Пример #1
0
    trlog['train_loss'] = []
    trlog['val_loss'] = []
    trlog['train_acc'] = []
    trlog['val_acc'] = []
    trlog['max_acc'] = 0.0

    timer = Timer()

    for epoch in range(1, args.max_epoch + 1):
        lr_scheduler_cnn.step()
        lr_scheduler_atten.step()
        lr_scheduler_gen.step()
        lr_scheduler_global1.step()
        lr_scheduler_global2.step()

        model_cnn.train()
        model_reg.train()
        model_gen.train()

        tl1 = Averager()
        tl2 = Averager()
        ta1 = Averager()
        ta2 = Averager()

        for i, batch in enumerate(train_loader, 1):
            data, lab = [_.cuda() for _ in batch]

            p = args.shot * args.train_way
            data_shot = data[:p]
            data_query = data[p:]
            data_shot = data_shot[:, :3, :]
Пример #2
0
        torch.save(model.state_dict(), osp.join(save_path, name + '.pth'))

    trlog = {}
    trlog['args'] = vars(args)
    trlog['train_loss'] = []
    trlog['val_loss'] = []
    trlog['train_acc'] = []
    trlog['val_acc'] = []
    trlog['max_acc'] = 0.0

    timer = Timer()

    for epoch in range(1, max_epoch + 1):
        lr_scheduler.step()

        model.train()

        tl = Averager()
        ta = Averager()

        for i, batch in enumerate(train_loader, 1):
            data, _ = [_ for _ in batch]
            p = shot * train_way
            data_shot, data_query = data[:p], data[p:]

            proto = model(data_shot)
            proto = proto.reshape(shot, train_way, -1).mean(dim=0)

            label = torch.arange(train_way).repeat(2)
            label = label.type(torch.LongTensor)
Пример #3
0
def main(args):
    device = torch.device(args.device)
    ensure_path(args.save_path)

    data = Data(args.dataset, args.n_batches, args.train_way, args.test_way, args.shot, args.query)
    train_loader = data.train_loader
    val_loader = data.valid_loader

    model = Convnet(x_dim=2).to(device)
    
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)

    def save_model(name):
        torch.save(model.state_dict(), osp.join(args.save_path, name + '.pth'))
    
    trlog = dict(
        args=vars(args),
        train_loss=[],
        val_loss=[],
        train_acc=[],
        val_acc=[],
        max_acc=0.0,
    )

    timer = Timer()

    for epoch in range(1, args.max_epoch + 1):
        lr_scheduler.step()

        model.train()

        tl = Averager()
        ta = Averager()

        for i, batch in enumerate(train_loader, 1):
            data, _ = [_.to(device) for _ in batch]
            data = data.reshape(-1, 2, 105, 105)
            p = args.shot * args.train_way
            embedded = model(data)
            embedded_shot, embedded_query = embedded[:p], embedded[p:]

            proto = embedded_shot.reshape(args.shot, args.train_way, -1).mean(dim=0)

            label = torch.arange(args.train_way).repeat(args.query).to(device)

            logits = euclidean_metric(embedded_query, proto)
            loss = F.cross_entropy(logits, label)
            acc = count_acc(logits, label)
            print('epoch {}, train {}/{}, loss={:.4f} acc={:.4f}'
                  .format(epoch, i, len(train_loader), loss.item(), acc))

            tl.add(loss.item())
            ta.add(acc)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        tl = tl.item()
        ta = ta.item()

        model.eval()

        vl = Averager()
        va = Averager()

        for i, batch in enumerate(val_loader, 1):
            data, _ = [_.cuda() for _ in batch]
            data = data.reshape(-1, 2, 105, 105)
            p = args.shot * args.test_way
            data_shot, data_query = data[:p], data[p:]

            proto = model(data_shot)
            proto = proto.reshape(args.shot, args.test_way, -1).mean(dim=0)

            label = torch.arange(args.test_way).repeat(args.query).to(device)

            logits = euclidean_metric(model(data_query), proto)
            loss = F.cross_entropy(logits, label)
            acc = count_acc(logits, label)

            vl.add(loss.item())
            va.add(acc)

        vl = vl.item()
        va = va.item()
        print('epoch {}, val, loss={:.4f} acc={:.4f}'.format(epoch, vl, va))

        if va > trlog['max_acc']:
            trlog['max_acc'] = va
            save_model('max-acc')

        trlog['train_loss'].append(tl)
        trlog['train_acc'].append(ta)
        trlog['val_loss'].append(vl)
        trlog['val_acc'].append(va)

        torch.save(trlog, osp.join(args.save_path, 'trlog'))

        save_model('epoch-last')

        if epoch % args.save_epoch == 0:
            save_model('epoch-{}'.format(epoch))

        print('ETA:{}/{}'.format(timer.measure(), timer.measure(epoch / args.max_epoch)))