def _add_plot_tools(self, imgplot, token): """ Add LineInspectors, ImageIndexTool, and ZoomTool to the image plots. """ imgplot.overlays.append( ZoomTool(component=imgplot, tool_mode="box", enable_wheel=False, always_on=False)) imgplot.overlays.append( LineInspector(imgplot, axis="index_y", color="white", inspect_mode="indexed", write_metadata=True, is_listener=True)) imgplot.overlays.append( LineInspector(imgplot, axis="index_x", color="white", inspect_mode="indexed", write_metadata=True, is_listener=True)) imgplot.tools.append( ImageIndexTool(imgplot, token=token, callback=self._index_callback, wheel_cb=self._wheel_callback))
def _container_default(self): container = super(PlotExample3, self)._container_default() rplot, lplot = self.right_plot, self.left_plot lplot.overlays.append(LineInspector(component=lplot, write_metadata=True, is_listener=True)) rplot.overlays.append(LineInspector(component=rplot, write_metadata=True, is_listener=True)) rplot.index = lplot.index return container
def _create_plot_component(): # Create the index numpoints = 100 low = -5 high = 15.0 x = arange(low, high, (high - low) / numpoints) plotdata = ArrayPlotData(x=x, y1=jn(0, x), y2=jn(1, x)) # Create the left plot left_plot = Plot(plotdata) left_plot.x_axis.title = "X" left_plot.y_axis.title = "j0(x)" renderer = left_plot.plot(("x", "y1"), type="line", color="blue", width=2.0)[0] renderer.overlays.append( LineInspector(renderer, axis='value', write_metadata=True, is_listener=True)) renderer.overlays.append( LineInspector(renderer, axis="index", write_metadata=True, is_listener=True)) left_plot.overlays.append(ZoomTool(left_plot, tool_mode="range")) left_plot.tools.append(PanTool(left_plot)) # Create the right plot right_plot = Plot(plotdata) right_plot.index_range = left_plot.index_range right_plot.orientation = "v" right_plot.x_axis.title = "j1(x)" right_plot.y_axis.title = "X" renderer2 = right_plot.plot(("x", "y2"), type="line", color="red", width=2.0)[0] renderer2.index = renderer.index renderer2.overlays.append( LineInspector(renderer2, write_metadata=True, is_listener=True)) renderer2.overlays.append( LineInspector(renderer2, axis="value", is_listener=True)) right_plot.overlays.append(ZoomTool(right_plot, tool_mode="range")) right_plot.tools.append(PanTool(right_plot)) container = HPlotContainer(background="lightgray") container.add(left_plot) container.add(right_plot) return container
def _dipole_plot_default(self): print('_dipole_plot_default') """Create the Plot instance.""" #pd = ArrayPlotData(index = self.dipole_data_model.x_index) #pd.set_data("y", self.dipole_data_model.data) plot = create_line_plot( (self.dipole_data_model.x_index, self.dipole_data_model.data), color='black') #plot.add(self.dipole_renderer) #plot.plot(("index", "y")) x_axis = PlotAxis(component=plot, mapper=plot.index_mapper, orientation='bottom') # # y_axis = PlotAxis(component=plot, # # mapper=self.signals_renderer.value_mapper, # # orientation='left') plot.overlays.extend([x_axis]) plot.index = self.signals_renderer.index plot.overlays.append( LineInspector(plot, write_metadata=True, is_listener=True)) # plot.overlays.append(LineInspector(plot, axis="value", # is_listener=True)) plot.origin_axis_visible = False plot.padding_top = 0 plot.padding_left = 0 plot.padding_right = 0 plot.padding_bottom = 50 plot.border_visible = False plot.bgcolor = "white" plot.use_downsampling = True return plot
def _add_line_inspector(self, plot, axis='x', color='red'): ''' ''' plot.overlays.append( LineInspector(component=plot, axis='index_%s' % axis, write_metadata=self.line_inspectors_write_metadata, inspect_mode='indexed', is_listener=False, color=color))
def __init__(self, depth, data_series, **kw): super(MyPlot, self).__init__(**kw) plot_data = ArrayPlotData(index=depth) plot_data.set_data('data_series', data_series) self.plot = ToolbarPlot(plot_data, orientation='v', origin='top left') line = self.plot.plot(('index', 'data_series'))[0] line_inspector = LineInspector(component=line, write_metadata=True) line.tools.append(line_inspector) line.overlays.append(line_inspector)
