Esempio n. 1
0
    def run(self, workspace):
        image = workspace.image_set.get_image(self.image_name.value, must_be_grayscale=True)
        pixel_data = image.pixel_data
        if self.wants_automatic_object_size.value:
            object_size = min(30, max(1, np.mean(pixel_data.shape) / 40))
        else:
            object_size = float(self.object_size.value)
        sigma = object_size / 2.35
        if self.smoothing_method.value == GAUSSIAN_FILTER:

            def fn(image):
                return scind.gaussian_filter(image, sigma, mode="constant", cval=0)

            output_pixels = smooth_with_function_and_mask(pixel_data, fn, image.mask)
        elif self.smoothing_method.value == MEDIAN_FILTER:
            output_pixels = median_filter(pixel_data, image.mask, object_size / 2 + 1)
        elif self.smoothing_method.value == SMOOTH_KEEPING_EDGES:
            sigma_range = float(self.sigma_range.value)
            output_pixels = bilateral_filter(pixel_data, image.mask, sigma, sigma_range)
        elif self.smoothing_method.value == FIT_POLYNOMIAL:
            output_pixels = fit_polynomial(pixel_data, image.mask, self.clip.value)
        elif self.smoothing_method.value == CIRCULAR_AVERAGE_FILTER:
            output_pixels = circular_average_filter(pixel_data, object_size / 2 + 1, image.mask)
        elif self.smoothing_method.value == SM_TO_AVERAGE:
            if image.has_mask:
                mean = np.mean(pixel_data[image.mask])
            else:
                mean = np.mean(pixel_data)
            output_pixels = np.ones(pixel_data.shape, pixel_data.dtype) * mean
        else:
            raise ValueError("Unsupported smoothing method: %s" % self.smoothing_method.value)
        output_image = cpi.Image(output_pixels, parent_image=image)
        workspace.image_set.add(self.filtered_image_name.value, output_image)
        workspace.display_data.pixel_data = pixel_data
        workspace.display_data.output_pixels = output_pixels
Esempio n. 2
0
    def run_per_layer(self, image, channel):
        if channel >= 0:
            pixel_data = image.pixel_data[:,:,channel].squeeze()
        else:
            pixel_data = image.pixel_data
        mask = image.mask
        if self.wants_automatic_object_size.value:
            object_size = min(30, max(1, np.mean(pixel_data.shape) / 40))
        else:
            object_size = float(self.object_size.value)
        sigma = object_size / 2.35

        if self.smoothing_method.value == GAUSSIAN_FILTER:
            def fn(image):
                return scind.gaussian_filter(image, sigma,
                                             mode='constant', cval=0)

            output_pixels = smooth_with_function_and_mask(pixel_data, fn,
                                                          mask)
        elif self.smoothing_method.value == MEDIAN_FILTER:
            output_pixels = median_filter(pixel_data, mask,
                                          object_size / 2 + 1)
        elif self.smoothing_method.value == SMOOTH_KEEPING_EDGES:
            sigma_range = float(self.sigma_range.value)
            output_pixels = bilateral_filter(pixel_data, mask,
                                             sigma, sigma_range)
        elif self.smoothing_method.value == FIT_POLYNOMIAL:
            output_pixels = fit_polynomial(pixel_data, mask,
                                           self.clip.value)
        elif self.smoothing_method.value == CIRCULAR_AVERAGE_FILTER:
            output_pixels = circular_average_filter(pixel_data,
                                                    object_size / 2 + 1, mask)
        elif self.smoothing_method.value == SM_TO_AVERAGE:
            if image.has_mask:
                mean = np.mean(pixel_data[mask])
            else:
                mean = np.mean(pixel_data)
                output_pixels = np.ones(pixel_data.shape, pixel_data.dtype) * mean

        elif self.smoothing_method.value == REMOVE_OUTLIER:
            # TODO: implement how this deals with masks.
            nbhood = self.outlierneighbourhood.value
            output_pixels = self.remove_outlier_pixels(pixel_data,
                                                         threshold=self.treshold.value,
                                                         radius=nbhood,
                                                         mode='max')
        else:
            raise ValueError("Unsupported smoothing method: %s" %
                             self.smoothing_method.value)

