def wrapper(db,feature_type, sample, data): # サンプルのグループを取ってくるだけ # Sample … (ft,_id,type,cls,group,likelihood,weight) #print "function: predict" clf_id = generate_clf_id(algorithm,feature_type,data) # 予測部 collection = db["classifiers"] try: record = collection.find_one({'_id':clf_id}) if record == None: return error_json("No classifier was found.") print "load %s..."%record['clf'] clf = load_model(record['clf']) print "done" except: print sys.exc_info()[0] return error_json(sys.exc_info()[1]) if record.has_key('pca'): print "load %s..."%record['pca'] pca = load_model(record['pca']) print "done" feature = sample.ft sample.ft = pca.transform(sample.ft) # sparseな学習をしても通常のベクトルを入力として良い # (逆にsparseなベクトルを入れると出力のlikelihoodもsparseになる) #if record.has_key('sparse'): # sample.ft = lil_matrix(sample.ft).tocsr() # algorithmに応じた処理(func)を行う likelihood_list = func(clf,sample) if record.has_key('pca'): sample.ft = feature likelihood_dict = {} for i,l in enumerate(likelihood_list): if not record['class_id2name'].has_key(str(i)): # 本来,ここは通らないはず.稀にclass_id2nameに登録されていないクラスID (カテゴリ数と一致を返す.scikit-learnの仕様??要調査 continue key = record['class_id2name'][str(i)] likelihood_dict[key] = l # 予測結果をデータベースへ追加 sample.likelihood[clf_id] = likelihood_dict collections = db[feature_type] if collections.find_one(sample._id): collections.update_one({"_id":sample._id},{"$set":{'likelihood':sample.likelihood}}) sub_result = {'update::%s'%sample._id} else: sub_result = mongointerface.add(db,feature_type,sample) result = success_json() result['event'] = {'_id':"predict::"+clf_id+"::"+str(sample._id), 'sub_event':sub_result} result['result'] = {'id':sample._id, 'likelihood':likelihood_dict} if sample.ground_truth: result['result']['ground_truth'] = sample.ground_truth return result
def cross_validation(db, json_data_s, feature_type, algorithm, fold_num): print("function: cross_validation") data = json.loads(json_data_s) init_data(data) cv_group_head = "__cross_validation" # disband all previously taged cross_validation_groups for i in range(0,fold_num): group_name = generate_group_name(cv_group_head, i) mongointerface.disband(db, feature_type, {'group': group_name}) mongointerface.disband(db, feature_type, {'group': cv_group_head}) collections = db[feature_type] selector = data['selector'] data['selector']['ground_truth'] = {"$exists": True} samples = collections.find(selector) # group samples into N groups randomly samples_count = samples.count() if samples_count == 0: return error_json("ERROR: no samples are hit.") group_assignment = [] remainder = samples_count % fold_num quotient = int(samples_count / fold_num) for i in range(0,fold_num): n = quotient if i < remainder: n = n+1 print("group_count[%02d] = %d" % (i,n)) group_assignment += [generate_group_name(cv_group_head, i)] * n random.shuffle(group_assignment) # grouping samples into N group for i in range(samples_count): s = samples[i] group_name = group_assignment[i] #print group_name groups = s['group'] if not group_name in groups: groups = mongointerface.ensure_list(groups) groups.append(group_name) groups.append(cv_group_head) _id = s['_id'] collections.update_one({"_id":_id},{"$set":{'group':groups}}) mod = __import__(algorithm+'.classifier', fromlist=['.']) #print 'train and evaluation' # evaluate each group by trained classifiers confusion_matrices = [] # train, predict, and evaluate N classifiers for i in range(0,fold_num): ## train ## exclude_group = generate_group_name(cv_group_head, i) #print exclude_group _data = copy.deepcopy(data) _data['selector'] = {'group':{'$not':{'$all':[exclude_group]},'$all':[cv_group_head]},'ground_truth':{"$exists": True}} _data['overwrite'] = True _data['name'] = exclude_group #print _data result = mod.train(db,feature_type,_data) if result['status'] != 'success': return result ## predict ## selector = {'group':{'$all':[exclude_group]}} group_samples = mongointerface.get_training_samples(db,feature_type,False,selector) for s in group_samples: result = mod.predict(db,feature_type, Sample(s), _data) if result['status'] != 'success': return result _data['selector'] = selector ## evaluate ## result = mongointerface.evaluate(db, feature_type, _data, algorithm) if result['status'] != 'success': return result confusion_matrices.append(result['confusion_matrix']) cmat = None for m in confusion_matrices: if bool(cmat): cmat = merge_confusion_matrix(cmat,json.loads(m)) else: cmat = json.loads(m) result = success_json() result['confusion_matrix'] = cmat clf_id = generate_clf_id(algorithm,feature_type,data) result['event'] = {'_id':"cross_validation::" + clf_id} return result