Esempio n. 1
0
 def test_06_NaN(self):
     """Regression test of Otsu with NaN in input (issue #624)"""
     r = np.random.RandomState()
     r.seed(6)
     data = r.uniform(size=100)
     data[r.uniform(size=100) > 0.8] = np.NaN
     self.assertEqual(otsu(data), otsu(data[~np.isnan(data)]))
     self.assertEqual(entropy(data), entropy(data[~np.isnan(data)]))
     self.assertEqual(otsu3(data), otsu3(data[~np.isnan(data)]))
     self.assertEqual(entropy3(data), entropy3(data[~np.isnan(data)]))
Esempio n. 2
0
 def test_06_NaN(self):
     """Regression test of Otsu with NaN in input (issue #624)"""
     r = np.random.RandomState()
     r.seed(6)
     data = r.uniform(size=100)
     data[r.uniform(size=100) > .8] = np.NaN
     self.assertEqual(otsu(data), otsu(data[~np.isnan(data)]))
     self.assertEqual(entropy(data), entropy(data[~np.isnan(data)]))
     self.assertEqual(otsu3(data), otsu3(data[~np.isnan(data)]))
     self.assertEqual(entropy3(data), entropy3(data[~np.isnan(data)]))
Esempio n. 3
0
def get_otsu_threshold(image,
                       mask=None,
                       two_class_otsu=True,
                       use_weighted_variance=True,
                       assign_middle_to_foreground=True):
    if not mask is None:
        image = image[mask]
    else:
        image = np.array(image.flat)
    image = image[image >= 0]
    if len(image) == 0:
        return 1
    image, d = log_transform(image)
    if two_class_otsu:
        if use_weighted_variance:
            threshold = otsu(image)
        else:
            threshold = entropy(image)
    else:
        if use_weighted_variance:
            t1, t2 = otsu3(image)
        else:
            t1, t2 = entropy3(image)
        threshold = t1 if assign_middle_to_foreground else t2
    threshold = inverse_log_transform(threshold, d)
    return threshold
Esempio n. 4
0
def get_otsu_threshold(image, mask = None, 
                       two_class_otsu = True,
                       use_weighted_variance = True,
                       assign_middle_to_foreground = True):
    if not mask is None:
        image = image[mask]
    else:
        image = np.array(image.flat)
    image = image[image >= 0]
    if len(image) == 0:
        return 1
    image, d = log_transform(image)
    if two_class_otsu:
        if use_weighted_variance:
            threshold = otsu(image)
        else:
            threshold = entropy(image)
    else:
        if use_weighted_variance:
            t1, t2 = otsu3(image)
        else:
            t1,t2 = entropy3(image)
        threshold = t1 if assign_middle_to_foreground else t2  
    threshold = inverse_log_transform(threshold, d)
    return threshold
Esempio n. 5
0
    def run(self, workspace):
        image = workspace.image_set.get_image(self.image_name.value,
                                              must_be_grayscale = True)
        orig_pixels = image.pixel_data
        if image.has_mask:
            mask = image.mask
        else:
            mask = np.ones(orig_pixels.shape,bool)
        if self.method == M_SOBEL:
            if self.direction == E_ALL:
                output_pixels = sobel(orig_pixels, mask)
            elif self.direction == E_HORIZONTAL:
                output_pixels = hsobel(orig_pixels, mask)
            elif self.direction == E_VERTICAL:
                output_pixels = vsobel(orig_pixels, mask)
            else:
                raise NotImplementedError("Unimplemented direction for Sobel: %s",self.direction.value)
        elif self.method == M_LOG:
            sigma = self.get_sigma()
            size = int(sigma * 4)+1
            output_pixels = laplacian_of_gaussian(orig_pixels, mask, size, sigma)
        elif self.method == M_VARIANCE:
            sigma = self.get_sigma()
            size = int(sigma)+1
            output_pixels = variance_transform(orig_pixels, size, mask)
        elif self.method == M_PREWITT:
            if self.direction == E_ALL:
                output_pixels = prewitt(orig_pixels)
            elif self.direction == E_HORIZONTAL:
                output_pixels = hprewitt(orig_pixels, mask)
            elif self.direction == E_VERTICAL:
                output_pixels = vprewitt(orig_pixels, mask)
            else:
                raise NotImplementedError("Unimplemented direction for Prewitt: %s",self.direction.value)
        elif self.method == M_CANNY:
            high_threshold = self.manual_threshold.value
            low_threshold = self.low_threshold.value
            if (self.wants_automatic_low_threshold.value or
                self.wants_automatic_threshold.value):
                sobel_image = sobel(orig_pixels, mask)