        return output_pixels
Esempio n. 3
0
    def run(self, workspace):
        image = workspace.image_set.get_image(self.image_name.value,
                                              must_be_grayscale=True)
        pixel_data = image.pixel_data
        if self.wants_automatic_object_size.value:
            object_size = min(30, max(1, np.mean(pixel_data.shape) / 40))
        else:
            object_size = float(self.object_size.value)
        sigma = object_size / 2.35
        if self.smoothing_method.value == GAUSSIAN_FILTER:

            def fn(image):
                return scind.gaussian_filter(image,
                                             sigma,
                                             mode='constant',
                                             cval=0)

            output_pixels = smooth_with_function_and_mask(
                pixel_data, fn, image.mask)
        elif self.smoothing_method.value == MEDIAN_FILTER:
            output_pixels = median_filter(pixel_data, image.mask,
                                          object_size / 2 + 1)
        elif self.smoothing_method.value == SMOOTH_KEEPING_EDGES:
            sigma_range = float(self.sigma_range.value)
            output_pixels = bilateral_filter(pixel_data, image.mask, sigma,
                                             sigma_range)
        elif self.smoothing_method.value == FIT_POLYNOMIAL:
            output_pixels = fit_polynomial(pixel_data, image.mask,
                                           self.clip.value)
        elif self.smoothing_method.value == CIRCULAR_AVERAGE_FILTER:
            output_pixels = circular_average_filter(pixel_data,
                                                    object_size / 2 + 1,
                                                    image.mask)
        elif self.smoothing_method.value == SM_TO_AVERAGE:
            if image.has_mask:
                mean = np.mean(pixel_data[image.mask])
            else:
                mean = np.mean(pixel_data)
            output_pixels = np.ones(pixel_data.shape, pixel_data.dtype) * mean
        else:
            raise ValueError("Unsupported smoothing method: %s" %
                             self.smoothing_method.value)
        output_image = cpi.Image(output_pixels, parent_image=image)
        workspace.image_set.add(self.filtered_image_name.value, output_image)
        workspace.display_data.pixel_data = pixel_data
        workspace.display_data.output_pixels = output_pixels
 def test_05_01_bilateral(self):
     '''test the smooth module with bilateral filtering'''
     sigma = 16.0
     sigma_range = .2
     np.random.seed(0)
     image = np.random.uniform(size=(100,100)).astype(np.float32)
     mask = np.ones(image.shape,bool)
     mask[40:60,45:65] = False
     expected = bilateral_filter(image, mask, sigma, sigma_range)
     workspace, module = self.make_workspace(image, mask)
     module.smoothing_method.value = S.SMOOTH_KEEPING_EDGES
     module.sigma_range.value = sigma_range
     module.wants_automatic_object_size.value = False
     module.object_size.value = 16.0 * 2.35
     module.run(workspace)
     result = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)
     self.assertFalse(result is None)
     np.testing.assert_almost_equal(result.pixel_data, expected)
Esempio n. 5
0
 def test_05_01_bilateral(self):
     '''test the smooth module with bilateral filtering'''
     sigma = 16.0
     sigma_range = .2
     np.random.seed(0)
     image = np.random.uniform(size=(100, 100)).astype(np.float32)
     mask = np.ones(image.shape, bool)
     mask[40:60, 45:65] = False
     expected = bilateral_filter(image, mask, sigma, sigma_range)
     workspace, module = self.make_workspace(image, mask)
     module.smoothing_method.value = S.SMOOTH_KEEPING_EDGES
     module.sigma_range.value = sigma_range
     module.wants_automatic_object_size.value = False
     module.object_size.value = 16.0 * 2.35
     module.run(workspace)
     result = workspace.image_set.get_image(OUTPUT_IMAGE_NAME)
     self.assertFalse(result is None)
     np.testing.assert_almost_equal(result.pixel_data, expected)
Esempio n. 6
0
 def test_00_01_all_masked(self):
     '''Test the bilateral filter of a completely masked array'''
     np.random.seed(0)
     image = np.random.uniform(size=(10, 10))
     result = F.bilateral_filter(image, np.zeros((10, 10), bool), 5.0, .1)
     self.assertTrue(np.all(result == image))
Esempio n. 7
0
 def test_00_00_zeros(self):
     '''Test the bilateral filter of an array of all zeros'''
     result = F.bilateral_filter(np.zeros((10, 10)), np.ones((10, 10),
                                                             bool), 5.0, .1)
     self.assertTrue(np.all(result == 0))