def _container_default(self): container = super(PlotExample4, self)._container_default() rplot, lplot = self.right_plot, self.left_plot rplot.orientation = "v" rplot.hgrid.mapper = rplot.index_mapper rplot.vgrid.mapper = rplot.value_mapper rplot.y_axis.mapper = rplot.index_mapper rplot.x_axis.mapper = rplot.value_mapper lplot.overlays.append( LineInspector( component=lplot, axis="value", write_metadata=True, is_listener=True, color="blue")) lplot.overlays.append( LineInspector( component=lplot, axis="value", write_metadata=True, is_listener=True, color="blue")) rplot.overlays.append( LineInspector( component=rplot, axis="value", write_metadata=True, is_listener=True, color="blue")) rplot.overlays.append( LineInspector( component=rplot, axis="value", write_metadata=True, is_listener=True, color="blue")) return container
def _signals_renderer_default(self): print('_signals_renderer_default') """Create the default MultiLinePlot instance.""" xs = ArrayDataSource(self.signals_data_model.x_index, sort_order='ascending') xrange = DataRange1D() xrange.add(xs) ys = ArrayDataSource(self.signals_data_model.y_index, sort_order='ascending') yrange = DataRange1D() yrange.add(ys) # The data source for the MultiLinePlot. ds = MultiArrayDataSource(data=self.signals_data_model.data) multi_line_plot_renderer = \ MultiLinePlot( index = xs, yindex = ys, index_mapper = LinearMapper(range=xrange), value_mapper = LinearMapper(range=yrange), value=ds, global_max = self.signals_data_model.data.max(), global_min = self.signals_data_model.data.min(), fast_clip = False) # Add pan tool multi_line_plot_renderer.tools.append( PanTool(multi_line_plot_renderer, restrict_to_data=True)) # Add zoom tool multi_line_plot_renderer.overlays.append( ZoomTool(multi_line_plot_renderer, tool_mode="range", always_on=False, x_max_zoom_factor=20.0, y_max_zoom_factor=20.0, x_min_zoom_factor=1.0, y_min_zoom_factor=1.0, zoom_to_mouse=True)) #multi_line_plot_renderer.overlays.append(LineInspector(multi_line_plot_renderer, axis="index",write_metadata=True,is_listener=True)) # multi_line_plot_renderer.overlays.append(LineInspector(multi_line_plot_renderer, axis='value', # write_metadata=True, # is_listener=True)) multi_line_plot_renderer.overlays.append( LineInspector(multi_line_plot_renderer, axis="index", write_metadata=True, is_listener=True)) return multi_line_plot_renderer
def _plot_image(self, plot, data): if self.colormap == 'gray': image = to_RGB(data) else: image = data self.pd.set_data("imagedata", image) plot.aspect_ratio = float(image.shape[1]) / image.shape[0] if not plot.plots: img_plot = plot.img_plot("imagedata", name='image')[0] img_plot.index.on_trait_change(self._metadata_changed, "metadata_changed") img_plot.overlays.append( LineInspector(component=img_plot, axis='index_x', inspect_mode="indexed", write_metadata=True, is_listener=False, color="white")) img_plot.overlays.append( LineInspector(component=img_plot, axis='index_y', inspect_mode="indexed", write_metadata=True, color="white", is_listener=False)) img_plot = plot.plots['image'][0] shape = image.shape self.h_plot.index_range = img_plot.index_range.x_range self.v_plot.index_range = img_plot.index_range.y_range self.pd.set_data('h_index', numpy.arange(shape[1])) self.pd.set_data('v_index', numpy.arange(shape[0])) self.plot.request_redraw() self.container.request_redraw()
