Esempio n. 1
0
 def initialize(self, tau=1.0, scale=1.0):
     '''
     Build the dae system of transient CSTR model
     :param tau: space time of CSTR model
     '''
     Ptot = cas.sumRows(self._partP_in)            # Total Pressure
     for i in range(self.ngas):
         self._partP[i] = self._flow[i]/self._Flowtot * Ptot
     self.build_kinetic()
     self.build_rate(scale=1)
     for j in range(self.ngas):
         self._d_flow[j] = self._partP_in[j] / Ptot * self._Flowtot \
                         - self._flow[j]
         for i in range(self.nrxn):
             self._d_flow[j] += self.stoimat[i][j] * self._rate[i]
         # Scale the flow rate
         self._d_flow[j] /= tau
     for j in range(self.nsurf):
         self._d_cover[j] = 0
         for i in range(self.nrxn):
             self._d_cover[j] += self.stoimat[i][j + self.ngas] * self._rate[i]
     self._x = cas.vertcat([self._flow, self._cover])
     # ???
     self._p = cas.vertcat([self._dEa, self._dBE])
     self._u = cas.vertcat([self._partP_in, self._Tem, self._Flowtot])
     self._xdot = cas.vertcat([self._d_flow, self._d_cover])
     #self._dae_ = dict(x=self._x, p=self._p, ode=self._xdot)
     self._dae_ = cas.SXFunction('dae', cas.controldaeIn(x=self._x, p=self._p, u=self._u, t=self._t),
                                cas.daeOut(ode=self._xdot))
Esempio n. 2
0
def get_dependency(expression):
    sym = symvar(expression)
    f = MXFunction('f', sym, [expression])
    dep = {}
    for index, sym in enumerate(sym):
        J = f.jacSparsity(index, 0)
        dep[sym] = sorted(sumRows(J).find())
    return dep
Esempio n. 3
0
    def set_data(self, data):
        """ Attach experimental measurement data.

        data : a pd.DataFrame object
            Data should have columns corresponding to the state labels in
            self.state_names, with an index corresponding to the measurement
            times.

        """

        # Should raise an error if no state name is present
        df = data.loc[:, self.state_names]

        # Rename columns with state indicies
        df.columns = np.arange(self.NEQ)

        # Remove empty (nonmeasured) states
        self.data = df.loc[:, ~pd.isnull(df).all(0)]

        obj_list = []
        for ((ti, state), xi) in self.data.stack().iteritems():
            obj_list += [
                (self._get_interp(ti, [state]) - xi) / self.data[state].max()
            ]

        obj_resid = cs.sum_square(cs.vertcat(obj_list))

        # ts = data.index

        # Define objective function
        # obj_resid = cs.sum_square(cs.vertcat(
        #     [(self._get_interp(ti, self._states_indicies) - xi)/ xs.max(0)
        #      for ti, xi in zip(ts, xs)]))

        alpha = cs.SX.sym('alpha')
        obj_lasso = alpha * cs.sumRows(cs.fabs(self._P))

        self._obj = obj_resid + obj_lasso

        # Create the solver object
        self._nlp = cs.SXFunction('nlp', cs.nlpIn(x=self._V, p=alpha),
                                  cs.nlpOut(f=self._obj, g=self._g))
Esempio n. 4
0
    def set_data(self, data):
        """ Attach experimental measurement data.

        data : a pd.DataFrame object
            Data should have columns corresponding to the state labels in
            self.state_names, with an index corresponding to the measurement
            times.

        """

        # Should raise an error if no state name is present
        df = data.loc[:, self.state_names]

        # Rename columns with state indicies
        df.columns = np.arange(self.NEQ)

        # Remove empty (nonmeasured) states
        self.data = df.loc[:, ~pd.isnull(df).all(0)]

        obj_list = []
        for ((ti, state), xi) in self.data.stack().iteritems():
            obj_list += [(self._get_interp(ti, [state]) - xi) / self.data[state].max()]

        obj_resid = cs.sum_square(cs.vertcat(obj_list))

        # ts = data.index

        # Define objective function
        # obj_resid = cs.sum_square(cs.vertcat(
        #     [(self._get_interp(ti, self._states_indicies) - xi)/ xs.max(0)
        #      for ti, xi in zip(ts, xs)]))

        alpha = cs.SX.sym("alpha")
        obj_lasso = alpha * cs.sumRows(cs.fabs(self._P))

        self._obj = obj_resid + obj_lasso

        # Create the solver object
        self._nlp = cs.SXFunction("nlp", cs.nlpIn(x=self._V, p=alpha), cs.nlpOut(f=self._obj, g=self._g))
Esempio n. 5
0
 def test_sum(self):
   self.message("sum")
   D=DMatrix([[1,2,3],[4,5,6],[7,8,9]])
   self.checkarray(c.sumRows(D),array([[12,15,18]]),'sum()')
   self.checkarray(c.sumCols(D),array([[6,15,24]]).T,'sum()')
Esempio n. 6
0
 def test_sum(self):
     self.message("sum")
     D = DMatrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
     self.checkarray(c.sumRows(D), array([[12, 15, 18]]), 'sum()')
     self.checkarray(c.sumCols(D), array([[6, 15, 24]]).T, 'sum()')