Esempio n. 1
0
def ReduceR(R):
    str = islMaptoOmegaStr(R)
    str = str.split(':')[0]
    str = str.replace('[', '')
    str = str.replace(']', '')
    str = str.replace('{', '')
    str = str.replace(' ', '')

    sets = str.split('->')
    inp = sets[0]
    outp = sets[1]

    inp = inp.split(',')
    outp = outp.split(',')

    exp = []
    for s in inp:
        exp.append('_ex_' + s)



    isl_symb = R.get_var_names(isl.dim_type.param)
    symb = ','.join(isl_symb)

    R2 = ''

    # symbolic variables
    if (len(isl_symb) > 0):
        R2 = R2 + '[' + symb + '] -> { '
    else:
        R2 = R2 + '{ '
    # tuple variables
    R2 = R2 + '[' + ','.join(inp) + '] -> [' + ','.join(outp) + '] : '

    if not R.is_empty():
        R2 = R2 + copyconstr.GetConstrSet(inp, R.domain()) + ' && '

    if not R.is_empty():
        R2 = R2 +  copyconstr.GetConstr(inp, outp, R) + ' && '



    R2 = R2 + ' not ( Exists ' + ','.join(exp) + ' : ( '

    R2 = R2 + tiling_v3.CreateLex(exp, inp) + ' && '

    #if not R.is_empty():
    #    R2 = R2 +  copyconstr.GetConstr(inp, exp, R.transitive_closure()[0]) + ' && '


    R2 = R2 + copyconstr.GetConstr(exp, outp, R)



    R2 = R2 + ' )) }'


    R2 = isl.Map(R2).coalesce()

    return R2
Esempio n. 2
0
def GetR2(re, rrplus):

    isl_symb = re.get_var_names(isl.dim_type.param)
    dim = rrplus.dim(isl.dim_type.out)

    in_ = []
    out_ = []
    ex_ = []

    for i in range(0, dim):
        in_.append('_in' + str(i))
        out_.append('_out' + str(i))
        ex_.append('_ex' + str(i))

    symb = ','.join(isl_symb)

    R2 = ''

    # symbolic variables
    if (len(isl_symb) > 0):
        R2 = R2 + '[' + symb + '] -> { '
    else:
        R2 = R2 + '{ '
    #tuple variables
    R2 = R2 + '[' + ','.join(in_) + '] -> [' + ','.join(out_) + '] : '

    #s2 in Re(s1)
    if not re.is_empty():
        R2 = R2 + copyconstr.GetConstr(in_, out_, re) + ' and '

    #  if not re.is_empty():
    #      R2 = R2 + copyconstr.GetConstr(out_, in_, re) + ' and '

    #s2 in RR+(s1)
    if not rrplus.is_empty():
        R2 = R2 + copyconstr.GetConstr(in_, out_, rrplus) + ' and '

    #s1 in Domain(Re)
    if not re.is_empty():
        R2 = R2 + copyconstr.GetConstrSet(in_, re.domain())
    else:
        R2 = R2 + ' 1=1 '

    R2 = R2 + '}'

    print R2

    R2 = isl.Map(R2)
    #R2.coalesce()

    #print "### R2"
    #print R2

    return R2
Esempio n. 3
0
def Valid1(Rsched, symb, in_, out_, s_in, sout, loop):
    # dodatkowo  ii <> ii' && i1 = i2 && ii,i1 ,    ii',i2 nalezy do VLDEXTY exists ma byc pusty
    VLD_VAL = Rsched.range()

    S_VALID = symb + '{[' + s_in + '] :' + copyconstr.GetConstrSet(
        in_,
        VLD_VAL) + ' && exists ' + sout + ' :  (' + copyconstr.GetConstrSet(
            out_, VLD_VAL) + ' && '

    for i in range(0, loop.maxl * 2):
        S_VALID += ' not ' + in_[i] + ' = ' + out_[i] + ' && '

    for i in range(loop.maxl * 2, loop.maxl * 4 + 1):
        S_VALID += in_[i] + ' = ' + out_[i] + ' && '

    S_VALID += ' 1=1 ) }'
    S_VALID = isl.Set(S_VALID)

    if (S_VALID.is_empty()):
        print colored('** Validation - no redundant statements in tiles - OK',
                      'green')
    else:
        print colored('Redundant statements in tiles - ERROR', 'red')
        sys.exit(0)
Esempio n. 4
0
                                 'ii,jj,kk,N,')
    TILE_VLD_EXT = tiling_v3.Project(
        TILE_VLD.apply(Rapply).coalesce(), ['ii', 'jj', 'kk'])

