc = np.linspace(0, self.yT, res)
        arc = np.array([self._sarc_single_time(t, seed) for t, seed in
                        zip(t_arc, seeds)]).squeeze()
        return t_arc, arc
Esempio n. 14
0
    def fwd_simulation(self,
                       dE_start,
                       condition,
                       detail=True,
                       reltol=1e-6,
                       abstol=1e-8):
        # reevaluate the reaction condition
        condition._calSim()
        condition._calGrid()
        time = condition.TimeGrid
        T0 = condition.T0
        beta = condition.Beta

        opts = {}
        opts['abstol'] = abstol
        opts['reltol'] = reltol
        opts['disable_internal_warnings'] = True
        opts['max_num_steps'] = 1e5

        x0 = self.init_condition(condition)
        P_dae = np.hstack([dE_start, T0, beta])
        #        print(x0)
        #        print(P_dae)
        #        print(time)
        #        opts['tf'] = 2
        #        Fint = cas.Integrator('Fint', 'cvodes', self._dae_, opts)
        #        F_sim = Fint(x0=x0, p=P_dae)

        Fint = cas.Integrator('Fint', 'cvodes', self._dae_, opts)
        Fsim = cas.Simulator('Fsim', Fint, time)
        Fsim.setInput(x0, 'x0')
        Fsim.setInput(P_dae, 'p')
        Fsim.evaluate()

        # Evaluate
        out = Fsim.getOutput().full()
        out[:self.ngas, :] *= self.pump_ratio
        return out
Esempio n. 15
0
    def eval_likeli(self, dE, conditionlist, evidence_info={}):
        reltol = evidence_info.get('reltol', 1e-12)
        abstol = evidence_info.get('abstol', 1e-12)

        err = evidence_info.get('peak_err', 10)

        opts = {}
        opts['abstol'] = abstol
        opts['reltol'] = reltol
        opts['disable_internal_warnings'] = True
        opts['max_num_steps'] = 1e5

        # Initialize simulator
        evidence = 0
        for condition in conditionlist:
            time = condition.TimeGrid
            T0 = condition.T0
            beta = condition.Beta
            x0 = self.init_condition(condition)

            P_dae = np.hstack([dE, T0, beta])

            Fint = cas.Integrator('Fint', 'cvodes', self._dae_, opts)
            Fsim = cas.Simulator('Fsim', Fint, time)
            Fsim.setInput(x0, 'x0')
            Fsim.setInput(P_dae, 'p')
            Fsim.evaluate()

            out = Fsim.getOutput().full()
            # Find the peak
            for spe, peak_exp in condition.PeakPosition.items():
                idx = get_index_species(spe, self.specieslist)
                des = out[idx, :]
                idx_peak = np.argmax(des)
                peak_sim = condition.TemGrid[idx_peak]
                dev = peak_sim - peak_exp
                evidence += (dev * dev) / err**2
        return -evidence
Esempio n. 16
0
    def solve_ode(self):
        """ Solve the ODE using casadi's CVODES wrapper to ensure that the
        collocated dynamics match the error-controlled dynamics of the ODE """

        f_integrator = cs.SXFunction(
            'ode',
            cs.daeIn(t=self.model.inputExpr(0),
                     x=self.model.inputExpr(1),
                     p=self.model.inputExpr(2)),
            cs.daeOut(ode=self.model.outputExpr(0)))

        integrator = cs.Integrator('int', 'cvodes', f_integrator)
        simulator = cs.Simulator('sim', integrator, self._tgrid)
        simulator.setInput(self._output['x_opt'][0], 'x0')
        simulator.setInput(self._output['p_opt'], 'p')
        simulator.evaluate()
        x_sim = self._output['x_sim'] = np.array(simulator.getOutput()).T

        err = ((self._output['x_opt'] - x_sim).mean(0) /
               (self._output['x_opt'].mean(0))).mean()

        if err > 1E-3:
            warn('Collocation does not match ODE Solution: \
                {:.2f}% Error'.format(100 * err))
Esempio n. 17
0
  def test_X(self):
    self.message("Extensive integrator tests")
    
    num=self.num
    tstart = SX.sym("tstart")
    tend = SX.sym("tstart")

    
    for Integrator, features, options in integrators:
      self.message(Integrator)
        
        
      def variations(p_features, din, dout, rdin, rdout, *args):
        if "ode" in p_features:
          p_features_ = copy.copy(p_features)
          p_features_[p_features.index("ode")] = "dae"
          din_ = copy.copy(din)
          dout_ = copy.copy(dout)
          rdin_ = copy.copy(rdin)
          rdout_ = copy.copy(rdout)
          z = SX.sym("x", din_["x"].shape)
          din_["z"] = z
          dout_["ode"] = z
          dout_["alg"] = ( dout["ode"] - z) * (-0.8)
          if len(rdin_)>0:
            rz = SX.sym("rx", rdin_["rx"].shape)
            rdin_["rz"] = rz
            rdin_["z"] = z
            rdout_["ode"] = rz
            rdout_["alg"] = ( rdout["ode"] - rz) * (-0.7)
            
          yield (p_features, din, dout, rdin, rdout) + tuple(args)
          yield (p_features_, din_, dout_, rdin_, rdout_) + tuple(args)
        else:
          yield (p_features, din, dout, rdin, rdout) + tuple(args)
        
      def checks():
        x0=num['q0']
        p_=num['p']
        rx0_= 0.13
        t=SX.sym("t")
        x=SX.sym("x")
        rx=SX.sym("rx")
        p=SX.sym("p")
        dp=SX.sym("dp")

        z=SX.sym("z")
        rz=SX.sym("rz")
        rp=SX.sym("rp")
        
        si = {'x0':x, 'p': p, 'rx0': rx,'rp' : rp}            
        pointA = {'x0':x0,'p': p_, 'rx0': rx0_, 'rp': 0.127}
        
