예제 #1
0
파일: data_cube.py 프로젝트: jcapriot/src
    def _add_plot_tools(self, imgplot, token):
        """ Add LineInspectors, ImageIndexTool, and ZoomTool to the image plots. """

        imgplot.overlays.append(
            ZoomTool(component=imgplot,
                     tool_mode="box",
                     enable_wheel=False,
                     always_on=False))
        imgplot.overlays.append(
            LineInspector(imgplot,
                          axis="index_y",
                          color="white",
                          inspect_mode="indexed",
                          write_metadata=True,
                          is_listener=True))
        imgplot.overlays.append(
            LineInspector(imgplot,
                          axis="index_x",
                          color="white",
                          inspect_mode="indexed",
                          write_metadata=True,
                          is_listener=True))
        imgplot.tools.append(
            ImageIndexTool(imgplot,
                           token=token,
                           callback=self._index_callback,
                           wheel_cb=self._wheel_callback))
예제 #2
0
    def _container_default(self):
        container = super(PlotExample3, self)._container_default()

        rplot, lplot = self.right_plot, self.left_plot
        lplot.overlays.append(LineInspector(component=lplot,
                write_metadata=True, is_listener=True))
        rplot.overlays.append(LineInspector(component=rplot,
                write_metadata=True, is_listener=True))
        rplot.index = lplot.index

        return container
예제 #3
0
def _create_plot_component():

    # Create the index
    numpoints = 100
    low = -5
    high = 15.0
    x = arange(low, high, (high - low) / numpoints)
    plotdata = ArrayPlotData(x=x, y1=jn(0, x), y2=jn(1, x))

    # Create the left plot
    left_plot = Plot(plotdata)
    left_plot.x_axis.title = "X"
    left_plot.y_axis.title = "j0(x)"
    renderer = left_plot.plot(("x", "y1"),
                              type="line",
                              color="blue",
                              width=2.0)[0]
    renderer.overlays.append(
        LineInspector(renderer,
                      axis='value',
                      write_metadata=True,
                      is_listener=True))
    renderer.overlays.append(
        LineInspector(renderer,
                      axis="index",
                      write_metadata=True,
                      is_listener=True))
    left_plot.overlays.append(ZoomTool(left_plot, tool_mode="range"))
    left_plot.tools.append(PanTool(left_plot))

    # Create the right plot
    right_plot = Plot(plotdata)
    right_plot.index_range = left_plot.index_range
    right_plot.orientation = "v"
    right_plot.x_axis.title = "j1(x)"
    right_plot.y_axis.title = "X"
    renderer2 = right_plot.plot(("x", "y2"),
                                type="line",
                                color="red",
                                width=2.0)[0]
    renderer2.index = renderer.index
    renderer2.overlays.append(
        LineInspector(renderer2, write_metadata=True, is_listener=True))
    renderer2.overlays.append(
        LineInspector(renderer2, axis="value", is_listener=True))
    right_plot.overlays.append(ZoomTool(right_plot, tool_mode="range"))
    right_plot.tools.append(PanTool(right_plot))

    container = HPlotContainer(background="lightgray")
    container.add(left_plot)
    container.add(right_plot)

    return container
예제 #4
0
파일: ChacoQWidget.py 프로젝트: spherik/meg
    def _dipole_plot_default(self):
        print('_dipole_plot_default')
        """Create the Plot instance."""

        #pd = ArrayPlotData(index = self.dipole_data_model.x_index)
        #pd.set_data("y", self.dipole_data_model.data)

        plot = create_line_plot(
            (self.dipole_data_model.x_index, self.dipole_data_model.data),
            color='black')
        #plot.add(self.dipole_renderer)
        #plot.plot(("index", "y"))

        x_axis = PlotAxis(component=plot,
                          mapper=plot.index_mapper,
                          orientation='bottom')
        # # y_axis = PlotAxis(component=plot,
        # #                     mapper=self.signals_renderer.value_mapper,
        # #                     orientation='left')
        plot.overlays.extend([x_axis])
        plot.index = self.signals_renderer.index
        plot.overlays.append(
            LineInspector(plot, write_metadata=True, is_listener=True))
        # plot.overlays.append(LineInspector(plot, axis="value",
        #                           is_listener=True))

