trlog['train_loss'] = [] trlog['val_loss'] = [] trlog['train_acc'] = [] trlog['val_acc'] = [] trlog['max_acc'] = 0.0 timer = Timer() for epoch in range(1, args.max_epoch + 1): lr_scheduler_cnn.step() lr_scheduler_atten.step() lr_scheduler_gen.step() lr_scheduler_global1.step() lr_scheduler_global2.step() model_cnn.train() model_reg.train() model_gen.train() tl1 = Averager() tl2 = Averager() ta1 = Averager() ta2 = Averager() for i, batch in enumerate(train_loader, 1): data, lab = [_.cuda() for _ in batch] p = args.shot * args.train_way data_shot = data[:p] data_query = data[p:] data_shot = data_shot[:, :3, :]
torch.save(model.state_dict(), osp.join(save_path, name + '.pth')) trlog = {} trlog['args'] = vars(args) trlog['train_loss'] = [] trlog['val_loss'] = [] trlog['train_acc'] = [] trlog['val_acc'] = [] trlog['max_acc'] = 0.0 timer = Timer() for epoch in range(1, max_epoch + 1): lr_scheduler.step() model.train() tl = Averager() ta = Averager() for i, batch in enumerate(train_loader, 1): data, _ = [_ for _ in batch] p = shot * train_way data_shot, data_query = data[:p], data[p:] proto = model(data_shot) proto = proto.reshape(shot, train_way, -1).mean(dim=0) label = torch.arange(train_way).repeat(2) label = label.type(torch.LongTensor)
def main(args): device = torch.device(args.device) ensure_path(args.save_path) data = Data(args.dataset, args.n_batches, args.train_way, args.test_way, args.shot, args.query) train_loader = data.train_loader val_loader = data.valid_loader model = Convnet(x_dim=2).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5) def save_model(name): torch.save(model.state_dict(), osp.join(args.save_path, name + '.pth')) trlog = dict( args=vars(args), train_loss=[], val_loss=[], train_acc=[], val_acc=[], max_acc=0.0, ) timer = Timer() for epoch in range(1, args.max_epoch + 1): lr_scheduler.step() model.train() tl = Averager() ta = Averager() for i, batch in enumerate(train_loader, 1): data, _ = [_.to(device) for _ in batch] data = data.reshape(-1, 2, 105, 105) p = args.shot * args.train_way embedded = model(data) embedded_shot, embedded_query = embedded[:p], embedded[p:] proto = embedded_shot.reshape(args.shot, args.train_way, -1).mean(dim=0) label = torch.arange(args.train_way).repeat(args.query).to(device) logits = euclidean_metric(embedded_query, proto) loss = F.cross_entropy(logits, label) acc = count_acc(logits, label) print('epoch {}, train {}/{}, loss={:.4f} acc={:.4f}' .format(epoch, i, len(train_loader), loss.item(), acc)) tl.add(loss.item()) ta.add(acc) optimizer.zero_grad() loss.backward() optimizer.step() tl = tl.item() ta = ta.item() model.eval() vl = Averager() va = Averager() for i, batch in enumerate(val_loader, 1): data, _ = [_.cuda() for _ in batch] data = data.reshape(-1, 2, 105, 105) p = args.shot * args.test_way data_shot, data_query = data[:p], data[p:] proto = model(data_shot) proto = proto.reshape(args.shot, args.test_way, -1).mean(dim=0) label = torch.arange(args.test_way).repeat(args.query).to(device) logits = euclidean_metric(model(data_query), proto) loss = F.cross_entropy(logits, label) acc = count_acc(logits, label) vl.add(loss.item()) va.add(acc) vl = vl.item() va = va.item() print('epoch {}, val, loss={:.4f} acc={:.4f}'.format(epoch, vl, va)) if va > trlog['max_acc']: trlog['max_acc'] = va save_model('max-acc') trlog['train_loss'].append(tl) trlog['train_acc'].append(ta) trlog['val_loss'].append(vl) trlog['val_acc'].append(va) torch.save(trlog, osp.join(args.save_path, 'trlog')) save_model('epoch-last') if epoch % args.save_epoch == 0: save_model('epoch-{}'.format(epoch)) print('ETA:{}/{}'.format(timer.measure(), timer.measure(epoch / args.max_epoch)))