        ti = (0.2,num['tend'])
        yield (["ode"],{'x':x},{'ode': 0},{},{},si,{'xf':x},pointA,ti)
        yield (["ode"],{'x':x},{'ode': 1},{},{},si,{'xf':x+(tend-tstart)},pointA,ti)
        yield (["ode"],{'x':x},{'ode': x},{},{},si,{'xf':x*exp(tend-tstart)},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode': t},{},{},si,{'xf':x+(tend**2/2-tstart**2/2)},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode': x*t},{},{},si,{'xf':x*exp(tend**2/2-tstart**2/2)},pointA,ti)
        yield (["ode"],{'x':x,'p':p},{'ode': x/p},{},{},si,{'xf':x*exp((tend-tstart)/p)},pointA,ti)
        if not(args.run_slow): return
        yield (["ode"],{'x':x},{'ode': x,'quad':0},{},{},si,{'qf':0},pointA,ti)
        yield (["ode"],{'x':x},{'ode': x,'quad':1},{},{},si,{'qf':(tend-tstart)},pointA,ti)
        yield (["ode"],{'x':x},{'ode': 0,'quad':x},{},{},si,{'qf':x*(tend-tstart)},pointA,ti)
        #yield ({'x':x},{'ode': 1,'quad':x},{'qf':(x-tstart)*(tend-tstart)+(tend**2/2-tstart**2/2)}), # bug in cvodes quad_err_con
        yield (["ode"],{'x':x},{'ode': x,'quad':x},{},{},si,{'qf':x*(exp(tend-tstart)-1)},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode': x,'quad':t},{},{},si,{'qf':(tend**2/2-tstart**2/2)},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode': x,'quad':x*t},{},{},si,{'qf':x*(exp(tend-tstart)*(tend-1)-(tstart-1))},pointA,ti)
        yield (["ode"],{'x':x,'p':p},{'ode': x,'quad':x/p},{},{},si,{'qf':x*(exp((tend-tstart))-1)/p},pointA,ti)
        yield (["ode"],{'x':x},{'ode':x},{'x':x,'rx':rx},{'ode':0},si,{'rxf': rx},pointA,ti)
        yield (["ode"],{'x':x},{'ode':x},{'x':x,'rx':rx},{'ode':1},si,{'rxf': rx+tend-tstart},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode':x},{'x':x,'rx':rx,'t':t},{'ode':t},si,{'rxf': rx+tend**2/2-tstart**2/2},pointA,ti)
        yield (["ode"],{'x':x},{'ode':x},{'x':x,'rx':rx},{'ode':rx},si,{'rxf': rx*exp(tend-tstart)},pointA,ti)
        yield (["ode"],{'x':x},{'ode':x},{'x':x,'rx':rx},{'ode':x},si,{'rxf': rx+x*(exp(tend-tstart)-1)},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode':x},{'x':x,'rx':rx,'t':t},{'ode':x*t},si,{'rxf': rx+x*(exp(tend-tstart)*(tend-1)-(tstart-1))},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode':x},{'x':x,'rx':rx,'t':t},{'ode':rx*t},si,{'rxf': rx*exp(tend**2/2-tstart**2/2)},pointA,ti)
        yield (["ode"],{'x':x},{'ode':x},{'x':x,'rx':rx},{'ode':rx, 'quad': 0},si,{'rqf': 0},pointA,ti)
        yield (["ode"],{'x':x},{'ode':x},{'x':x,'rx':rx},{'ode':rx, 'quad': 1},si,{'rqf': (tend-tstart)},pointA,ti)
        yield (["ode"],{'x':x},{'ode':x},{'x':x,'rx':rx},{'ode':rx, 'quad': rx},si,{'rqf': rx*(exp(tend-tstart)-1)},pointA,ti)
        yield (["ode"],{'x':x},{'ode':x},{'x':x,'rx':rx},{'ode':rx, 'quad': x},si,{'rqf': x*(exp(tend-tstart)-1)},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode':x},{'x':x,'rx':rx,'t':t},{'ode':rx, 'quad': t},si,{'rqf': (tend**2/2-tstart**2/2)},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode':x},{'x':x,'rx':rx,'t':t},{'ode':rx, 'quad': x*t},si,{'rqf': x*(exp(tend-tstart)*(tend-1)-(tstart-1))},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode':x},{'x':x,'rx':rx,'t':t},{'ode':rx, 'quad': rx*t},si,{'rqf': rx*(exp(tend-tstart)*(tstart+1)-(tend+1))},pointA,ti) # this one is special: integrate(t*rx*exp(tf-t),t,t0,tf)
        yield (["ode"],{'x':x,'p':p},{'ode':x},{'x':x,'rx':rx,'p':p},{'ode':rx, 'quad': p},si,{'rqf': p*(tend-tstart)},pointA,ti)
        yield (["ode"],{'x':x,'p':p},{'ode':x},{'x':x,'rx':rx,'p':p,'rp':rp},{'ode':rx, 'quad': rp},si,{'rqf': rp*(tend-tstart)},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode':x},{'x':x,'rx':rx,'t':t},{'ode':rx*t},si,{'rxf': rx*exp(tend**2/2-tstart**2/2)},pointA,ti)
        yield (["ode"],{'x':x,'t':t},{'ode':x},{'x':x,'rx':rx,'t':t},{'ode':x*t},si,{'rxf': rx+x*(exp(tend-tstart)*(tend-1)-(tstart-1))},pointA,ti)
        yield (["dae"],{'x':x,'z':z},{'ode':z,'alg': -0.8*(z-x),'quad': z},{},{},si,{'qf':x*(exp(tend-tstart)-1)},pointA,ti)
        yield (["dae"],{'x':x,'z':z},{'ode':z,'alg': -0.8*(z-x)},{'x':x,'rx':rx,'rz': rz,'z':z},{'ode':rz, 'alg': -0.7*(rz-rx), 'quad': rz},si,{'rqf': rx*(exp(tend-tstart)-1)},pointA,ti)
        yield (["dae"],{'x':x,'z':z},{'ode':z,'alg': -0.8*(z-x)},{'x':x,'rx':rx,'rz': rz,'z':z},{'ode':rz, 'alg': -0.7*(rz-rx), 'quad': z},si,{'rqf': x*(exp(tend-tstart)-1)},pointA,ti)
        
        
        A=array([1,0.1])
        p0 = 1.13

        q=SX.sym("y",2,1)
        y0=q[0]
        yc0=dy0=q[1]
        p=SX.sym("p",1,1)
        
        s1=(2*y0-log(yc0**2/p+1))/2-log(cos(arctan(yc0/sqrt(p))+sqrt(p)*(tend-tstart)))
        s2=sqrt(p)*tan(arctan(yc0/sqrt(p))+sqrt(p)*(tend-tstart))
        yield (["ode"],{'x':q,'p':p},{'ode': vertcat([q[1],p[0]+q[1]**2 ])},{},{},{'x0':q, 'p': p} ,{'xf': vertcat([s1,s2])},{'x0': A, 'p': p0},(0,0.4) )
      
      for tt in checks():
        print tt
        for p_features, din, dout, rdin, rdout, solutionin, solution, point, (tstart_, tend_) in variations(*tt):
          if p_features[0] in features:
            message = "%s: %s => %s, %s => %s, explicit (%s) tstart = %f" % (Integrator,str(din),str(dout),str(rdin),str(rdout),str(solution),tstart_)
            print message
            g = Function()
            if len(rdin)>1:
              g = SXFunction(rdaeIn(**rdin),rdaeOut(**rdout))
              g.init()
               
            f = SXFunction(daeIn(**din),daeOut(**dout))
            f.init()
            
            for k in solution.keys():
              solution[k] = substitute(solution[k],vertcat([tstart,tend]),vertcat([tstart_,tend_]))
            
            fs = SXFunction(integratorIn(**solutionin),integratorOut(**solution))
            fs.init()
            
            integrator = c.Integrator(Integrator,f,g)
            integrator.setOption(options)
            integrator.setOption("t0",tstart_)
            if integrator.hasOption("abstol"):
              integrator.setOption("abstol",1e-9)
            if integrator.hasOption("reltol"):
              integrator.setOption("reltol",1e-9)
            integrator.setOption("tf",tend_)
            if integrator.hasOption("init_xdot"):
              integrator.setOption("init_xdot",list(DMatrix(point["x0"])))
              integrator.setOption("calc_icB",True)
              integrator.setOption("augmented_options", {"init_xdot":None, "abstol":1e-9,"reltol":1e-9})
            #if "dae" in p_features and integrator.hasOption("init_z"):
            #  integrator.setOption("init_z",[0.1])
            #  integrator.setOption("augmented_options", {"init_z":GenericType(),"init_xdot":GenericType()})
            integrator.init()

#              reproduce = """
#from casadi import *
#t=SX.sym("t")
#x=SX.sym("x")
#rx=SX.sym("rx")
#p=SX.sym("p")
#dp=SX.sym("dp")

#z=SX.sym("z")
#rz=SX.sym("rz")
#rp=SX.sym("rp")
#f = SXFunction(daeIn(**{din}),daeOut(**{dout}))
#f.init()
#g = SXFunction(rdaeIn(**{rdin}),rdaeOut(**{rdout}))
#g.init()

#integrator = {intclass.__name__}(f,g)
#integrator.setOption({options})
#integrator.init()

#integrator.setInput({x0},"x0")
#if not integrator.input("p").isEmpty():
#  integrator.setInput({p_},"p")
#if not integrator.input("rx0").isEmpty():
#  integrator.setInput(0.13,"rx0")
#if not integrator.input("rp").isEmpty():
#  integrator.setInput(0.127,"rp")
#              """.format(din=din,dout=dout,rdin=rdin,rdout=rdout,x0=x0,p_=p_,intclass=Integrator,options=integrator.dictionary())
#              message+="\nTo reproduce:\n" + reproduce

                
       
            for ff in [fs,integrator]:
              for k,v in point.items():
                i = getattr(casadi,('integrator_'+k).upper())
                if not ff.input(i).isEmpty():
                  ff.setInput(v,i)
            integrator.evaluate()
            
            self.checkfunction(integrator,fs,gradient=False,hessian=False,sens_der=False,evals=False,digits=4,digits_sens=4,failmessage=message,verbose=False)
Esempio n. 18
0
  def test_jac(self):
    self.message("Test exact jacobian #536")
    # This test is not automized, but works by inspection only.
    # To activate, recompile after ucnommenting the printout lines in cvodes.c, near "Used for validating casadi#536"
    #return
    DMatrix.setPrecision(18)

    tstart = SX.sym("tstart")
    tend = SX.sym("tend")
    
    integrators = [
              ("idas",["dae","ode"],{"abstol": 1e-9,"reltol":1e-9,"fsens_err_con": True,"calc_ic":True,"calc_icB":True}),
              ("cvodes",["ode"],{"abstol": 1e-5,"reltol":1e-5,"fsens_err_con": False,"quad_err_con": False})
              ]

    def variations(p_features, din, dout, rdin, rdout, *args):
      if "ode" in p_features:
        p_features_ = copy.copy(p_features)
        p_features_[p_features.index("ode")] = "dae"
        din_ = copy.copy(din)
        dout_ = copy.copy(dout)
        rdin_ = copy.copy(rdin)
        rdout_ = copy.copy(rdout)
        z = SX.sym("x", din_["x"].shape)
        din_["z"] = z
        dout_["ode"] = z
        dout_["alg"] = ( dout["ode"] - z) * (-0.8)
        if len(rdin_)>0:
          rz = SX.sym("rx", rdin_["rx"].shape)
          rdin_["rz"] = rz
          rdin_["z"] = z
          rdout_["ode"] = rz
          rdout_["alg"] = ( rdout["ode"] - rz) * (-0.7)
          
        yield (p_features, din, dout, rdin, rdout) + tuple(args)
        yield (p_features_, din_, dout_, rdin_, rdout_) + tuple(args)
      else:
        yield (p_features, din, dout, rdin, rdout) + tuple(args)
        