                low, high = otsu3(sobel_image[mask])
                if self.wants_automatic_low_threshold.value:
                    low_threshold = low * self.threshold_adjustment_factor.value
                if self.wants_automatic_threshold.value:
                    high_threshold = high * self.threshold_adjustment_factor.value
            output_pixels = canny(orig_pixels,mask, self.get_sigma(),
                                  low_threshold,
                                  high_threshold)
        elif self.method == M_ROBERTS:
            output_pixels = roberts(orig_pixels, mask)
        else:
            raise NotImplementedError("Unimplemented edge detection method: %s"%
                                      self.method.value)

        output_image = cpi.Image(output_pixels, parent_image = image)
        workspace.image_set.add(self.output_image_name.value, output_image)

        if self.show_window:
            workspace.display_data.orig_pixels = orig_pixels
            workspace.display_data.output_pixels = output_pixels
Esempio n. 6
0
    def run(self, workspace):
        image = workspace.image_set.get_image(self.image_name.value,
                                              must_be_grayscale=True)
        orig_pixels = image.pixel_data
        if image.has_mask:
            mask = image.mask
        else:
            mask = np.ones(orig_pixels.shape, bool)
        if self.method == M_SOBEL:
            if self.direction == E_ALL:
                output_pixels = sobel(orig_pixels, mask)
            elif self.direction == E_HORIZONTAL:
                output_pixels = hsobel(orig_pixels, mask)
            elif self.direction == E_VERTICAL:
                output_pixels = vsobel(orig_pixels, mask)
            else:
                raise NotImplementedError(
                    "Unimplemented direction for Sobel: %s",
                    self.direction.value)
        elif self.method == M_LOG:
            sigma = self.get_sigma()
            size = int(sigma * 4) + 1
            output_pixels = laplacian_of_gaussian(orig_pixels, mask, size,
                                                  sigma)
        elif self.method == M_PREWITT:
            if self.direction == E_ALL:
                output_pixels = prewitt(orig_pixels)
            elif self.direction == E_HORIZONTAL:
                output_pixels = hprewitt(orig_pixels, mask)
            elif self.direction == E_VERTICAL:
                output_pixels = vprewitt(orig_pixels, mask)
            else:
                raise NotImplementedError(
                    "Unimplemented direction for Prewitt: %s",
                    self.direction.value)
        elif self.method == M_CANNY:
            high_threshold = self.manual_threshold.value
            low_threshold = self.low_threshold.value
            if (self.wants_automatic_low_threshold.value
                    or self.wants_automatic_threshold.value):
                sobel_image = sobel(orig_pixels, mask)
                low, high = otsu3(sobel_image[mask])
                if self.wants_automatic_low_threshold.value:
                    low_threshold = low * self.threshold_adjustment_factor.value
                if self.wants_automatic_threshold.value:
                    high_threshold = high * self.threshold_adjustment_factor.value
            output_pixels = canny(orig_pixels, mask, self.get_sigma(),
                                  low_threshold, high_threshold)
        elif self.method == M_ROBERTS:
            output_pixels = roberts(orig_pixels, mask)
        else:
            raise NotImplementedError(
                "Unimplemented edge detection method: %s" % self.method.value)

        output_image = cpi.Image(output_pixels, parent_image=image)
        workspace.image_set.add(self.output_image_name.value, output_image)

        if self.show_window:
            workspace.display_data.orig_pixels = orig_pixels
            workspace.display_data.output_pixels = output_pixels
Esempio n. 7
0
    def test_08_otsu3(self):
        """Test 3-class Otsu with three normal distributions"""

        r = np.random.RandomState()
        r.seed(8)
        x1 = r.normal(0.2, 0.1, 10000)
        x2 = r.normal(0.5, 0.25, 5000)
        x3 = r.normal(0.8, 0.1, 5000)
        data = np.hstack((x1, x2, x3))
        data = data[(data > 0) & (data < 1)]
        threshold1, threshold2 = otsu3(data)
        self.assertTrue(threshold1 > 0.2)
        self.assertTrue(threshold1 < 0.5)
        self.assertTrue(threshold2 > 0.5)
        self.assertTrue(threshold2 < 0.8)
Esempio n. 8
0
    def test_08_otsu3(self):
        '''Test 3-class Otsu with three normal distributions'''