        plot.origin_axis_visible = False
        plot.padding_top = 0
        plot.padding_left = 0
        plot.padding_right = 0
        plot.padding_bottom = 50
        plot.border_visible = False
        plot.bgcolor = "white"
        plot.use_downsampling = True
        return plot
예제 #5
0
파일: graph.py 프로젝트: sgallet/pychron
 def _add_line_inspector(self, plot, axis='x', color='red'):
     '''
     '''
     plot.overlays.append(
         LineInspector(component=plot,
                       axis='index_%s' % axis,
                       write_metadata=self.line_inspectors_write_metadata,
                       inspect_mode='indexed',
                       is_listener=False,
                       color=color))
예제 #6
0
파일: depth.py 프로젝트: dpinte/chaco
    def __init__(self, depth, data_series, **kw):
        super(MyPlot, self).__init__(**kw)

        plot_data = ArrayPlotData(index=depth)
        plot_data.set_data('data_series', data_series)
        self.plot = ToolbarPlot(plot_data, orientation='v', origin='top left')
        line = self.plot.plot(('index', 'data_series'))[0]

        line_inspector = LineInspector(component=line, write_metadata=True)
        line.tools.append(line_inspector)
        line.overlays.append(line_inspector)
예제 #7
0
    def _container_default(self):
        container = super(PlotExample4, self)._container_default()

        rplot, lplot = self.right_plot, self.left_plot
        rplot.orientation = "v"
        rplot.hgrid.mapper = rplot.index_mapper
        rplot.vgrid.mapper = rplot.value_mapper
        rplot.y_axis.mapper = rplot.index_mapper
        rplot.x_axis.mapper = rplot.value_mapper

        lplot.overlays.append(
            LineInspector(
                component=lplot,
                axis="value",
                write_metadata=True,
                is_listener=True,
                color="blue"))
        lplot.overlays.append(
            LineInspector(
                component=lplot,
                axis="value",
                write_metadata=True,
                is_listener=True,
                color="blue"))

        rplot.overlays.append(
            LineInspector(
                component=rplot,
                axis="value",
                write_metadata=True,
                is_listener=True,
                color="blue"))
        rplot.overlays.append(
            LineInspector(
                component=rplot,
                axis="value",
                write_metadata=True,
                is_listener=True,
                color="blue"))

        return container
예제 #8
0
파일: ChacoQWidget.py 프로젝트: spherik/meg
    def _signals_renderer_default(self):
        print('_signals_renderer_default')
        """Create the default MultiLinePlot instance."""

        xs = ArrayDataSource(self.signals_data_model.x_index,
                             sort_order='ascending')
        xrange = DataRange1D()
        xrange.add(xs)

        ys = ArrayDataSource(self.signals_data_model.y_index,
                             sort_order='ascending')
        yrange = DataRange1D()
        yrange.add(ys)

        # The data source for the MultiLinePlot.
        ds = MultiArrayDataSource(data=self.signals_data_model.data)

        multi_line_plot_renderer = \
            MultiLinePlot(
                index = xs,
                yindex = ys,
                index_mapper = LinearMapper(range=xrange),
                value_mapper = LinearMapper(range=yrange),
                value=ds,
                global_max = self.signals_data_model.data.max(),
                global_min = self.signals_data_model.data.min(),
                fast_clip = False)

        # Add pan tool
        multi_line_plot_renderer.tools.append(
            PanTool(multi_line_plot_renderer, restrict_to_data=True))

        # Add zoom tool
        multi_line_plot_renderer.overlays.append(
            ZoomTool(multi_line_plot_renderer,
                     tool_mode="range",
                     always_on=False,
                     x_max_zoom_factor=20.0,
                     y_max_zoom_factor=20.0,
                     x_min_zoom_factor=1.0,
                     y_min_zoom_factor=1.0,
                     zoom_to_mouse=True))
        #multi_line_plot_renderer.overlays.append(LineInspector(multi_line_plot_renderer, axis="index",write_metadata=True,is_listener=True))
        # multi_line_plot_renderer.overlays.append(LineInspector(multi_line_plot_renderer, axis='value',
        #                                         write_metadata=True,
        #                                         is_listener=True))
        multi_line_plot_renderer.overlays.append(
            LineInspector(multi_line_plot_renderer,
                          axis="index",
                          write_metadata=True,
                          is_listener=True))
        return multi_line_plot_renderer
예제 #9
0
    def _plot_image(self, plot, data):
        if self.colormap == 'gray':
            image = to_RGB(data)
        else:
            image = data
        self.pd.set_data("imagedata", image)
        plot.aspect_ratio = float(image.shape[1]) / image.shape[0]
        if not plot.plots:
            img_plot = plot.img_plot("imagedata", name='image')[0]