    def checks(): 
      Ns = 1
      
      x  = SX.sym("x")
      rx = SX.sym("rx")
      t = SX.sym("t")

      ti = (0,0.9995)
      pointA = {'x0': 1, 'rx0': 1}
      
      si = {'x0':x, 'rx0': rx}
      
      #sol = {'rxf': 1.0/(1-tend)}
      sol = {'rxf': rx*exp(tend), 'xf': x*exp(tend)}
     
      yield (["ode"],{'x':x,'t':t},{'ode':x},{'x':x,'rx':rx,'t':t},{'ode': rx},si,sol,pointA,ti)
      
      
    refXF = refRXF = None

    for tt in checks():
      for p_features, din, dout, rdin, rdout,  solutionin, solution, point, (tstart_, tend_) in variations(*tt):
        for Integrator, features, options in integrators:
          self.message(Integrator)
          dummyIntegrator = c.Integrator(Integrator,c.SXFunction())
          if p_features[0] in features:
            g = Function()
            if len(rdin)>1:
              g = SXFunction(rdaeIn(**rdin),rdaeOut(**rdout))
              g.init()
               
            f = SXFunction(daeIn(**din),daeOut(**dout))
            f.init()
            
            for k in solution.keys():
              solution[k] = substitute(solution[k],vertcat([tstart,tend]),vertcat([tstart_,tend_]))

            fs = SXFunction(integratorIn(**solutionin),integratorOut(**solution))
            fs.init()
              
          
            def itoptions(post=""):
              yield {"iterative_solver"+post: "gmres"}
              yield {"iterative_solver"+post: "bcgstab"}
              yield {"iterative_solver"+post: "tfqmr", "use_preconditionerB": True, "linear_solverB" : "csparse"} # Bug in Sundials? Preconditioning seems to be needed
             
            def solveroptions(post=""):
              yield {"linear_solver_type" +post: "dense" }
              allowedOpts = list(dummyIntegrator.getOptionAllowed("linear_solver_type" +post))
              #allowedOpts.remove("iterative") # disabled, see #1231
              if "iterative" in allowedOpts:
                  for it in itoptions(post):
                      d = {"linear_solver_type" +post: "iterative" }
                      d.update(it)
                      yield d
              if "banded" in allowedOpts:
                  yield {"linear_solver_type" +post: "banded" }
              yield {"linear_solver_type" +post: "user_defined", "linear_solver"+post: "csparse" }
                
            for a_options in solveroptions("B"):
              for f_options in solveroptions():
                message = "f_options: %s , a_options: %s" % (str(f_options) , str(a_options))
                print message
                integrator = c.Integrator(Integrator,f,g)
                integrator.setOption("exact_jacobianB",True)
                integrator.setOption("gather_stats",True)
                #integrator.setOption("verbose",True)
                #integrator.setOption("monitor",["djacB","resB","djac","res"])
                integrator.setOption("t0",tstart_)
                integrator.setOption("tf",tend_)
                integrator.setOption(options)
                integrator.setOption(f_options)
                integrator.setOption(a_options)
                integrator.init()
                for ff in [fs,integrator]:
                  for k,v in point.items():
                    i = getattr(casadi,('integrator_'+k).upper())
                    if not ff.getInput(i).isEmpty():
                      ff.setInput(v,i)

                integrator.evaluate()
                fs.evaluate()
                print "res=",integrator.getOutput("xf")-fs.getOutput("xf"), fs.getOutput("xf")
                print "Rres=",integrator.getOutput("rxf")-fs.getOutput("rxf"), fs.getOutput("rxf")
                # self.checkarray(integrator.getOutput("rxf"),fs.getOutput("rxf"),digits=4)
                stats = integrator.getStats()
                
                print stats
                self.assertTrue(stats["nsteps"]<1500)
                self.assertTrue(stats["nstepsB"]<2500)
                self.assertTrue(stats["nlinsetups"]<100)
                self.assertTrue(stats["nlinsetupsB"]<250)
Esempio n. 19
0
  def test_lsolvers(self):
    self.message("Test different linear solvers")

    tstart = SX.sym("tstart")
    tend = SX.sym("tend")
    
    integrators = [
              ("idas",["dae","ode"],{"abstol": 1e-9,"reltol":1e-9,"fsens_err_con": True,"calc_ic":True,"calc_icB":True}),
              ("cvodes",["ode"],{"abstol": 1e-15,"reltol":1e-15,"fsens_err_con": True,"quad_err_con": False})
              ]
              
    def checks():  
      t=SX.sym("t")
      x=SX.sym("x")
      rx=SX.sym("rx")
      p=SX.sym("p")
      dp=SX.sym("dp")

      z=SX.sym("z")
      rz=SX.sym("rz")
      rp=SX.sym("rp")    
      solutionin = {'x0':x, 'p': p, 'rx0': rx,'rp' : rp}            
      pointA = {'x0':7.1,'p': 2, 'rx0': 0.13, 'rp': 0.127}
      ti = (0.2,2.3)
      yield (["dae"],{'x': x, 'z': z},{'alg': x-z, 'ode': z},{'x': x, 'z': z, 'rx': rx, 'rz': rz},{'alg': x-rz, 'ode': rz},solutionin,{'rxf': rx+x*(exp(tend-tstart)-1), 'xf':x*exp(tend-tstart)},pointA,ti)
      if not(args.run_slow): return
      yield (["dae"],{'x': x, 'z': z},{'alg': x-z, 'ode': z},{'x': x, 'z': z, 'rx': rx, 'rz': rz},{'alg': rx-rz, 'ode': rz},solutionin,{'rxf': rx*exp(tend-tstart), 'xf':x*exp(tend-tstart)},pointA,ti)
      yield (["ode"],{'x': x},{'ode': x},{'x': x,'rx': rx},{'ode': x},solutionin,{'rxf': rx+x*(exp(tend-tstart)-1), 'xf':x*exp(tend-tstart)},pointA,ti)
      yield (["ode"],{'x': x},{'ode': x},{'x': x,'rx': rx},{'ode': rx},solutionin,{'rxf': rx*exp(tend-tstart), 'xf':x*exp(tend-tstart)},pointA,ti)
      
      A=array([1,0.1])
      p0 = 1.13

      q=SX.sym("y",2,1)
      y0=q[0]
      yc0=dy0=q[1]
      p=SX.sym("p",1,1)

      s1=(2*y0-log(yc0**2/p+1))/2-log(cos(arctan(yc0/sqrt(p))+sqrt(p)*(tend-tstart)))
      s2=sqrt(p)*tan(arctan(yc0/sqrt(p))+sqrt(p)*(tend-tstart))
      yield (["ode"],{'x':q,'p':p},{'ode': vertcat([q[1],p[0]+q[1]**2 ])},{},{},{'x0':q, 'p': p} ,{'xf': vertcat([s1,s2])},{'x0': A, 'p': p0},(0,0.4) )

    for p_features, din, dout, rdin, rdout, solutionin, solution, point, (tstart_, tend_) in checks():

      for Integrator, features, options in integrators:
        self.message(Integrator)
        dummyIntegrator = c.Integrator(Integrator,SXFunction())
        if p_features[0] in features:
          g = Function()
          if len(rdin)>1:
            g = SXFunction(rdaeIn(**rdin),rdaeOut(**rdout))
            g.init()
             
          f = SXFunction(daeIn(**din),daeOut(**dout))
          f.init()
            
          for k in solution.keys():
            solution[k] = substitute(solution[k],vertcat([tstart,tend]),vertcat([tstart_,tend_]))
          
          fs = SXFunction(integratorIn(**solutionin),integratorOut(**solution))
          fs.init()
        
          def itoptions(post=""):
            yield {"iterative_solver"+post: "gmres"}
            yield {"iterative_solver"+post: "bcgstab"}
            yield {"iterative_solver"+post: "tfqmr", "use_preconditionerB": True, "linear_solverB" : "csparse"} # Bug in Sundials? Preconditioning seems to be needed
           
          def solveroptions(post=""):
            yield {"linear_solver_type" +post: "dense" }
            allowedOpts = list(dummyIntegrator.getOptionAllowed("linear_solver_type" +post))
            #allowedOpts.remove("iterative")  # disabled, see #1231
            if "iterative" in allowedOpts:
                for it in itoptions(post):
                    d = {"linear_solver_type" +post: "iterative" }
                    d.update(it)
                    yield d
            if "banded" in allowedOpts:
                yield {"linear_solver_type" +post: "banded" }
            yield {"linear_solver_type" +post: "user_defined", "linear_solver"+post: "csparse" }
              
          for a_options in solveroptions("B"):
            for f_options in solveroptions():
              message = "f_options: %s , a_options: %s" % (str(f_options) , str(a_options))
              print message
              integrator = c.Integrator(Integrator,f,g)
              integrator.setOption("exact_jacobianB",True)
              integrator.setOption("t0",tstart_)
              integrator.setOption("tf",tend_)
              integrator.setOption(options)
              integrator.setOption(f_options)
              integrator.setOption(a_options)
              integrator.init()
              