        r = np.random.RandomState()
        r.seed(8)
        x1 = r.normal(.2, .1, 10000)
        x2 = r.normal(.5, .25, 5000)
        x3 = r.normal(.8, .1, 5000)
        data = np.hstack((x1, x2, x3))
        data = data[(data > 0) & (data < 1)]
        threshold1, threshold2 = otsu3(data)
        self.assertTrue(threshold1 > .2)
        self.assertTrue(threshold1 < .5)
        self.assertTrue(threshold2 > .5)
        self.assertTrue(threshold2 < .8)
Esempio n. 9
0
    def test_08_otsu3(self):
        '''Test 3-class Otsu with three normal distributions'''

        r = np.random.RandomState()
        r.seed(8)
        x1 = r.normal(.2, .1, 10000)
        x2 = r.normal(.5, .25, 5000)
        x3 = r.normal(.8, .1, 5000)
        data = np.hstack((x1, x2, x3))
        data = data[(data > 0) & (data < 1)]
        threshold1, threshold2 = otsu3(data)
        self.assertTrue(threshold1 > .2)
        self.assertTrue(threshold1 < .5)
        self.assertTrue(threshold2 > .5)
        self.assertTrue(threshold2 < .8)
 def test_06_01_canny(self):
     '''Test the canny method'''
     i,j = np.mgrid[-20:20,-20:20]
     image = np.logical_and(i > j, i**2+j**2 < 300).astype(np.float32)
     np.random.seed(0)
     image = image *.5 + np.random.uniform(size=image.shape)*.3
     image = np.ascontiguousarray(image, np.float32)
     workspace, module = self.make_workspace(image)
     module.method.value = F.M_CANNY
     module.wants_automatic_threshold.value = True
     module.wants_automatic_low_threshold.value = True
     module.wants_automatic_sigma.value = True
     module.run(workspace)
     output = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)
     t1,t2 = otsu3(FIL.sobel(image))
     result = FIL.canny(image, np.ones(image.shape,bool), 1.0, t1, t2)
     self.assertTrue(np.all(output.pixel_data == result))
 def test_06_01_canny(self):
     '''Test the canny method'''
     i,j = np.mgrid[-20:20,-20:20]
     image = np.logical_and(i > j, i**2+j**2 < 300).astype(np.float32)
     np.random.seed(0)
     image = image *.5 + np.random.uniform(size=image.shape)*.3
     image = np.ascontiguousarray(image, np.float32)
     workspace, module = self.make_workspace(image)
     module.method.value = F.M_CANNY
     module.wants_automatic_threshold.value = True
     module.wants_automatic_low_threshold.value = True
     module.wants_automatic_sigma.value = True
     module.run(workspace)
     output = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)
     t1,t2 = otsu3(FIL.sobel(image))
     result = FIL.canny(image, np.ones(image.shape,bool), 1.0, t1, t2)
     self.assertTrue(np.all(output.pixel_data == result))
Esempio n. 12
0
 def test_05_03_otsu3_wv_low(self):
     '''Test the three-class otsu, weighted variance middle = background'''
     np.random.seed(0)
     image = np.hstack((np.random.exponential(1.5,size=300),
                        np.random.poisson(15,size=300),
                        np.random.poisson(30,size=300))).astype(np.float32)
     image.shape=(30,30)
     image = stretch(image)
     limage, d = T.log_transform(image)
     t1,t2 = otsu3(limage)
     threshold = T.inverse_log_transform(t2, d)
     expected = image > threshold
     workspace, module = self.make_workspace(image)
     module.binary.value = A.BINARY
     module.threshold_method.value = T.TM_OTSU_GLOBAL
     module.use_weighted_variance.value = I.O_WEIGHTED_VARIANCE
     module.two_class_otsu.value = I.O_THREE_CLASS
     module.assign_middle_to_foreground.value = I.O_BACKGROUND
     module.run(workspace)
     output = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)
     self.assertTrue(np.all(output.pixel_data == expected))
Esempio n. 13
0
 def test_05_03_otsu3_wv_low(self):
     '''Test the three-class otsu, weighted variance middle = background'''
     np.random.seed(0)
     image = np.hstack((np.random.exponential(1.5,size=300),
                        np.random.poisson(15,size=300),
                        np.random.poisson(30,size=300))).astype(np.float32)
     image.shape=(30,30)
     image = stretch(image)
     limage, d = T.log_transform(image)
     t1,t2 = otsu3(limage)
     threshold = T.inverse_log_transform(t2, d)
     expected = image > threshold
     workspace, module = self.make_workspace(image)
     module.binary.value = A.BINARY
     module.threshold_method.value = T.TM_OTSU_GLOBAL
     module.use_weighted_variance.value = I.O_WEIGHTED_VARIANCE
     module.two_class_otsu.value = I.O_THREE_CLASS
     module.assign_middle_to_foreground.value = I.O_BACKGROUND
     module.run(workspace)
     output = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)