def create_plot(self): # Create the mapper, etc self._image_index = GridDataSource(array([]), array([]), sort_order=("ascending","ascending")) image_index_range = DataRange2D(self._image_index) self._image_index.on_trait_change(self._metadata_changed, "metadata_changed") self._image_value = ImageData(data=array([]), value_depth=1) image_value_range = DataRange1D(self._image_value) # Create the contour plots self.polyplot = ContourPolyPlot(index=self._image_index, value=self._image_value, index_mapper=GridMapper(range= image_index_range), color_mapper=\ self._cmap(image_value_range), levels=self.num_levels) self.lineplot = ContourLinePlot(index=self._image_index, value=self._image_value, index_mapper=GridMapper(range= self.polyplot.index_mapper.range), levels=self.num_levels) # Add a left axis to the plot left = PlotAxis(orientation='left', title= "y", mapper=self.polyplot.index_mapper._ymapper, component=self.polyplot) self.polyplot.overlays.append(left) # Add a bottom axis to the plot bottom = PlotAxis(orientation='bottom', title= "x", mapper=self.polyplot.index_mapper._xmapper, component=self.polyplot) self.polyplot.overlays.append(bottom) # Add some tools to the plot self.polyplot.tools.append(PanTool(self.polyplot, constrain_key="shift")) self.polyplot.overlays.append(ZoomTool(component=self.polyplot, tool_mode="box", always_on=False)) self.polyplot.overlays.append(LineInspector(component=self.polyplot, axis='index_x', inspect_mode="indexed", write_metadata=True, is_listener=True, color="white")) self.polyplot.overlays.append(LineInspector(component=self.polyplot, axis='index_y', inspect_mode="indexed", write_metadata=True, color="white", is_listener=True)) # Add these two plots to one container contour_container = OverlayPlotContainer(padding=20, use_backbuffer=True, unified_draw=True) contour_container.add(self.polyplot) contour_container.add(self.lineplot) # Create a colorbar cbar_index_mapper = LinearMapper(range=image_value_range) self.colorbar = ColorBar(index_mapper=cbar_index_mapper, plot=self.polyplot, padding_top=self.polyplot.padding_top, padding_bottom=self.polyplot.padding_bottom, padding_right=40, resizable='v', width=30) self.pd = ArrayPlotData(line_index = array([]), line_value = array([]), scatter_index = array([]), scatter_value = array([]), scatter_color = array([])) self.cross_plot = Plot(self.pd, resizable="h") self.cross_plot.height = 100 self.cross_plot.padding = 20 self.cross_plot.plot(("line_index", "line_value"), line_style="dot") self.cross_plot.plot(("scatter_index","scatter_value","scatter_color"), type="cmap_scatter", name="dot", color_mapper=self._cmap(image_value_range), marker="circle", marker_size=8) self.cross_plot.index_range = self.polyplot.index_range.x_range self.pd.set_data("line_index2", array([])) self.pd.set_data("line_value2", array([])) self.pd.set_data("scatter_index2", array([])) self.pd.set_data("scatter_value2", array([])) self.pd.set_data("scatter_color2", array([])) self.cross_plot2 = Plot(self.pd, width = 140, orientation="v", resizable="v", padding=20, padding_bottom=160) self.cross_plot2.plot(("line_index2", "line_value2"), line_style="dot") self.cross_plot2.plot(("scatter_index2","scatter_value2","scatter_color2"), type="cmap_scatter", name="dot", color_mapper=self._cmap(image_value_range), marker="circle", marker_size=8) self.cross_plot2.index_range = self.polyplot.index_range.y_range # Create a container and add components self.container = HPlotContainer(padding=40, fill_padding=True, bgcolor = "white", use_backbuffer=False) inner_cont = VPlotContainer(padding=0, use_backbuffer=True) inner_cont.add(self.cross_plot) inner_cont.add(contour_container) self.container.add(self.colorbar) self.container.add(inner_cont) self.container.add(self.cross_plot2)
def create_hplot(self, key=None, mini=False): if mini: hpc = HPlotContainer(bgcolor='darkgrey', height=MINI_HEIGHT, resizable='h', padding=0) else: hpc = HPlotContainer(bgcolor='lightgrey', padding=HPLOT_PADDING, resizable='hv') # make slice plot for showing intesity profile of main plot #************************************************************ slice_plot = Plot(self.data, width=SLICE_PLOT_WIDTH, orientation="v", resizable="v", padding=MAIN_PADDING, padding_left=MAIN_PADDING_LEFT, bgcolor='beige', origin='top left') slice_plot.x_axis.visible = False slice_key = key + '_slice' ydata_key = key + '_y' slice_plot.plot((ydata_key, slice_key), name=slice_key) # make