              for ff in [fs,integrator]:
                for k,v in point.items():
                  i = getattr(casadi,('integrator_'+k).upper())
                  if not ff.input(i).isEmpty():
                    ff.setInput(v,i)

              integrator.evaluate()
              
              self.checkfunction(integrator,fs,gradient=False,hessian=False,sens_der=False,evals=False,digits=4,digits_sens=4,failmessage=message,verbose=False)
Esempio n. 20
0
    def defineOCP(self,
                  ocp,
                  DT=20,
                  controlCost=0,
                  xOpt=[],
                  uOpt=[],
                  finalStateCost=1,
                  deltaUCons=[]):

        self.ocp = ocp
        ocp = self.ocp
        self.DT = DT
        self.n_k = int(self.ocp.tf / self.DT)
        self.controlCost = controlCost

        stateScaling = C.vertcat([
            ocp.variable(ocp.x[k].getName()).nominal
            for k in range(ocp.x.size())
        ])
        algStateScaling = C.vertcat([
            ocp.variable(ocp.z[k].getName()).nominal
            for k in range(ocp.z.size())
        ])
        controlScaling = C.vertcat([
            ocp.variable(ocp.u[k].getName()).nominal
            for k in range(ocp.u.size())
        ])

        xOpt = xOpt / stateScaling
        uOpt = uOpt / controlScaling
        self.xOpt = xOpt
        self.uOpt = uOpt

        self.stateScaling = C.vertcat([
            ocp.variable(ocp.x[k].getName()).nominal
            for k in range(ocp.x.size())
        ])
        self.algStateScaling = C.vertcat([
            ocp.variable(ocp.z[k].getName()).nominal
            for k in range(ocp.z.size())
        ])
        self.controlScaling = C.vertcat([
            ocp.variable(ocp.u[k].getName()).nominal
            for k in range(ocp.u.size())
        ])

        odeS = C.substitute(
            ocp.ode(ocp.x), C.vertcat([ocp.x, ocp.z, ocp.u]),
            C.vertcat([
                stateScaling * ocp.x, algStateScaling * ocp.z,
                controlScaling * ocp.u
            ])) / stateScaling
        algS = C.substitute(
            ocp.alg, C.vertcat([ocp.x, ocp.z, ocp.u]),
            C.vertcat([
                stateScaling * ocp.x, algStateScaling * ocp.z,
                controlScaling * ocp.u
            ]))
        ltermS = C.substitute(
            ocp.lterm, C.vertcat([ocp.x, ocp.z, ocp.u]),
            C.vertcat([
                stateScaling * ocp.x, algStateScaling * ocp.z,
                controlScaling * ocp.u
            ]))

        sysIn = C.daeIn(x=ocp.x, z=ocp.z, p=ocp.u, t=ocp.t)
        sysOut = C.daeOut(ode=odeS, alg=algS, quad=ltermS)
        odeF = C.SXFunction(sysIn, sysOut)
        odeF.init()

        C.Integrator.loadPlugin("idas")
        G = C.Integrator("idas", odeF)
        G.setOption("reltol", self.INTG_REL_TOL)  #for CVODES and IDAS
        G.setOption("abstol", self.INTG_ABS_TOL)  #for CVODES and IDAS
        G.setOption("max_multistep_order", 5)  #for CVODES and IDAS
        G.setOption("max_step_size", self.IDAS_MAX_STEP_SIZE)  #for IDAS only
        G.setOption("tf", self.DT)
        self.G = G

        #==============================================================================
        #        G.setOption('verbose',True)
        #        G.addMonitor('res')
        #        G.addMonitor('inputs')
        #        G.addMonitor('outputs')
        #G.addMonitor('djacB')
        #         G.addMonitor('bjacB')
        #         G.addMonitor('jtimesB')
        #         G.addMonitor('psetup')
        #         G.addMonitor('psetupB')
        #         G.addMonitor('psolveB')
        #         G.addMonitor('resB')
        #         G.addMonitor('resS')
        #         G.addMonitor('rhsQB')
        #==============================================================================
        G.init()

        self.n_u = self.ocp.u.size()
        self.n_x = self.ocp.x.size()
        self.n_v = self.n_u * self.n_k + self.n_x * self.n_k

        self.V = C.MX.sym("V", int(self.n_v), 1)
        self.U, self.X = self.splitVariables(self.V)

        uMin = C.vertcat([
            self.ocp.variable(self.ocp.u[i].getName()).min.getValue()
            for i in range(self.n_u)
        ]) / controlScaling
        uMax = C.vertcat([
            self.ocp.variable(self.ocp.u[i].getName()).max.getValue()
            for i in range(self.n_u)
        ]) / controlScaling
        UMIN = C.vertcat([uMin for k in range(self.n_k)])
        UMAX = C.vertcat([uMax for k in range(self.n_k)])

        xMin = C.vertcat([
            self.ocp.variable(self.ocp.x[i].getName()).min.getValue()
            for i in range(self.n_x)
        ]) / stateScaling
        xMax = C.vertcat([
            self.ocp.variable(self.ocp.x[i].getName()).max.getValue()
            for i in range(self.n_x)
        ]) / stateScaling
        XMIN = C.vertcat([xMin for k in range(self.n_k)])
        XMAX = C.vertcat([xMax for k in range(self.n_k)])

        if len(deltaUCons) > 0:
            addDeltaUCons = True
            deltaUCons = deltaUCons / self.controlScaling
        else:
            addDeltaUCons = False

        pathIn = C.daeIn(x=ocp.x, z=ocp.z, p=ocp.u, t=ocp.t)

        pathVarNames = [sv.getName() for sv in ocp.beq(ocp.path)]
        pathScaling = C.vertcat([ocp.nominal(pv) for pv in pathVarNames])

        pathS = C.substitute(
            ocp.beq(ocp.beq(ocp.path)), C.vertcat([ocp.x, ocp.z, ocp.u]),
            C.vertcat([
                stateScaling * ocp.x, algStateScaling * ocp.z,
                controlScaling * ocp.u
            ])) / pathScaling
        pathConstraints = C.SXFunction(pathIn, [pathS])

        pathMax = C.vertcat([
            ocp.variable(pathVarNames[i]).max.getValue()
            for i in range(ocp.path.size())
        ]) / pathScaling
        pathMin = C.vertcat([
            ocp.variable(pathVarNames[i]).min.getValue()
            for i in range(ocp.path.size())
        ]) / pathScaling
        pathConstraints.setOption("name", "PATH")
        pathConstraints.init()

        pathConstraints.setInput(xOpt, 'x')
        pathConstraints.setInput([], 'z')
        pathConstraints.setInput(uOpt, 'p')
        pathConstraints.setInput(0, 't')
        pathConstraints.evaluate()
        pathOpt = pathConstraints.getOutput()

        optimalValues = {}

        print 'min <= (name,optimal,nominal) <= max'
        for i in range(self.n_x):
            print ocp.variable(
                ocp.x[i].getName()).min.getValue(), ' <= (', ocp.x[i].getName(
                ), ',', xOpt[i] * stateScaling[i], ',', stateScaling[
                    i], ') <= ', ocp.variable(
                        ocp.x[i].getName()).max.getValue()
            optimalValues[ocp.x[i].getName()] = xOpt[i] * stateScaling[i]

        for i in range(self.n_u):
            print ocp.variable(
                ocp.u[i].getName()).min.getValue(), ' <= (', ocp.u[i].getName(
                ), ',', uOpt[i] * controlScaling[i], ',', controlScaling[
                    i], ')  <= ', ocp.variable(
                        ocp.u[i].getName()).max.getValue()
            if addDeltaUCons:
                print -deltaUCons[i] * controlScaling[i], ' <= (Delta(', ocp.u[
                    i].getName(), ')/DTMPC,', 0, ',', controlScaling[
                        i], ')  <= ', deltaUCons[i] * controlScaling[i]

            optimalValues[ocp.u[i].getName()] = uOpt[i] * controlScaling[i]

        for i in range(len(pathVarNames)):
            print ocp.variable(pathVarNames[i]).min.getValue(
            ), ' <= (', pathVarNames[i], ',', pathOpt[i] * pathScaling[
                i], ',', pathScaling[i], ') <= ', ocp.variable(
                    pathVarNames[i]).max.getValue()
            optimalValues[pathVarNames[i]] = pathOpt[i] * pathScaling[i]

        plotTags = [ocp.x[i].getName() for i in range(ocp.x.size())]
        plotTags = plotTags + [ocp.u[i].getName() for i in range(ocp.u.size())]
        plotTags = plotTags + [sv.getName() for sv in ocp.beq(ocp.path)]

        self.plotTags = plotTags
        self.optimalValues = optimalValues

        # Constraint functions
        g = []
        g_min = []
        g_max = []

        self.XU0 = C.MX.sym("XU0", self.n_x + self.n_u, 1)
        Z = self.XU0[0:self.n_x]
        U0 = self.XU0[self.n_x:self.n_x + self.n_u]