     self.assertTrue(np.all(output.pixel_data == expected))
 def test_05_04_otsu3_wv_high(self):
     '''Test the three-class otsu, weighted variance middle = foreground'''
     np.random.seed(0)
     image = np.hstack((np.random.exponential(1.5,size=300),
                        np.random.poisson(15,size=300),
                        np.random.poisson(30,size=300)))
     image.shape=(30,30)
     image = stretch(image)
     limage, d = T.log_transform(image)
     t1,t2 = otsu3(limage)
     threshold = T.inverse_log_transform(t1, d)
     workspace, module = self.make_workspace(image)
     module.binary.value = A.BINARY
     module.threshold_scope.value = I.TS_GLOBAL
     module.threshold_method.value = T.TM_OTSU
     module.use_weighted_variance.value = I.O_WEIGHTED_VARIANCE
     module.two_class_otsu.value = I.O_THREE_CLASS
     module.assign_middle_to_foreground.value = I.O_FOREGROUND
     module.run(workspace)
     m = workspace.measurements
     m_threshold = m[cpmeas.IMAGE, I.FF_ORIG_THRESHOLD % module.get_measurement_objects_name()]
     self.assertAlmostEqual(m_threshold, threshold)
Esempio n. 15
0
 def run(self, workspace):
     image = workspace.image_set.get_image(self.image_name.value,
                                           must_be_grayscale = True)
     orig_pixels = image.pixel_data
     if image.has_mask:
         mask = image.mask
     else:
         mask = np.ones(orig_pixels.shape,bool)
     if self.method == M_SOBEL:
         if self.direction == E_ALL:
             output_pixels = sobel(orig_pixels, mask)
         elif self.direction == E_HORIZONTAL:
             output_pixels = hsobel(orig_pixels, mask)
         elif self.direction == E_VERTICAL:
             output_pixels = vsobel(orig_pixels, mask)
         else:
             raise NotImplementedError("Unimplemented direction for Sobel: %s",self.direction.value)
     elif self.method == M_LOG:
         sigma = self.get_sigma()
         size = int(sigma * 4)+1
         output_pixels = laplacian_of_gaussian(orig_pixels, mask, size, sigma)
     elif self.method == M_PREWITT:
         if self.direction == E_ALL:
             output_pixels = prewitt(orig_pixels)
         elif self.direction == E_HORIZONTAL:
             output_pixels = hprewitt(orig_pixels, mask)
         elif self.direction == E_VERTICAL:
             output_pixels = vprewitt(orig_pixels, mask)
         else:
             raise NotImplementedError("Unimplemented direction for Prewitt: %s",self.direction.value)
     elif self.method == M_CANNY:
         high_threshold = self.manual_threshold.value
         low_threshold = self.low_threshold.value
         if (self.wants_automatic_low_threshold.value or
             self.wants_automatic_threshold.value):
             sobel_image = sobel(orig_pixels, mask)
             low, high = otsu3(sobel_image[mask])
             if self.wants_automatic_low_threshold.value:
                 low_threshold = low * self.threshold_adjustment_factor.value
             if self.wants_automatic_threshold.value:
                 high_threshold = high * self.threshold_adjustment_factor.value
         output_pixels = canny(orig_pixels,mask, self.get_sigma(),
                               low_threshold,
                               high_threshold)
     elif self.method == M_ROBERTS:
         output_pixels = roberts(orig_pixels, mask)
     else:
         raise NotImplementedError("Unimplemented edge detection method: %s"%
                                   self.method.value)
     if not workspace.frame is None:
         figure = workspace.create_or_find_figure(title="EnhanceEdges, image cycle #%d"%(
             workspace.measurements.image_set_number),subplots=(2,2))
         figure.subplot_imshow_grayscale(0,0, orig_pixels,
                                         "Original: %s"%
                                         self.image_name.value)
         if self.method == M_CANNY:
             # Canny is binary
             figure.subplot_imshow_bw(0,1, output_pixels,
                                      self.output_image_name.value,
                                      sharex = figure.subplot(0,0),
                                      sharey = figure.subplot(0,0))
         else:
             figure.subplot_imshow_grayscale(0,1,output_pixels,
                                             self.output_image_name.value,
                                             sharex = figure.subplot(0,0),
                                             sharey = figure.subplot(0,0))
         color_image = np.zeros((output_pixels.shape[0],
                                 output_pixels.shape[1],3))