            img_plot.index.on_trait_change(self._metadata_changed,
                                           "metadata_changed")

            img_plot.overlays.append(
                LineInspector(component=img_plot,
                              axis='index_x',
                              inspect_mode="indexed",
                              write_metadata=True,
                              is_listener=False,
                              color="white"))
            img_plot.overlays.append(
                LineInspector(component=img_plot,
                              axis='index_y',
                              inspect_mode="indexed",
                              write_metadata=True,
                              color="white",
                              is_listener=False))

        img_plot = plot.plots['image'][0]
        shape = image.shape
        self.h_plot.index_range = img_plot.index_range.x_range
        self.v_plot.index_range = img_plot.index_range.y_range
        self.pd.set_data('h_index', numpy.arange(shape[1]))
        self.pd.set_data('v_index', numpy.arange(shape[0]))
        self.plot.request_redraw()
        self.container.request_redraw()
    def create_plot(self):

        # Create the mapper, etc
        self._image_index = GridDataSource(array([]),
                                          array([]),
                                          sort_order=("ascending","ascending"))
        image_index_range = DataRange2D(self._image_index)
        self._image_index.on_trait_change(self._metadata_changed,
                                          "metadata_changed")

        self._image_value = ImageData(data=array([]), value_depth=1)
        image_value_range = DataRange1D(self._image_value)



        # Create the contour plots
        self.polyplot = ContourPolyPlot(index=self._image_index,
                                        value=self._image_value,
                                        index_mapper=GridMapper(range=
                                            image_index_range),
                                        color_mapper=\
                                            self._cmap(image_value_range),
                                        levels=self.num_levels)

        self.lineplot = ContourLinePlot(index=self._image_index,
                                        value=self._image_value,
                                        index_mapper=GridMapper(range=
                                            self.polyplot.index_mapper.range),
                                        levels=self.num_levels)


        # Add a left axis to the plot
        left = PlotAxis(orientation='left',
                        title= "y",
                        mapper=self.polyplot.index_mapper._ymapper,
                        component=self.polyplot)
        self.polyplot.overlays.append(left)

        # Add a bottom axis to the plot
        bottom = PlotAxis(orientation='bottom',
                          title= "x",
                          mapper=self.polyplot.index_mapper._xmapper,
                          component=self.polyplot)
        self.polyplot.overlays.append(bottom)


        # Add some tools to the plot
        self.polyplot.tools.append(PanTool(self.polyplot,
                                           constrain_key="shift"))
        self.polyplot.overlays.append(ZoomTool(component=self.polyplot,
                                            tool_mode="box", always_on=False))
        self.polyplot.overlays.append(LineInspector(component=self.polyplot,
                                               axis='index_x',
                                               inspect_mode="indexed",
                                               write_metadata=True,
                                               is_listener=True,
                                               color="white"))
        self.polyplot.overlays.append(LineInspector(component=self.polyplot,
                                               axis='index_y',
                                               inspect_mode="indexed",
                                               write_metadata=True,
                                               color="white",
                                               is_listener=True))

        # Add these two plots to one container
        contour_container = OverlayPlotContainer(padding=20,
                                                 use_backbuffer=True,
                                                 unified_draw=True)
        contour_container.add(self.polyplot)
        contour_container.add(self.lineplot)