main plot for editing depth lines #************************************************************ main = Plot( self.data, border_visible=True, bgcolor='beige', origin='top left', padding=MAIN_PADDING, padding_left=MAIN_PADDING_LEFT, ) if mini: main.padding = MINI_PADDING # add intensity img to plot and get reference for line inspector #************************************************************ img_plot = main.img_plot(key, name=key, xbounds=self.model.xbounds[key], ybounds=self.model.ybounds[key], colormap=self._cmap)[0] # add line plots: use method since these may change #************************************************************ self.update_line_plots(key, main, update=True) # set slice plot index range to follow main plot value range #************************************************************ slice_plot.index_range = main.value_range # add vertical core lines to main plots and slices #************************************************************ # save pos and distance in session dict for view info and control for core in self.model.core_samples: loc_index, loc, dist = self.model.core_info_dict[core.core_id] # add boundarys to slice plot ref_line = self.model.final_lake_depth self.plot_core_depths(slice_plot, core, ref_line, loc_index) # add positions to main plots self.plot_core(main, core, ref_line, loc_index, loc) # now add tools depending if it is a mini plot or not #************************************************************ if mini: # add range selection tool only # first add a reference line to attach it to reference = self.make_reference_plot() main.add(reference) # attache range selector to this plot range_tool = RangeSelection(reference) reference.tools.append(range_tool) range_overlay = RangeSelectionOverlay(reference, metadata_name="selections") reference.overlays.append(range_overlay) range_tool.on_trait_change(self._range_selection_handler, "selection") # add zoombox to mini plot main.plot(('zoombox_x', 'zoombox_y'), type='polygon', face_color=ZOOMBOX_COLOR, alpha=ZOOMBOX_ALPHA) # add to hplot and dict hpc.add(main) self.hplot_dict['mini'] = hpc else: # add zoom tools main.tools.append(PanTool(main)) zoom = ZoomTool(main, tool_mode='box', axis='both', alpha=0.5) main.tools.append(zoom) main.overlays.append(zoom) main.value_mapper.on_trait_change(self.zoom_all_value, 'updated') main.index_mapper.on_trait_change(self.zoom_all_index, 'updated') # add line inspector and attach to freeze tool #********************************************* line_inspector = LineInspector(component=img_plot, axis='index_x', inspect_mode="indexed", is_interactive=True, write_metadata=True, metadata_name='x_slice', is_listener=True, color="white") img_plot.overlays.append(line_inspector) self.inspector_freeze_tool.tool_set.add(line_inspector) # add listener for changes to metadata made by line inspector #************************************************************ img_plot.on_trait_change(self.metadata_changed, 'index.metadata') # set slice plot index range to follow main plot value range #************************************************************ slice_plot.index_range = main.value_range # add clickable legend ; must update legend when depth_dict updated #****************************************************************** legend = Legend(component=main, padding=0, align="ur", font='modern 8') legend_highlighter = LegendHighlighter(legend, drag_button="right") legend.tools.append(legend_highlighter) self.update_legend_plots(legend, main) legend.visible = False self.legend_dict[key] = [legend, legend_highlighter] main.overlays.append(legend) # add main and slice plot to hplot container and dict #**************************************************** main.title = 'frequency = {} kHz'.format(key) main.title_font = TITLE_FONT hpc.add(main, slice_plot) self.hplot_dict[key] = hpc return hpc