         color_image[:,:,0] = stretch(orig_pixels)
         color_image[:,:,1] = stretch(output_pixels)
         figure.subplot_imshow(1,0, color_image,"Composite image",
                               sharex = figure.subplot(0,0),
                               sharey = figure.subplot(0,0))
     output_image = cpi.Image(output_pixels, parent_image = image)
     workspace.image_set.add(self.output_image_name.value, output_image)   
Esempio n. 16
0
 def run(self, workspace):
     image = workspace.image_set.get_image(self.image_name.value,
                                           must_be_grayscale=True)
     orig_pixels = image.pixel_data
     if image.has_mask:
         mask = image.mask
     else:
         mask = np.ones(orig_pixels.shape, bool)
     if self.method == M_SOBEL:
         if self.direction == E_ALL:
             output_pixels = sobel(orig_pixels, mask)
         elif self.direction == E_HORIZONTAL:
             output_pixels = hsobel(orig_pixels, mask)
         elif self.direction == E_VERTICAL:
             output_pixels = vsobel(orig_pixels, mask)
         else:
             raise NotImplementedError(
                 "Unimplemented direction for Sobel: %s",
                 self.direction.value)
     elif self.method == M_LOG:
         sigma = self.get_sigma()
         size = int(sigma * 4) + 1
         output_pixels = laplacian_of_gaussian(orig_pixels, mask, size,
                                               sigma)
     elif self.method == M_PREWITT:
         if self.direction == E_ALL:
             output_pixels = prewitt(orig_pixels)
         elif self.direction == E_HORIZONTAL:
             output_pixels = hprewitt(orig_pixels, mask)
         elif self.direction == E_VERTICAL:
             output_pixels = vprewitt(orig_pixels, mask)
         else:
             raise NotImplementedError(
                 "Unimplemented direction for Prewitt: %s",
                 self.direction.value)
     elif self.method == M_CANNY:
         high_threshold = self.manual_threshold.value
         low_threshold = self.low_threshold.value
         if (self.wants_automatic_low_threshold.value
                 or self.wants_automatic_threshold.value):
             sobel_image = sobel(orig_pixels, mask)
             low, high = otsu3(sobel_image[mask])
             if self.wants_automatic_low_threshold.value:
                 low_threshold = low * self.threshold_adjustment_factor.value
             if self.wants_automatic_threshold.value:
                 high_threshold = high * self.threshold_adjustment_factor.value
         output_pixels = canny(orig_pixels, mask, self.get_sigma(),
                               low_threshold, high_threshold)
     elif self.method == M_ROBERTS:
         output_pixels = roberts(orig_pixels, mask)
     else:
         raise NotImplementedError(
             "Unimplemented edge detection method: %s" % self.method.value)
     if not workspace.frame is None:
         figure = workspace.create_or_find_figure(
             title="EnhanceEdges, image cycle #%d" %
             (workspace.measurements.image_set_number),
             subplots=(2, 2))
         figure.subplot_imshow_grayscale(
             0, 0, orig_pixels, "Original: %s" % self.image_name.value)
         if self.method == M_CANNY:
             # Canny is binary
             figure.subplot_imshow_bw(0,
                                      1,
                                      output_pixels,
                                      self.output_image_name.value,
                                      sharex=figure.subplot(0, 0),
                                      sharey=figure.subplot(0, 0))
         else:
             figure.subplot_imshow_grayscale(0,
                                             1,
                                             output_pixels,
                                             self.output_image_name.value,
                                             sharex=figure.subplot(0, 0),
                                             sharey=figure.subplot(0, 0))
         color_image = np.zeros(
             (output_pixels.shape[0], output_pixels.shape[1], 3))
         color_image[:, :, 0] = stretch(orig_pixels)
         color_image[:, :, 1] = stretch(output_pixels)
         figure.subplot_imshow(1,
                               0,
                               color_image,
                               "Composite image",
                               sharex=figure.subplot(0, 0),
                               sharey=figure.subplot(0, 0))
     output_image = cpi.Image(output_pixels, parent_image=image)
     workspace.image_set.add(self.output_image_name.value, output_image)