        # Create a colorbar
        cbar_index_mapper = LinearMapper(range=image_value_range)
        self.colorbar = ColorBar(index_mapper=cbar_index_mapper,
                                 plot=self.polyplot,
                                 padding_top=self.polyplot.padding_top,
                                 padding_bottom=self.polyplot.padding_bottom,
                                 padding_right=40,
                                 resizable='v',
                                 width=30)

        self.pd = ArrayPlotData(line_index = array([]),
                                line_value = array([]),
                                scatter_index = array([]),
                                scatter_value = array([]),
                                scatter_color = array([]))

        self.cross_plot = Plot(self.pd, resizable="h")
        self.cross_plot.height = 100
        self.cross_plot.padding = 20
        self.cross_plot.plot(("line_index", "line_value"),
                             line_style="dot")
        self.cross_plot.plot(("scatter_index","scatter_value","scatter_color"),
                             type="cmap_scatter",
                             name="dot",
                             color_mapper=self._cmap(image_value_range),
                             marker="circle",
                             marker_size=8)

        self.cross_plot.index_range = self.polyplot.index_range.x_range

        self.pd.set_data("line_index2", array([]))
        self.pd.set_data("line_value2", array([]))
        self.pd.set_data("scatter_index2", array([]))
        self.pd.set_data("scatter_value2", array([]))
        self.pd.set_data("scatter_color2", array([]))

        self.cross_plot2 = Plot(self.pd, width = 140, orientation="v", resizable="v", padding=20, padding_bottom=160)
        self.cross_plot2.plot(("line_index2", "line_value2"),
                             line_style="dot")
        self.cross_plot2.plot(("scatter_index2","scatter_value2","scatter_color2"),
                             type="cmap_scatter",
                             name="dot",
                             color_mapper=self._cmap(image_value_range),
                             marker="circle",
                             marker_size=8)

        self.cross_plot2.index_range = self.polyplot.index_range.y_range



        # Create a container and add components
        self.container = HPlotContainer(padding=40, fill_padding=True,
                                        bgcolor = "white", use_backbuffer=False)
        inner_cont = VPlotContainer(padding=0, use_backbuffer=True)
        inner_cont.add(self.cross_plot)
        inner_cont.add(contour_container)
        self.container.add(self.colorbar)
        self.container.add(inner_cont)
        self.container.add(self.cross_plot2)
예제 #11
0
    def create_hplot(self, key=None, mini=False):
        if mini:
            hpc = HPlotContainer(bgcolor='darkgrey',
                                 height=MINI_HEIGHT,
                                 resizable='h',
                                 padding=0)
        else:
            hpc = HPlotContainer(bgcolor='lightgrey',
                                 padding=HPLOT_PADDING,
                                 resizable='hv')

        # make slice plot for showing intesity profile of main plot
        #************************************************************
        slice_plot = Plot(self.data,
                          width=SLICE_PLOT_WIDTH,
                          orientation="v",
                          resizable="v",
                          padding=MAIN_PADDING,
                          padding_left=MAIN_PADDING_LEFT,
                          bgcolor='beige',
                          origin='top left')

        slice_plot.x_axis.visible = False
        slice_key = key + '_slice'
        ydata_key = key + '_y'
        slice_plot.plot((ydata_key, slice_key), name=slice_key)

        # make main plot for editing depth lines
        #************************************************************
        main = Plot(
            self.data,
            border_visible=True,
            bgcolor='beige',
            origin='top left',
            padding=MAIN_PADDING,
            padding_left=MAIN_PADDING_LEFT,
        )
        if mini:
            main.padding = MINI_PADDING

        # add intensity img to plot and get reference for line inspector
        #************************************************************
        img_plot = main.img_plot(key,
                                 name=key,
                                 xbounds=self.model.xbounds[key],
                                 ybounds=self.model.ybounds[key],
                                 colormap=self._cmap)[0]

        # add line plots: use method since these may change
        #************************************************************
        self.update_line_plots(key, main, update=True)

        # set slice plot index range to follow main plot value range
        #************************************************************
        slice_plot.index_range = main.value_range

        # add vertical core lines to main plots and slices
        #************************************************************
        # save pos and distance in session dict for view info and control
        for core in self.model.core_samples:
            loc_index, loc, dist = self.model.core_info_dict[core.core_id]
            # add boundarys to slice plot
            ref_line = self.model.final_lake_depth
            self.plot_core_depths(slice_plot, core, ref_line, loc_index)
            # add positions to main plots
            self.plot_core(main, core, ref_line, loc_index, loc)