        # Build up a graph of integrator calls
        obj = 0
        zf = C.vertcat([
            ocp.variable(ocp.z[k].getName()).start for k in range(ocp.z.size())
        ]) / algStateScaling
        for k in range(self.n_k):
            Z, QF, zf = C.integratorOut(
                G(C.integratorIn(x0=Z, p=self.U[k], z0=zf)), "xf", "qf", "zf")

            errU = self.U[k] - U0
            obj = obj + QF + C.mul(C.mul(errU.T, controlCost), errU)
            U0 = self.U[k]

            #          include MS constraints!
            g.append(Z - self.X[k])
            g_min.append(NP.zeros(self.n_x))
            g_max.append(NP.zeros(self.n_x))
            Z = self.X[k]

            [pathCons] = pathConstraints.call(
                C.daeIn(t=[], x=self.X[k], z=zf, p=self.U[k]))
            g.append(pathCons)  ## be carefull on giving all inputs
            g_max.append(pathMax)
            g_min.append(pathMin)
            if addDeltaUCons:
                g.append(errU)
                g_max.append(deltaUCons * DT)
                g_min.append(-deltaUCons * DT)

        #errU = (self.U[-1]-uOpt)
        #errX = self.X[-1]-xOpt
        #obj = obj + finalStateCost*C.mul((errX).trans(),(errX))+C.mul(C.mul(errU.T,controlCost),errU)
        self.obj = obj

        ### Constrains
        g = C.vertcat(g)

        nlp = C.MXFunction(C.nlpIn(x=self.V, p=self.XU0), C.nlpOut(f=obj, g=g))
        nlp.init()
        self.odeF = odeF
        self.nlp = nlp

        solver = C.NlpSolver('ipopt', nlp)

        # remove the comment to implement the hessian
        solver.setOption('hessian_approximation',
                         'limited-memory')  # comment for exact hessian
        solver.setOption('print_user_options', 'no')

        solver.setOption("tol", self.IPOPT_tol)  # IPOPT tolerance
        solver.setOption("dual_inf_tol",
                         self.IPOPT_dual_inf_tol)  #  dual infeasibility
        solver.setOption("constr_viol_tol",
                         self.IPOPT_constr_viol_tol)  # primal infeasibility
        solver.setOption("compl_inf_tol",
                         self.IPOPT_compl_inf_tol)  # complementarity
        #        solver.setOption("acceptable_tol",0.01)
        #        solver.setOption("acceptable_obj_change_tol",1e-6)
        #        solver.setOption("acceptable_constr_viol_tol",1e-6)
        solver.setOption("max_iter",
                         self.IPOPT_max_iter)  # IPOPT maximum iterations
        solver.setOption("print_level", self.IPOPT_print_level)
        solver.setOption("max_cpu_time",
                         self.IPOPT_max_cpu_time)  # IPOPT maximum iterations

        solver.init()

        ### Variable Bounds and initial guess
        solver.setInput(C.vertcat([UMIN, XMIN]), 'lbx')  # u_L
        solver.setInput(C.vertcat([UMAX, XMAX]), 'ubx')  # u_U
        solver.setInput(C.vertcat(g_min), 'lbg')  # g_L
        solver.setInput(C.vertcat(g_max), 'ubg')  # g_U

        self.solver = solver

        u0N = C.vertcat([
            self.ocp.variable(self.ocp.u[i].getName()).initialGuess.getValue()
            for i in range(self.n_u)
        ]) / controlScaling
        x0N = C.vertcat([
            self.ocp.variable(self.ocp.x[i].getName()).initialGuess.getValue()
            for i in range(self.n_x)
        ]) / stateScaling

        USOL, XSOL = self.forwardSimulation(x0N, u0N)

        self.USOL = USOL
        self.XSOL = XSOL
Esempio n. 21
0
    def plotNLP(self, x0, DTplot=10, additionalplottags=None):

        plotH = []
        plotAdd = []
        plotT = []
        plotTags = self.plotTags

        ocp = self.ocp
        algStateScaling = self.algStateScaling
        controlScaling = self.controlScaling
        stateScaling = self.stateScaling
        DT = self.DT
        Z = x0 / self.stateScaling
        odeF = self.odeF
        xOpt = self.xOpt
        uOpt = self.uOpt

        C.Integrator.loadPlugin("idas")
        G = C.Integrator("idas", odeF)
        G.setOption("reltol", self.INTG_REL_TOL)  #for CVODES and IDAS
        G.setOption("abstol", self.INTG_ABS_TOL)  #for CVODES and IDAS
        G.setOption("max_multistep_order", 5)  #for CVODES and IDAS
        G.setOption("max_step_size", self.IDAS_MAX_STEP_SIZE)  #for IDAS only
        G.setOption("tf", DTplot)
        G.init()

        pathIn = C.daeIn(x=ocp.x, z=ocp.z, p=ocp.u, t=ocp.t)

        if additionalplottags is None:
            Config = ConfigParser.ConfigParser()
            Config.read('config.ini')
            additionalplottags = Config.get('MultipleShooting',
                                            'additionalplottags')
            additionalplottags = additionalplottags.split(',')

        self.additionalplottags = additionalplottags

        addTagScale = C.vertcat([ocp.nominal(pv) for pv in additionalplottags])
        tagsFsx = C.substitute(
            C.vertcat([ocp.beq(sv) for sv in additionalplottags]),
            C.vertcat([ocp.x, ocp.z, ocp.u]),
            C.vertcat([
                stateScaling * ocp.x, algStateScaling * ocp.z,
                controlScaling * ocp.u
            ]))
        tagsF = C.SXFunction(pathIn, [tagsFsx])
        tagsF.init()
        tagsF.setInput(xOpt, 'x')
        tagsF.setInput([], 'z')
        tagsF.setInput(uOpt, 'p')
        tagsF.setInput(0, 't')
        tagsF.evaluate()
        addTagsOpt = tagsF.getOutput()

        for i in range(len(additionalplottags)):
            self.optimalValues[additionalplottags[i]] = addTagsOpt[i]

        sxPlotTags = C.vertcat([ocp.beq(tag) for tag in plotTags])
        pathS = C.substitute(
            sxPlotTags, C.vertcat([ocp.x, ocp.z, ocp.u]),
            C.vertcat([
                stateScaling * ocp.x, algStateScaling * ocp.z,
                controlScaling * ocp.u
            ]))
        pathF = C.SXFunction(pathIn, [pathS, tagsFsx])
        pathF.init()

        nPlot = NP.int(NP.round(self.DT / DTplot))
        zf = C.vertcat([
            ocp.variable(ocp.z[k].getName()).start for k in range(ocp.z.size())
        ]) / algStateScaling
        for k in range(self.n_k):
            try:
                for jp in range(nPlot):
                    #Z,QF,zf = C.integratorOut(G(C.integratorIn(x0=Z,p=self.USOL[k],z0=zf)),"xf","qf","zf")
                    G.setInput(Z, 'x0')
                    G.setInput(self.USOL[k], 'p')
                    G.evaluate()
                    Z = G.getOutput('xf')
                    QF = G.getOutput('qf')
                    zf = G.getOutput('zf')
                    pathF.setInput(Z, 'x')
                    pathF.setInput(zf, 'z')
                    pathF.setInput(self.USOL[k], 'p')
                    t = k * DT + jp * DTplot
                    pathF.setInput(t, 't')
                    pathF.evaluate()
                    p = pathF.getOutput(0)
                    pAdd = pathF.getOutput(1)
                    plotH.append(p)
                    plotAdd.append(pAdd)
                    plotT.append(t)

                Z = self.XSOL[k]
            except:
                print 'something bad happened', sys.exc_info()[0]
                break

        plotDic = {}
        plotDic['t'] = plotT
        for si in range(len(plotTags)):
            plotDic[plotTags[si]] = [i[si] for i in plotH]
        for si in range(len(additionalplottags)):
            plotDic[additionalplottags[si]] = [i[si] for i in plotAdd]

        self.plotDic = plotDic
Esempio n. 22
0
File: cstr.py Progetto: thj2009/AbCD
    def fwd_simulation(self,
                       dE_start,
                       condition,
                       detail=True,
                       reltol=1e-8,
                       abstol=1e-10,
                       DRX=False,
                       drc_opt={}):

