def run(self, workspace): image = workspace.image_set.get_image(self.image_name.value, must_be_grayscale=True) pixel_data = image.pixel_data if self.wants_automatic_object_size.value: object_size = min(30, max(1, np.mean(pixel_data.shape) / 40)) else: object_size = float(self.object_size.value) sigma = object_size / 2.35 if self.smoothing_method.value == GAUSSIAN_FILTER: def fn(image): return scind.gaussian_filter(image, sigma, mode="constant", cval=0) output_pixels = smooth_with_function_and_mask(pixel_data, fn, image.mask) elif self.smoothing_method.value == MEDIAN_FILTER: output_pixels = median_filter(pixel_data, image.mask, object_size / 2 + 1) elif self.smoothing_method.value == SMOOTH_KEEPING_EDGES: sigma_range = float(self.sigma_range.value) output_pixels = bilateral_filter(pixel_data, image.mask, sigma, sigma_range) elif self.smoothing_method.value == FIT_POLYNOMIAL: output_pixels = fit_polynomial(pixel_data, image.mask, self.clip.value) elif self.smoothing_method.value == CIRCULAR_AVERAGE_FILTER: output_pixels = circular_average_filter(pixel_data, object_size / 2 + 1, image.mask) elif self.smoothing_method.value == SM_TO_AVERAGE: if image.has_mask: mean = np.mean(pixel_data[image.mask]) else: mean = np.mean(pixel_data) output_pixels = np.ones(pixel_data.shape, pixel_data.dtype) * mean else: raise ValueError("Unsupported smoothing method: %s" % self.smoothing_method.value) output_image = cpi.Image(output_pixels, parent_image=image) workspace.image_set.add(self.filtered_image_name.value, output_image) workspace.display_data.pixel_data = pixel_data workspace.display_data.output_pixels = output_pixels
def run_per_layer(self, image, channel): if channel >= 0: pixel_data = image.pixel_data[:,:,channel].squeeze() else: pixel_data = image.pixel_data mask = image.mask if self.wants_automatic_object_size.value: object_size = min(30, max(1, np.mean(pixel_data.shape) / 40)) else: object_size = float(self.object_size.value) sigma = object_size / 2.35 if self.smoothing_method.value == GAUSSIAN_FILTER: def fn(image): return scind.gaussian_filter(image, sigma, mode='constant', cval=0) output_pixels = smooth_with_function_and_mask(pixel_data, fn, mask) elif self.smoothing_method.value == MEDIAN_FILTER: output_pixels = median_filter(pixel_data, mask, object_size / 2 + 1) elif self.smoothing_method.value == SMOOTH_KEEPING_EDGES: sigma_range = float(self.sigma_range.value) output_pixels = bilateral_filter(pixel_data, mask, sigma, sigma_range) elif self.smoothing_method.value == FIT_POLYNOMIAL: output_pixels = fit_polynomial(pixel_data, mask, self.clip.value) elif self.smoothing_method.value == CIRCULAR_AVERAGE_FILTER: output_pixels = circular_average_filter(pixel_data, object_size / 2 + 1, mask) elif self.smoothing_method.value == SM_TO_AVERAGE: if image.has_mask: mean = np.mean(pixel_data[mask]) else: mean = np.mean(pixel_data) output_pixels = np.ones(pixel_data.shape, pixel_data.dtype) * mean elif self.smoothing_method.value == REMOVE_OUTLIER: # TODO: implement how this deals with masks. nbhood = self.outlierneighbourhood.value output_pixels = self.remove_outlier_pixels(pixel_data, threshold=self.treshold.value, radius=nbhood, mode='max') else: raise ValueError("Unsupported smoothing method: %s" % self.smoothing_method.value) return output_pixels
def run(self, workspace): image = workspace.image_set.get_image(self.image_name.value, must_be_grayscale=True) pixel_data = image.pixel_data if self.wants_automatic_object_size.value: object_size = min(30, max(1, np.mean(pixel_data.shape) / 40)) else: object_size = float(self.object_size.value) sigma = object_size / 2.35 if self.smoothing_method.value == GAUSSIAN_FILTER: def fn(image): return scind.gaussian_filter(image, sigma, mode='constant', cval=0) output_pixels = smooth_with_function_and_mask( pixel_data, fn, image.mask) elif self.smoothing_method.value == MEDIAN_FILTER: output_pixels = median_filter(pixel_data, image.mask, object_size / 2 + 1) elif self.smoothing_method.value == SMOOTH_KEEPING_EDGES: sigma_range = float(self.sigma_range.value) output_pixels = bilateral_filter(pixel_data, image.mask, sigma, sigma_range) elif self.smoothing_method.value == FIT_POLYNOMIAL: output_pixels = fit_polynomial(pixel_data, image.mask, self.clip.value) elif self.smoothing_method.value == CIRCULAR_AVERAGE_FILTER: output_pixels = circular_average_filter(pixel_data, object_size / 2 + 1, image.mask) elif self.smoothing_method.value == SM_TO_AVERAGE: if image.has_mask: mean = np.mean(pixel_data[image.mask]) else: mean = np.mean(pixel_data) output_pixels = np.ones(pixel_data.shape, pixel_data.dtype) * mean else: raise ValueError("Unsupported smoothing method: %s" % self.smoothing_method.value) output_image = cpi.Image(output_pixels, parent_image=image) workspace.image_set.add(self.filtered_image_name.value, output_image) workspace.display_data.pixel_data = pixel_data workspace.display_data.output_pixels = output_pixels
def test_05_01_bilateral(self): '''test the smooth module with bilateral filtering''' sigma = 16.0 sigma_range = .2 np.random.seed(0) image = np.random.uniform(size=(100,100)).astype(np.float32) mask = np.ones(image.shape,bool) mask[40:60,45:65] = False expected = bilateral_filter(image, mask, sigma, sigma_range) workspace, module = self.make_workspace(image, mask) module.smoothing_method.value = S.SMOOTH_KEEPING_EDGES module.sigma_range.value = sigma_range module.wants_automatic_object_size.value = False module.object_size.value = 16.0 * 2.35 module.run(workspace) result = workspace.image_set.get_image(OUTPUT_IMAGE_NAME) self.assertFalse(result is None) np.testing.assert_almost_equal(result.pixel_data, expected)
def test_05_01_bilateral(self): '''test the smooth module with bilateral filtering''' sigma = 16.0 sigma_range = .2 np.random.seed(0) image = np.random.uniform(size=(100, 100)).astype(np.float32) mask = np.ones(image.shape, bool) mask[40:60, 45:65] = False expected = bilateral_filter(image, mask, sigma, sigma_range) workspace, module = self.make_workspace(image, mask) module.smoothing_method.value = S.SMOOTH_KEEPING_EDGES module.sigma_range.value = sigma_range module.wants_automatic_object_size.value = False module.object_size.value = 16.0 * 2.35 module.run(workspace) result = workspace.image_set.get_image(OUTPUT_IMAGE_NAME) self.assertFalse(result is None) np.testing.assert_almost_equal(result.pixel_data, expected)
def test_00_01_all_masked(self): '''Test the bilateral filter of a completely masked array''' np.random.seed(0) image = np.random.uniform(size=(10, 10)) result = F.bilateral_filter(image, np.zeros((10, 10), bool), 5.0, .1) self.assertTrue(np.all(result == image))
def test_00_00_zeros(self): '''Test the bilateral filter of an array of all zeros''' result = F.bilateral_filter(np.zeros((10, 10)), np.ones((10, 10), bool), 5.0, .1) self.assertTrue(np.all(result == 0))