        # now add tools depending if it is a mini plot or not
        #************************************************************
        if mini:
            # add range selection tool only
            # first add a reference line to attach it to
            reference = self.make_reference_plot()
            main.add(reference)
            # attache range selector to this plot
            range_tool = RangeSelection(reference)
            reference.tools.append(range_tool)
            range_overlay = RangeSelectionOverlay(reference,
                                                  metadata_name="selections")
            reference.overlays.append(range_overlay)
            range_tool.on_trait_change(self._range_selection_handler,
                                       "selection")
            # add zoombox to mini plot
            main.plot(('zoombox_x', 'zoombox_y'),
                      type='polygon',
                      face_color=ZOOMBOX_COLOR,
                      alpha=ZOOMBOX_ALPHA)
            # add to hplot and dict
            hpc.add(main)
            self.hplot_dict['mini'] = hpc

        else:
            # add zoom tools
            main.tools.append(PanTool(main))
            zoom = ZoomTool(main, tool_mode='box', axis='both', alpha=0.5)
            main.tools.append(zoom)
            main.overlays.append(zoom)
            main.value_mapper.on_trait_change(self.zoom_all_value, 'updated')
            main.index_mapper.on_trait_change(self.zoom_all_index, 'updated')
            # add line inspector and attach to freeze tool
            #*********************************************
            line_inspector = LineInspector(component=img_plot,
                                           axis='index_x',
                                           inspect_mode="indexed",
                                           is_interactive=True,
                                           write_metadata=True,
                                           metadata_name='x_slice',
                                           is_listener=True,
                                           color="white")
            img_plot.overlays.append(line_inspector)
            self.inspector_freeze_tool.tool_set.add(line_inspector)

            # add listener for changes to metadata made by line inspector
            #************************************************************
            img_plot.on_trait_change(self.metadata_changed, 'index.metadata')

            # set slice plot index range to follow main plot value range
            #************************************************************
            slice_plot.index_range = main.value_range

            # add clickable legend ; must update legend when depth_dict updated
            #******************************************************************
            legend = Legend(component=main,
                            padding=0,
                            align="ur",
                            font='modern 8')
            legend_highlighter = LegendHighlighter(legend, drag_button="right")
            legend.tools.append(legend_highlighter)
            self.update_legend_plots(legend, main)
            legend.visible = False
            self.legend_dict[key] = [legend, legend_highlighter]
            main.overlays.append(legend)

            # add main and slice plot to hplot container and dict
            #****************************************************
            main.title = 'frequency = {} kHz'.format(key)
            main.title_font = TITLE_FONT
            hpc.add(main, slice_plot)
            self.hplot_dict[key] = hpc

        return hpc
    def __init__(self, x, y, z):
        super(ImagePlot, self).__init__()
        self.pd_all = ArrayPlotData(imagedata=z)
        #self.pd_horiz = ArrayPlotData(x=x, horiz=z[4, :])
        #self.pd_vert = ArrayPlotData(y=y, vert=z[:,5])

        self._imag_index = GridDataSource(xdata=x,
                                          ydata=y,
                                          sort_order=("ascending",
                                                      "ascending"))
        index_mapper = GridMapper(range=DataRange2D(self._imag_index))
        self._imag_index.on_trait_change(self._metadata_changed,
                                         "metadata_changed")
        self._image_value = ImageData(data=z, value_depth=1)
        color_mapper = jet(DataRange1D(self._image_value))

        self.color_plot = CMapImagePlot(index=self._imag_index,
                                        index_mapper=index_mapper,
                                        value=self._image_value,
                                        value_mapper=color_mapper,
                                        padding=20,
                                        use_backbuffer=True,
                                        unified_draw=True)

        #Add axes to image plot
        left = PlotAxis(orientation='left',
                        title="Frequency (GHz)",
                        mapper=self.color_plot.index_mapper._ymapper,
                        component=self.color_plot)

        self.color_plot.overlays.append(left)

        bottom = PlotAxis(orientation='bottom',
                          title="Time (us)",
                          mapper=self.color_plot.index_mapper._xmapper,
                          component=self.color_plot)
        self.color_plot.overlays.append(bottom)

        self.color_plot.tools.append(
            PanTool(self.color_plot, constrain_key="shift"))
        self.color_plot.overlays.append(
            ZoomTool(component=self.color_plot,
                     tool_mode="box",
                     always_on=False))