        TotalPressure = condition.TotalPressure
        TotalFlow = condition.TotalFlow
        Tem = condition.Temperature
        tf = condition.SimulationTime

        opts = {}
        opts['tf'] = tf  # Simulation time
        opts['abstol'] = abstol
        opts['reltol'] = reltol
        opts['disable_internal_warnings'] = True
        opts['max_num_steps'] = 1e8

        if py == 2:
            Fint = cas.Integrator('Fint', 'cvodes', self._dae_, opts)
        elif py == 3:
            Fint = cas.integrator('Fint', 'cvodes', self._dae_, opts)

        if condition.InitCoverage == {}:
            x0 = [0] * (self.nspe - 1) + [1]
        else:
            # Construct Coverage
            x0 = [0] * (self.nspe - 1) + [1]
            for spe, cov in condition.InitCoverage.items():
                idx = get_index_species(spe, self.specieslist)
                x0[idx - self.ngas] = cov
                x0[-1] -= cov
        # Partial Pressure
        Pinlet = np.zeros(self.ngas)
        for idx, spe in enumerate(self.specieslist):
            if spe.phase == 'gaseous':
                Pinlet[idx] = condition.PartialPressure[str(spe)] if str(
                    spe) in condition.PartialPressure.keys() else 0
        P_dae = np.hstack([dE_start, Pinlet, Tem, TotalFlow])
        F_sim = Fint(x0=x0, p=P_dae)
        tor = {}
        for idx, spe in enumerate(self.specieslist):
            if spe.phase == 'gaseous':
                tor[str(spe)] = float(F_sim['xf'][idx] -
                                      Pinlet[idx] / TotalPressure * TotalFlow)

        # Detailed Reaction network data
        # Evaluate partial pressure and surface coverage
        self.pressure_value = list(
            (F_sim['xf'][:self.ngas] / TotalFlow * TotalPressure).full().T[0])
        self.coverage_value = list(F_sim['xf'][self.ngas:].full().T[0])

        # Evaluate Reaction Rate automatically save to Rate attribute
        x = self._x
        p = self._p
        if py == 2:
            rate_fxn = cas.SXFunction('rate_fxn', [x, p],
                                      [self._rate, self._rfor, self._rrev])
            rate_fxn.setInput(F_sim['xf'], 'i0')
            rate_fxn.setInput(P_dae, 'i1')
            rate_fxn.evaluate()

            self.rate_value = {}
            self.rate_value['rnet'] = rate_fxn.getOutput(
                'o0').full().T[0].tolist()
            self.rate_value['rfor'] = rate_fxn.getOutput(
                'o1').full().T[0].tolist()
            self.rate_value['rrev'] = rate_fxn.getOutput(
                'o2').full().T[0].tolist()

            # Evaluate Reaction Energy
            ene_fxn = cas.SXFunction('ene_fxn', [x, p], [
                self._reaction_energy_expression['activation'],
                self._reaction_energy_expression['enthalpy']
            ])
            ene_fxn.setInput(F_sim['xf'], 'i0')
            ene_fxn.setInput(P_dae, 'i1')
            ene_fxn.evaluate()
            self.energy_value = {}
            self.energy_value['activation'] = list(
                ene_fxn.getOutput('o0').full().T[0])
            self.energy_value['enthalpy'] = list(
                ene_fxn.getOutput('o1').full().T[0])

            # Evaluate Equilibrium Constant and Rate Constant
            k_fxn = cas.SXFunction('k_fxn', [x, p],
                                   [self._Keq, self._Qeq, self._kf, self._kr])
            k_fxn.setInput(F_sim['xf'], 'i0')
            k_fxn.setInput(P_dae, 'i1')
            k_fxn.evaluate()
            self.equil_rate_const_value = {}
            self.equil_rate_const_value['Keq'] = list(
                k_fxn.getOutput('o0').full().T[0])
            self.equil_rate_const_value['Qeq'] = list(
                k_fxn.getOutput('o1').full().T[0])
            self.equil_rate_const_value['kf'] = list(
                k_fxn.getOutput('o2').full().T[0])
            self.equil_rate_const_value['kr'] = list(
                k_fxn.getOutput('o3').full().T[0])

        elif py == 3:
            rate_fxn = cas.Function('rate_fxn', [x, p],
                                    [self._rate, self._rfor, self._rrev])
            outs = rate_fxn(F_sim['xf'], P_dae)
            self.rate_value = {}
            self.rate_value['rnet'] = outs[0].full().T[0].tolist()
            self.rate_value['rfor'] = outs[1].full().T[0].tolist()
            self.rate_value['rrev'] = outs[2].full().T[0].tolist()
            # Evaluate Reaction Energy
            ene_fxn = cas.Function('ene_fxn', [x, p], [
                self._reaction_energy_expression['activation'],
                self._reaction_energy_expression['enthalpy']
            ])
            outs = ene_fxn(F_sim['xf'], P_dae)
            self.energy_value = {}
            self.energy_value['activation'] = list(outs[0].full().T[0])
            self.energy_value['enthalpy'] = list(outs[1].full().T[0])
            # Evaluate Equilibrium Constant and Rate Constant
            k_fxn = cas.Function('k_fxn', [x, p],
                                 [self._Keq, self._Qeq, self._kf, self._kr])
            outs = k_fxn(F_sim['xf'], P_dae)
            self.equil_rate_const_value = {}
            self.equil_rate_const_value['Keq'] = list(outs[0].full().T[0])
            self.equil_rate_const_value['Qeq'] = list(outs[1].full().T[0])
            self.equil_rate_const_value['kf'] = list(outs[2].full().T[0])
            self.equil_rate_const_value['kr'] = list(outs[3].full().T[0])

        xrc, xtrc = [], []
        # TODO: degree of rate control
        if DRX:
            delG = drc_opt.get('delG', 1)
            ref_species = drc_opt.get('ref', 'H2(g)')
            numer = drc_opt.get('numer', 'fwd')
            tor0 = tor[ref_species]
            if numer == 'ad':
                opts = fwd_sensitivity_option(tf=tf, reltol=1e-8, abstol=1e-16)
                Fint = cas.Integrator('Fint', 'cvodes', self._dae_, opts)
                Pnlp = self._Pnlp
                P_dae = cas.vertcat([Pnlp, Pinlet, Tem, TotalFlow])
                F_sim = Fint(x0=x0, p=P_dae)

                ii = [
                    ii for ii, spe in enumerate(self.specieslist)
                    if str(spe) == ref_species
                ][0]
                tor_ad = F_sim['xf'][
                    ii] - Pinlet[ii] / TotalPressure * TotalFlow

                # define the jacobian and MX function
                jac = cas.jacobian(tor_ad, Pnlp)
                # evaluate the jacobian
                fjac = cas.MXFunction('fjac', [Pnlp], [jac])
                xrc = fjac([np.copy(dE_start)])[0]
                xrc = xrc / tor0 * (_const.Rg * Tem) / (-1000)
                xrc = xrc.full()[0].tolist()[:len(self.dEa_index)]

            for idx, j in enumerate(self.dEa_index):
                dP = np.copy(dE_start)
                dP[idx] += delG
                # Partial Pressure
                P_dae = np.hstack([dP, Pinlet, Tem, TotalFlow])
                F_sim = Fint(x0=x0, p=P_dae)

                for ii, spe in enumerate(self.specieslist):
                    if str(spe) == ref_species:
                        tor_p = float(F_sim['xf'][ii] -
                                      Pinlet[ii] / TotalPressure * TotalFlow)

                if numer == 'cent':
                    dP = np.copy(dE_start)
                    dP[idx] -= delG
                    # Partial Pressure
                    P_dae = np.hstack([dP, Pinlet, Tem, TotalFlow])
                    F_sim = Fint(x0=x0, p=P_dae)

                    for ii, spe in enumerate(self.specieslist):
                        if str(spe) == ref_species:
                            tor_n = float(F_sim['xf'][ii] - Pinlet[ii] /
                                          TotalPressure * TotalFlow)

                if numer == 'fwd':
                    xrc.append((tor_p - tor0) / tor0 / (-delG * 1000 /
                                                        (_const.Rg * Tem)))
                    # xrc.append((np.log(np.abs(tor_p)) - np.log(np.abs(tor0)))/(-delG * 1000 /(_const.Rg * Tem)))
                if numer == 'cent':
                    xrc.append((tor_p - tor_n) / tor0 / (-2 * delG * 1000 /
                                                         (_const.Rg * Tem)))
                    # xrc.append((np.log(np.abs(tor_p)) - np.log(np.abs(tor_n)))/(-2 * delG * 1000 /(_const.Rg * Tem)))

            # XTRC
            for idx, j in enumerate(self.dBE_index):
                spe = self.reactionlist[idx]
                dP = np.copy(dE_start)
                deltaE = np.zeros(self.nspe)
                deltaE[j] += delG
                # propagate through stoichiomatric
                deltaEa = self.stoimat.dot(deltaE)