def __init__(self, x, y, z): super(ImagePlot, self).__init__() self.pd_all = ArrayPlotData(imagedata=z) #self.pd_horiz = ArrayPlotData(x=x, horiz=z[4, :]) #self.pd_vert = ArrayPlotData(y=y, vert=z[:,5]) self._imag_index = GridDataSource(xdata=x, ydata=y, sort_order=("ascending", "ascending")) index_mapper = GridMapper(range=DataRange2D(self._imag_index)) self._imag_index.on_trait_change(self._metadata_changed, "metadata_changed") self._image_value = ImageData(data=z, value_depth=1) color_mapper = jet(DataRange1D(self._image_value)) self.color_plot = CMapImagePlot(index=self._imag_index, index_mapper=index_mapper, value=self._image_value, value_mapper=color_mapper, padding=20, use_backbuffer=True, unified_draw=True) #Add axes to image plot left = PlotAxis(orientation='left', title="Frequency (GHz)", mapper=self.color_plot.index_mapper._ymapper, component=self.color_plot) self.color_plot.overlays.append(left) bottom = PlotAxis(orientation='bottom', title="Time (us)", mapper=self.color_plot.index_mapper._xmapper, component=self.color_plot) self.color_plot.overlays.append(bottom) self.color_plot.tools.append( PanTool(self.color_plot, constrain_key="shift")) self.color_plot.overlays.append( ZoomTool(component=self.color_plot, tool_mode="box", always_on=False)) #Add line inspector tool for horizontal and vertical self.color_plot.overlays.append( LineInspector(component=self.color_plot, axis='index_x', inspect_mode="indexed", write_metadata=True, is_listener=True, color="white")) self.color_plot.overlays.append( LineInspector(component=self.color_plot, axis='index_y', inspect_mode="indexed", write_metadata=True, color="white", is_listener=True)) myrange = DataRange1D(low=amin(z), high=amax(z)) cmap = jet self.colormap = cmap(myrange) # Create a colorbar cbar_index_mapper = LinearMapper(range=myrange) self.colorbar = ColorBar(index_mapper=cbar_index_mapper, plot=self.color_plot, padding_top=self.color_plot.padding_top, padding_bottom=self.color_plot.padding_bottom, padding_right=40, resizable='v', width=30) #, ytitle="Magvec (mV)") #create horizontal line plot self.horiz_cross_plot = Plot(self.pd_horiz, resizable="h") self.horiz_cross_plot.height = 100 self.horiz_cross_plot.padding = 20 self.horiz_cross_plot.plot(("x", "horiz")) #, #line_style="dot") # self.cross_plot.plot(("scatter_index","scatter_value","scatter_color"), # type="cmap_scatter", # name="dot", # color_mapper=self._cmap(image_value_range), # marker="circle", # marker_size=8) self.horiz_cross_plot.index_range = self.color_plot.index_range.x_range #create vertical line plot self.vert_cross_plot = Plot(self.pd_vert, width=140, orientation="v", resizable="v", padding=20, padding_bottom=160) self.vert_cross_plot.plot(("y", "vert")) #, # line_style="dot") # self.vert_cross_plot.xtitle="Magvec (mV)" # self.vertica_cross_plot.plot(("vertical_scatter_index", # "vertical_scatter_value", # "vertical_scatter_color"), # type="cmap_scatter", # name="dot", # color_mapper=self._cmap(image_value_range), # marker="circle", # marker_size=8) self.vert_cross_plot.index_range = self.color_plot.index_range.y_range # Create a container and add components self.container = HPlotContainer(padding=40, fill_padding=True, bgcolor="white", use_backbuffer=False) inner_cont = VPlotContainer(padding=0, use_backbuffer=True) inner_cont.add(self.horiz_cross_plot) inner_cont.add(self.color_plot) self.container.add(self.colorbar) self.container.add(inner_cont) self.container.add(self.vert_cross_plot)
def _add_line_tool(self, input_plot): input_plot.overlays.append(LineInspector(input_plot, axis='index', #inspect_mode="indexed", # will show two line color="gray", write_metadata=True, is_listener=True))