        #Add line inspector tool for horizontal and vertical
        self.color_plot.overlays.append(
            LineInspector(component=self.color_plot,
                          axis='index_x',
                          inspect_mode="indexed",
                          write_metadata=True,
                          is_listener=True,
                          color="white"))

        self.color_plot.overlays.append(
            LineInspector(component=self.color_plot,
                          axis='index_y',
                          inspect_mode="indexed",
                          write_metadata=True,
                          color="white",
                          is_listener=True))

        myrange = DataRange1D(low=amin(z), high=amax(z))
        cmap = jet
        self.colormap = cmap(myrange)

        # Create a colorbar
        cbar_index_mapper = LinearMapper(range=myrange)
        self.colorbar = ColorBar(index_mapper=cbar_index_mapper,
                                 plot=self.color_plot,
                                 padding_top=self.color_plot.padding_top,
                                 padding_bottom=self.color_plot.padding_bottom,
                                 padding_right=40,
                                 resizable='v',
                                 width=30)  #, ytitle="Magvec (mV)")

        #create horizontal line plot
        self.horiz_cross_plot = Plot(self.pd_horiz, resizable="h")
        self.horiz_cross_plot.height = 100
        self.horiz_cross_plot.padding = 20
        self.horiz_cross_plot.plot(("x", "horiz"))  #,
        #line_style="dot")
        #        self.cross_plot.plot(("scatter_index","scatter_value","scatter_color"),
        #                             type="cmap_scatter",
        #                             name="dot",
        #                             color_mapper=self._cmap(image_value_range),
        #                             marker="circle",
        #                             marker_size=8)

        self.horiz_cross_plot.index_range = self.color_plot.index_range.x_range

        #create vertical line plot
        self.vert_cross_plot = Plot(self.pd_vert,
                                    width=140,
                                    orientation="v",
                                    resizable="v",
                                    padding=20,
                                    padding_bottom=160)
        self.vert_cross_plot.plot(("y", "vert"))  #,
        #                             line_style="dot")
        # self.vert_cross_plot.xtitle="Magvec (mV)"
        #       self.vertica_cross_plot.plot(("vertical_scatter_index",
        #                              "vertical_scatter_value",
        #                              "vertical_scatter_color"),
        #                            type="cmap_scatter",
        #                            name="dot",
        #                            color_mapper=self._cmap(image_value_range),
        #                            marker="circle",
        #                           marker_size=8)

        self.vert_cross_plot.index_range = self.color_plot.index_range.y_range

        # Create a container and add components
        self.container = HPlotContainer(padding=40,
                                        fill_padding=True,
                                        bgcolor="white",
                                        use_backbuffer=False)
        inner_cont = VPlotContainer(padding=0, use_backbuffer=True)
        inner_cont.add(self.horiz_cross_plot)
        inner_cont.add(self.color_plot)
        self.container.add(self.colorbar)
        self.container.add(inner_cont)
        self.container.add(self.vert_cross_plot)
예제 #13
0
 def _add_line_tool(self, input_plot):
         input_plot.overlays.append(LineInspector(input_plot, axis='index',
                                                  #inspect_mode="indexed", # will show two line
                                                  color="gray",
                                                  write_metadata=True,
                                                  is_listener=True))
예제 #14
0
    def _plot2(self):

        print"...plotting line scans"
        title = str(self.plotE['plot']) + str(self.plotE["notes"]["start"])
        self.plotdata5 = ArrayPlotData(imagedata = self.plotE['data'])



        self._image_index = GridDataSource(array([]),
                                          array([]),
                                          sort_order=("ascending","ascending"))

        self.xs = linspace(self.plotE["range"][0][0], self.plotE["range"][0][1], self.plotE["shape"][0])
        self.ys = linspace(self.plotE["range"][1][0], self.plotE["range"][1][1], self.plotE["shape"][1])

        self._image_index.set_data(self.xs, self.ys)

        image_index_range = DataRange2D(self._image_index)


        self._image_value = ImageData(data=array([]), value_depth=1)
        self._image_value.data = self.plotE['data']
        image_value_range = DataRange1D(self._image_value)

        s = ""
        f = ""
        if self.x_s: s = "X"
        if self.y_s: s = "Y"
        if self.z_s: s = "Z"
        if self.x_f: f = "X"
        if self.y_f: f = "Y"
        if self.z_f: f = "Z"