                # dP[:len(self.dEa_index)] -= deltaEa
                dP[len(self.dEa_index):] += deltaE[self.dBE_index]

                # Partial Pressure
                P_dae = np.hstack([dP, Pinlet, Tem, TotalFlow])
                F_sim = Fint(x0=x0, p=P_dae)
                for ii, spe in enumerate(self.specieslist):
                    if str(spe) == ref_species:
                        tor_p = float(F_sim['xf'][ii] -
                                      Pinlet[ii] / TotalPressure * TotalFlow)

                if numer == 'fwd':
                    xtrc.append((tor_p - tor0) / tor0 / (-delG * 1000 /
                                                         (_const.Rg * Tem)))
                    # xrc.append((np.log(np.abs(tor_p)) - np.log(np.abs(tor0)))/(-delG * 1000 /(_const.Rg * Tem)))

                if numer == 'cent':
                    dP = np.copy(dE_start)
                    deltaE = np.zeros(self.nspe)
                    deltaE[j] -= delG
                    # propagate through stoichiomatric
                    deltaEa = self.stoimat.dot(deltaE)

                    # dP[:len(self.dEa_index)] -= deltaEa
                    dP[len(self.dEa_index):] += deltaE[self.dBE_index]

                    # Partial Pressure
                    P_dae = np.hstack([dP, Pinlet, Tem, TotalFlow])
                    F_sim = Fint(x0=x0, p=P_dae)
                    for ii, spe in enumerate(self.specieslist):
                        if str(spe) == ref_species:
                            tor_n = float(F_sim['xf'][ii] - Pinlet[ii] /
                                          TotalPressure * TotalFlow)
                    xtrc.append((tor_p - tor_n) / tor0 / (-2 * delG * 1000 /
                                                          (_const.Rg * Tem)))

        # RESULT
        result = {}
        result['pressure'] = self.pressure_value
        result['coverage'] = self.coverage_value
        result['rate'] = self.rate_value
        result['energy'] = self.energy_value
        result['equil_rate'] = self.equil_rate_const_value
        result['xrc'] = xrc
        result['xtrc'] = xtrc

        self.xrc = xrc
        return tor, result
Esempio n. 23
0
    def init(self, ocp, DT, measuremntsList):

        measurementScaling = C.vertcat(
            [ocp.variable(k).nominal for k in measuremntsList])
        stateScaling = C.vertcat([
            ocp.variable(ocp.x[k].getName()).nominal
            for k in range(ocp.x.size())
        ])
        algStateScaling = C.vertcat([
            ocp.variable(ocp.z[k].getName()).nominal
            for k in range(ocp.z.size())
        ])
        controlScaling = C.vertcat([
            ocp.variable(ocp.u[k].getName()).nominal
            for k in range(ocp.u.size())
        ])

        odeS = C.substitute(
            ocp.ode(ocp.x), C.vertcat([ocp.x, ocp.z, ocp.u]),
            C.vertcat([
                stateScaling * ocp.x, algStateScaling * ocp.z,
                controlScaling * ocp.u
            ])) / stateScaling
        algS = C.substitute(
            ocp.alg, C.vertcat([ocp.x, ocp.z, ocp.u]),
            C.vertcat([
                stateScaling * ocp.x, algStateScaling * ocp.z,
                controlScaling * ocp.u
            ]))

        sysIn = C.daeIn(x=ocp.x, z=ocp.z, p=ocp.u, t=ocp.t)
        sysOut = C.daeOut(ode=odeS, alg=algS)
        odeF = C.SXFunction(sysIn, sysOut)
        odeF.init()

        C.Integrator.loadPlugin("idas")
        G = C.Integrator("idas", odeF)
        G.setOption("reltol", 1e-8)  #for IDAS
        G.setOption("abstol", 1e-8)  #for IDAS
        G.setOption("max_multistep_order", 5)  #for IDAS
        G.setOption("tf", DT)
        G.init()

        mSX = C.vertcat([
            ocp.variable(measuremntsList[k]).beq
            for k in range(len(measuremntsList))
        ])
        mSX = C.substitute(
            mSX, C.vertcat([ocp.x, ocp.z, ocp.u]),
            C.vertcat([
                stateScaling * ocp.x, algStateScaling * ocp.z,
                controlScaling * ocp.u
            ])) / measurementScaling
        mSXF = C.SXFunction(sysIn, [mSX])
        mSXF.init()

        self.measurementScaling = measurementScaling
        self.stateScaling = stateScaling
        self.algStateScaling = algStateScaling
        self.controlScaling = controlScaling

        self.ocp = ocp
        self.DT = DT
        self.measurmentList = measuremntsList
        self.mSXF = mSXF
        self.G = G

        self.z0 = C.vertcat([
            ocp.variable(ocp.z[k].getName()).start for k in range(ocp.z.size())
        ]) / algStateScaling
        self.x0 = C.vertcat([
            ocp.variable(ocp.x[k].getName()).initialGuess.getValue()
            for k in range(ocp.x.size())
        ]) / stateScaling
    def find_prc(self, res=100, num_cycles=20):
        """ Function to calculate the phase response curve with
        specified resolution """

        # Make sure the lc object exists
        if not hasattr(self, 'lc'): self.limit_cycle()

        # Get a state that is not at a local max/min (0 should be at
        # max)
        state_ind = 1
        while np.abs(self.dydt(self.y0)[state_ind]) < 1E-5: state_ind += 1

        integrator = cs.Integrator('cvodes',self.model)
        integrator.setOption("abstol", self.intoptions['sensabstol'])
        integrator.setOption("reltol", self.intoptions['sensreltol'])
        integrator.setOption("max_num_steps",
                             self.intoptions['sensmaxnumsteps'])
        integrator.setOption("sensitivity_method",
                             self.intoptions['sensmethod']);
        integrator.setOption("t0", 0)
        integrator.setOption("tf", num_cycles*self.T)
        #integrator.setOption("numeric_jacobian", True)
        integrator.setOption("fsens_err_con", 1)
        integrator.setOption("fsens_abstol", self.intoptions['sensabstol'])
        integrator.setOption("fsens_reltol", self.intoptions['sensreltol'])
        integrator.init()
        seed = np.zeros(self.neq)
        seed[state_ind] = 1.
        integrator.setInput(self.y0, cs.INTEGRATOR_X0)
        integrator.setInput(self.param, cs.INTEGRATOR_P)
        #adjseed = (seed, cs.INTEGRATOR_XF)
        integrator.evaluate()#0, 1)

        monodromy = integrator.jacobian(cs.INTEGRATOR_X0,cs.INTEGRATOR_XF)
        monodromy.init()
        monodromy.setInput(self.y0,"x0")
        monodromy.setInput(self.param,"p")
        monodromy.evaluate()
        # initial state is Kcross(T,T) = I
        adjsens = monodromy.getOutput().toArray().T.dot(seed)

        from scipy.integrate import odeint
        def adj_func(y, t):
            """ t will increase, trace limit cycle backwards through -t. y
            is the vector of adjoint sensitivities """
            jac = self.dfdy(self.lc((-t)%self.T))
            return y.dot(jac)

        seed = adjsens
        self.prc_ts = np.linspace(0, self.T, res)
        P = odeint(adj_func, seed, self.prc_ts)[::-1] # Adjoint matrix at t

        self.sPRC = self._t_to_phi(P/self.dydt(self.y0)[state_ind])

        dfdp = np.array([self.dfdp(self.lc(t)) for t in self.prc_ts])
        # Must rescale f to \hat{f}, inverse of rescaling t
        self.pPRC = self._t_to_phi(
                        np.array([self.sPRC[i].dot(self._phi_to_t(dfdp[i]))
                              for i in xrange(len(self.sPRC))])
                                  )
        self.rel_pPRC = self.pPRC*np.array(self.param)

        # Create interpolation object for the state phase response curve
        self.sPRC_interp = self.interp_sol(self.prc_ts, self.sPRC.T) #phi units
        self.pPRC_interp = self.interp_sol(self.prc_ts, self.pPRC.T) #phi units
Esempio n. 25
0
File: cstr.py Progetto: thj2009/AbCD
    def evidence_construct(self,
                           conditionlist,
                           evidence_info,
                           sensitivity=True):
        # simulation option
        reltol = evidence_info.get('reltol', 1e-6)
        abstol = evidence_info.get('abstol', 1e-10)
        # error value
        err_type = evidence_info['type']
        err = evidence_info['err']
        lowSurf = evidence_info.get('lowSurf', 1e4)
        lowSurf_thres = evidence_info.get('lowSurf_thres', 1e-5)
        cov_err = evidence_info.get('cov_err', 0.05)