def _plot2(self): print"...plotting line scans" title = str(self.plotE['plot']) + str(self.plotE["notes"]["start"]) self.plotdata5 = ArrayPlotData(imagedata = self.plotE['data']) self._image_index = GridDataSource(array([]), array([]), sort_order=("ascending","ascending")) self.xs = linspace(self.plotE["range"][0][0], self.plotE["range"][0][1], self.plotE["shape"][0]) self.ys = linspace(self.plotE["range"][1][0], self.plotE["range"][1][1], self.plotE["shape"][1]) self._image_index.set_data(self.xs, self.ys) image_index_range = DataRange2D(self._image_index) self._image_value = ImageData(data=array([]), value_depth=1) self._image_value.data = self.plotE['data'] image_value_range = DataRange1D(self._image_value) s = "" f = "" if self.x_s: s = "X" if self.y_s: s = "Y" if self.z_s: s = "Z" if self.x_f: f = "X" if self.y_f: f = "Y" if self.z_f: f = "Z" self.plot1lines = Plot(self.plotdata5, title = title) self.plot1lines.img_plot("imagedata", xbounds = (self.plotE["range"][0][0],self.plotE["range"][0][1]), ybounds = (self.plotE["range"][1][0],self.plotE["range"][1][1]), colormap=jet) img_plot = self.plot1lines.img_plot("imagedata")[0] imgtool = ImageInspectorTool(img_plot) img_plot.tools.append(imgtool) overlay = ImageInspectorOverlay(component=img_plot, image_inspector=imgtool, bgcolor="white", border_visible=True) self.plot1lines.overlays.append(overlay) ##ADD TOOLS self.plot1lines.tools.append(PanTool(self.plot1lines)) zoom1 = ZoomTool(component=self.plot1lines, tool_mode="box", always_on=False) self.plot1lines.overlays.append(zoom1) self.plot1lines.overlays.append(LineInspector(component=self.plot1lines, axis='index_x', inspect_mode="indexed", write_metadata=True, is_listener=False, #constrain_key="right", color="white")) self.plot1lines.overlays.append(LineInspector(component=self.plot1lines, axis='index_y', inspect_mode="indexed", write_metadata=True, color="white", is_listener=False)) ##ADD COLORBAR self.colorbar5 = ColorBar(index_mapper=LinearMapper(range=self.plot1lines.color_mapper.range), color_mapper=self.plot1lines.color_mapper, orientation='v', resizable='v', width=20, padding=5) self.colorbar5.plot = self.plot1lines self.colorbar5.tools.append(PanTool(self.colorbar5, constrain_direction="y", constrain=True)) self.zoom_overlay5 = ZoomTool(self.colorbar5, axis="index", tool_mode="range", always_on=True, drag_button="right") self.colorbar5.overlays.append(self.zoom_overlay5) self.pd = ArrayPlotData(line_index = array([]), line_value = array([])) self.slow_plot = Plot(self.pd, title = "Slowline : " + self.slowline) self.slow_plot.plot(("line_index", "line_value"), line_style='solid') self.pd.set_data("line_index2", array([])) self.pd.set_data("line_value2", array([])) self.fast_plot = Plot(self.pd, title = "Fastline : " + self.fastline) self.fast_plot.plot(("line_index2", "line_value2"), line_style='solid') self.pd.set_data("line_index", self.xs) self.pd.set_data("line_index2", self.ys) self.pd.set_data("line_value", self._image_value.data[self.fastscanline,:]) self.pd.set_data("line_value2", self._image_value.data[:,self.slowscanline]) self.colorbar5.padding= 0 self.colorbar5.padding_left = 15 #self.colorbar5.height = 400 self.colorbar5.padding_top =50 self.colorbar5.padding_bottom = 0 self.colorbar5.padding_right = 25 self.colorbar5.padding_left = 50 self.plot1lines.width = 300 self.plot1lines.padding_top = 50 self.plot1lines.index_axis.title = 'fast axis (um)' self.plot1lines.value_axis.title = 'slow axis (um)' self.slow_plot.width = 100 self.slow_plot.padding_right = 20 self.fast_plot.width = 100 self.fast_plot.padding_right = 20 self.container2 = GridPlotContainer(shape = (1,2), spacing = ((0,0)), use_backbuffer=True, valign = 'top', halign = 'center', bgcolor = 'white') self.container3 = GridPlotContainer(shape = (2,1), spacing = (0,0), use_backbuffer=True, valign = 'top', halign = 'center', bgcolor = 'grey') self.container4 = GridPlotContainer(shape = (1,2), spacing = (0,0), use_backbuffer=True, valign = 'top', halign = 'center', bgcolor = 'grey') self.container2.add(self.colorbar5) self.container3.add(self.fast_plot) self.container3.add(self.slow_plot) self.container4.add(self.container3) self.container4.add(self.plot1lines) self.container2.add(self.container4) self.LineScans = self.container2 self._readline_fired() self._scale_set_fired()