        self.plot1lines = Plot(self.plotdata5,  title = title)
        self.plot1lines.img_plot("imagedata", xbounds = (self.plotE["range"][0][0],self.plotE["range"][0][1]), ybounds = (self.plotE["range"][1][0],self.plotE["range"][1][1]), colormap=jet)
        img_plot = self.plot1lines.img_plot("imagedata")[0]
        imgtool = ImageInspectorTool(img_plot)
        img_plot.tools.append(imgtool)
        overlay = ImageInspectorOverlay(component=img_plot, image_inspector=imgtool,
                                    bgcolor="white", border_visible=True)
        self.plot1lines.overlays.append(overlay)
##ADD TOOLS

        self.plot1lines.tools.append(PanTool(self.plot1lines))
        zoom1 = ZoomTool(component=self.plot1lines, tool_mode="box", always_on=False)
        self.plot1lines.overlays.append(zoom1)

        self.plot1lines.overlays.append(LineInspector(component=self.plot1lines,
                                               axis='index_x',
                                               inspect_mode="indexed",
                                               write_metadata=True,
                                               is_listener=False,
                                               #constrain_key="right",
                                               color="white"))
        self.plot1lines.overlays.append(LineInspector(component=self.plot1lines,
                                               axis='index_y',
                                               inspect_mode="indexed",
                                               write_metadata=True,
                                               color="white",
                                               is_listener=False))




##ADD COLORBAR

        self.colorbar5  = ColorBar(index_mapper=LinearMapper(range=self.plot1lines.color_mapper.range),
                        color_mapper=self.plot1lines.color_mapper,
                        orientation='v',
                        resizable='v',
                        width=20,
                        padding=5)
        self.colorbar5.plot = self.plot1lines


        self.colorbar5.tools.append(PanTool(self.colorbar5, constrain_direction="y", constrain=True))
        self.zoom_overlay5 = ZoomTool(self.colorbar5, axis="index", tool_mode="range",
                            always_on=True, drag_button="right")
        self.colorbar5.overlays.append(self.zoom_overlay5)

        self.pd = ArrayPlotData(line_index = array([]),
                                line_value = array([]))



        self.slow_plot = Plot(self.pd,   title = "Slowline : " + self.slowline)
        self.slow_plot.plot(("line_index", "line_value"),
                             line_style='solid')

        self.pd.set_data("line_index2", array([]))
        self.pd.set_data("line_value2", array([]))

        self.fast_plot = Plot(self.pd,   title = "Fastline : " + self.fastline)
        self.fast_plot.plot(("line_index2", "line_value2"),
                             line_style='solid')


        self.pd.set_data("line_index", self.xs)
        self.pd.set_data("line_index2", self.ys)
        self.pd.set_data("line_value",
                                 self._image_value.data[self.fastscanline,:])
        self.pd.set_data("line_value2",
                                 self._image_value.data[:,self.slowscanline])

        self.colorbar5.padding= 0
        self.colorbar5.padding_left = 15
        #self.colorbar5.height = 400
        self.colorbar5.padding_top =50
        self.colorbar5.padding_bottom = 0
        self.colorbar5.padding_right = 25
        self.colorbar5.padding_left = 50

        self.plot1lines.width = 300
        self.plot1lines.padding_top = 50

        self.plot1lines.index_axis.title = 'fast axis (um)'
        self.plot1lines.value_axis.title = 'slow axis (um)'

        self.slow_plot.width = 100
        self.slow_plot.padding_right = 20

        self.fast_plot.width = 100
        self.fast_plot.padding_right = 20

        self.container2 = GridPlotContainer(shape = (1,2), spacing = ((0,0)), use_backbuffer=True,
	                                     valign = 'top', halign = 'center', bgcolor = 'white')
        self.container3 = GridPlotContainer(shape = (2,1), spacing = (0,0), use_backbuffer=True,
	                                     valign = 'top', halign = 'center', bgcolor = 'grey')
        self.container4 = GridPlotContainer(shape = (1,2), spacing = (0,0), use_backbuffer=True,
	                                     valign = 'top', halign = 'center', bgcolor = 'grey')

        self.container2.add(self.colorbar5)
        self.container3.add(self.fast_plot)
        self.container3.add(self.slow_plot)
        self.container4.add(self.container3)
        self.container4.add(self.plot1lines)
        self.container2.add(self.container4)
        self.LineScans = self.container2

        self._readline_fired()
        self._scale_set_fired()