        # Initialize simulator
        Pnlp = self._Pnlp
        if sensitivity:
            # opts = fwd_sensitivity_option(reltol=reltol, adjtol=adjtol, fwdtol=fwdtol)
            opts = fwd_sensitivity_option()
        else:
            opts = fwd_NoSensitivity_option(reltol=reltol, abstol=abstol)
        print(opts)
        Fint = cas.Integrator('Fint', 'cvodes', self._dae_, opts)
        evidence = 0
        for condition in conditionlist:
            TotalPressure = condition.TotalPressure
            TotalFlow = condition.TotalFlow
            Tem = condition.Temperature

            if condition.InitCoverage == {}:
                x0 = [0] * (self.nspe - 1) + [1]
            else:
                # Construct Coverage
                x0 = [0] * (self.nspe - 1) + [1]
                for spe, cov in condition.InitCoverage.items():
                    idx = get_index_species(spe, self.specieslist)
                    x0[idx - self.ngas] = cov
                    x0[-1] -= cov
            # construct initial partial pressure
            Pinlet = np.zeros(self.ngas)
            for idx, spe in enumerate(self.specieslist):
                if spe.phase == 'gaseous':
                    Pinlet[idx] = condition.PartialPressure[str(spe)] if str(
                        spe) in condition.PartialPressure.keys() else 0
            # run simulation
            P_dae = cas.vertcat([Pnlp, Pinlet, Tem, TotalFlow])
            F_sim = Fint(x0=x0, p=P_dae)
            for idx, spe in enumerate(self.specieslist):
                if spe.phase == 'gaseous':
                    # construct evidence with turnover frequency
                    tor = F_sim['xf'][
                        idx] - Pinlet[idx] / TotalPressure * TotalFlow
                    if str(spe) in condition.TurnOverFrequency.keys():
                        exp_tor = condition.TurnOverFrequency[str(spe)]
                        if err_type == 'abs' or abs(exp_tor) <= lowSurf_thres:
                            dev = tor - exp_tor
                        elif err_type == 'rel':
                            dev = 1 - tor / exp_tor
                        elif err_type == 'log':
                            dev = cas.log(tor / exp_tor)
                        else:
                            pass
                        # if abs(exp_tor) <= lowSurf_thres:
                        # evidence += (dev * dev) * lowSurf
                        # else:
                        evidence += (dev * dev) / err**2
                # if spe.phase == 'surface':
                # cov = F_sim['xf'][idx]
                # if str(spe) in condition.Coverage.keys():
                # exp_cov = condition.Coverage[str(spe)]
                # dev = cas.log(cov / exp_cov)
                # evidence += (dev * dev) / cov_err**2
        self._evidence_ = evidence
        return evidence
Esempio n. 26
0
    def run_simulation(self, \
        x0 = None, tsim = None, usim = None, psim = None, method = "rk"):
        r'''
        :param x0: initial value for the states
                   :math:`x_0 \in \mathbb{R}^{n_x}`
        :type x0: list, numpy,ndarray, casadi.DMatrix

        :param tsim: optional, switching time points for the controls
                    :math:`t_{sim} \in \mathbb{R}^{L}` to be used for the
                    simulation
        :type tsim: list, numpy,ndarray, casadi.DMatrix        

        :param usim: optional, control values 
                     :math:`u_{sim} \in \mathbb{R}^{n_u \times L}`
                     to be used for the simulation
        :type usim: list, numpy,ndarray, casadi.DMatrix   

        :param psim: optional, parameter set 
                     :math:`p_{sim} \in \mathbb{R}^{n_p}`
                     to be used for the simulation
        :type psim: list, numpy,ndarray, casadi.DMatrix 

        :param method: optional, CasADi integrator to be used for the
                       simulation
        :type method: str

        This function performs a simulation of the system for a given
        parameter set :math:`p_{sim}`, starting from a user-provided initial
        value for the states :math:`x_0`. If the argument ``psim`` is not
        specified, the estimated parameter set :math:`\hat{p}` is used.
        For this, a parameter
        estimation using :func:`run_parameter_estimation()` has to be
        done beforehand, of course.

        By default, the switching time points for
        the controls :math:`t_u` and the corresponding controls 
        :math:`u_N` will be used for simulation. If desired, other time points
        :math:`t_{sim}` and corresponding controls :math:`u_{sim}`
        can be passed to the function.

        For the moment, the function can only be used for systems of type
        :class:`pecas.systems.ExplODE`.

        '''

        intro.pecas_intro()
        print('\n' + 27 * '-' + \
            ' PECas system simulation ' + 26 * '-')
        print('\nPerforming system simulation, this might take some time ...')

        if not type(self.pesetup.system) is systems.ExplODE:

            raise NotImplementedError("Until now, this function can only " + \
                "be used for systems of type ExplODE.")

        if x0 == None:

            raise ValueError("You have to provide an initial value x0 " + \
                "to run the simulation.")

        x0 = np.squeeze(np.asarray(x0))

        if np.atleast_1d(x0).shape[0] != self.pesetup.nx:

            raise ValueError("Wrong dimension for initial value x0.")

        if tsim == None:

            tsim = self.pesetup.tu

        if usim == None:

            usim = self.pesetup.uN

        if psim == None:

            try:

                psim = self.phat

            except AttributeError:

                errmsg = '''
You have to either perform a parameter estimation beforehand to obtain a
parameter set that can be used for simulation, or you have to provide a
parameter set in the argument psim.
'''
                raise AttributeError(errmsg)

        else:

            if not np.atleast_1d(np.squeeze(psim)).shape[0] == self.pesetup.np:

                raise ValueError("Wrong dimension for parameter set psim.")


        fp = ca.MXFunction("fp", \
            [self.pesetup.system.t, self.pesetup.system.u, \
            self.pesetup.system.x, self.pesetup.system.eps_e, \
            self.pesetup.system.eps_u, self.pesetup.system.p], \
            [self.pesetup.system.f])

        fpeval = fp([\
            self.pesetup.system.t, self.pesetup.system.u, \
            self.pesetup.system.x, np.zeros(self.pesetup.neps_e), \
            np.zeros(self.pesetup.neps_u), psim])[0]

        fsim = ca.MXFunction("fsim", \
            ca.daeIn(t = self.pesetup.system.t, \
                x = self.pesetup.system.x, \
                p = self.pesetup.system.u), \
            ca.daeOut(ode = fpeval))

        Xsim = []
        Xsim.append(x0)

        u0 = ca.DMatrix()

        for k, e in enumerate(tsim[:-1]):

            try:

                integrator = ca.Integrator("integrator", method, \
                    fsim, {"t0": e, "tf": tsim[k+1]})

            except RuntimeError as err:

                errmsg = '''
It seems like you want to use an integration method that is not currently
supported by CasADi. Please refer to the CasADi documentation for a list
of supported integrators, or use the default RK4-method by not setting the
method-argument of the function.
'''
                raise RuntimeError(errmsg)

            if not self.pesetup.nu == 0:

                u0 = usim[:, k]

            Xk_end = itemgetter('xf')(integrator({'x0': x0, 'p': u0}))

            Xsim.append(Xk_end)
            x0 = Xk_end

        self.Xsim = ca.horzcat(Xsim)

        print( \
'''System simulation finished.''')
Esempio n. 27
0
    ] )

#					ca.mul( [ x_err.T, cost_mat, x_err ] )

dae = ca.SXFunction('dae', ca.daeIn(x=x, p=u, t=t), ca.daeOut(ode=ode))

# Create an integrator
opts = {'tf': tf / nk}  # final time
if coll:
    opts['number_of_finite_elements'] = 5
    opts['interpolation_order'] = 5
    opts['collocation_scheme'] = 'legendre'
    opts['implicit_solver'] = 'kinsol'
    opts['implicit_solver_options'] = {'linear_solver': 'csparse'}
    opts['expand_f'] = True
    integrator = ca.Integrator('integrator', 'oldcollocation', dae, opts)
else:
    opts['abstol'] = 1e-1  # tolerance
    opts['reltol'] = 1e-1  # tolerance
    #  opts['steps_per_checkpoint'] = 1000
    opts['quad_err_con'] = True
    opts['fsens_err_con'] = True
    opts['t0'] = 0.
    opts['tf'] = tf
    integrator = ca.Integrator('integrator', 'cvodes', dae, opts)

integrator.setInput(x0, 'x0')
integrator.setInput(0, 'p')
integrator.evaluate()
integrator.reset()
Esempio n. 28
0
nk = 20  # Control discretization
tf = 10.0  # End time

# Declare variables (use scalar graph)
u = ca.SX.sym("u")  # control
x = ca.SX.sym("x", 2)  # states

# ODE right hand side and quadratures
xdot = ca.vertcat([(1 - x[1] * x[1]) * x[0] - x[1] + u, x[0]])
qdot = x[0] * x[0] + x[1] * x[1] + u * u

# DAE residual function
dae = ca.SXFunction("dae", ca.daeIn(x=x, p=u), ca.daeOut(ode=xdot, quad=qdot))

# Create an integrator
integrator = ca.Integrator("integrator", "cvodes", dae, {"tf": tf / nk})

# All controls (use matrix graph)
x = ca.MX.sym("x", nk)  # nk-by-1 symbolic variable
U = ca.vertsplit(x)  # cheaper than x[0], x[1], ...

# The initial state (x_0=0, x_1=1)
X = ca.MX([0, 1])

# Objective function
f = 0

# Build a graph of integrator calls
for k in range(nk):
    X, QF = itemgetter('xf', 'qf')(integrator({'x0': X, 'p': U[k]}))
    f += QF