    Rmap = isl.Map(
        '{[ii,jj,kk,i,j,k,1] -> [0, ii,0, jj,0, kk,0, i,0, j,0,k,1]; [ii,jj,kk,i,j,k,2] -> [0, ii,0, jj,1, kk,0, i,0, j,1,k,2]  } '
    )

    TILE_VLD_EXT = TILE_VLD_EXT.apply(Rmap).coalesce()

    RSched = '[N] -> {[i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13]->[i1,i2,i3,i4,i5,i6,i7,-i8,i9,i10,i11,i12,i13] : '
    in_ = [
        'i1', 'i2', 'i3', 'i4', 'i5', 'i6', 'i7', 'i8', 'i9', 'i10', 'i11',
        'i12', 'i13'
    ]
    RSched = RSched + copyconstr.GetConstrSet(in_, TILE_VLD_EXT) + "}"

    Rsched = isl.Map(RSched)

else:
    Rapply = tiling_v3.GetRapply(['i', 'j', 'k'], ['ii', 'jj', 'kk'],
                                 'ii,jj,kk,N,b1, b2, b3, iib1,  jjb2,  kkb3')
    TILE_VLD_EXT1 = tiling_v3.Project(
        TILE_VLD1.apply(Rapply).coalesce(), ['ii', 'jj', 'kk'])
    Rmap = isl.Map(
        '{[ii,jj,kk,i,j,k,1] -> [0, ii,0, jj,0, kk,0, i,0, j,0,k,1]; } ')

    TILE_VLD_EXT1 = TILE_VLD_EXT1.apply(Rmap).coalesce()

    TILE_VLD_EXT2 = tiling_v3.Project(
        TILE_VLD2.apply(Rapply).coalesce(), ['ii', 'jj', 'kk'])
Esempio n. 5
0
def GetRTilePlus(rel_plus, isl_tilevld, sym_exvars, vars):

    isl_symb = rel_plus.get_var_names(isl.dim_type.param)
    symb = ','.join(isl_symb)

    Rel = ''

    # symbolic variables
    if (len(isl_symb) > 0):
        Rel = Rel + '[' + symb + '] -> { '
    else:
        Rel = Rel + '{ '

    sym_exvars_out = []
    for s in sym_exvars:
        sym_exvars_out.append(s + "'")

    vars_set = vars  #rel_plus.get_var_names(isl.dim_type.in_)
    vars_set.append('v')

    vars_setp = []

    for s in vars_set:
        vars_setp.append(s + "'")

    w1 = sym_exvars[:]
    w2 = sym_exvars_out[:]

    w1.append('v')
    w2.append('v\'')

    #tuple variables
    Rel = Rel + '[' + ','.join(sym_exvars) + ',v] -> [' + ','.join(
        sym_exvars_out) + ',v\'] : '

    Rel = Rel + tiling_v3.CreateLex(w2, w1) + ' &&  exists '
    Rel = Rel + ','.join(vars_set[:-1]) + ',' + ','.join(
        vars_setp[:-1]) + ' : ( '

    if not rel_plus.is_empty():
        Rel = Rel + copyconstr.GetConstr(vars_set, vars_setp,
                                         rel_plus) + ' and '

    VLD = isl_tilevld[0]
    for v in isl_tilevld:
        VLD = VLD.union(v).coalesce()

    if not VLD.is_empty():
        Rel = Rel + copyconstr.GetConstrSet(vars_set, VLD) + ' and '

    # VLD' zamien II na II'
    VLDP = VLD
    isl_symb = VLDP.get_var_names(isl.dim_type.param)
    for s in sym_exvars:
        for i in range(0, len(isl_symb)):
            if (s == isl_symb[i]):
                VLDP = VLDP.set_dim_name(isl.dim_type.param, i, s + '\'')

    if not VLD.is_empty():
        Rel = Rel + copyconstr.GetConstrSet(vars_setp, VLDP)

    Rel = Rel + ' ) }'

    Rel = isl.Map(Rel)

    return Rel
Esempio n. 6
0
def tile(plik,
         block,
         permute,
         output_file="",
         L="0",
         SIMPLIFY="False",
         perfect_mode=False,
         parallel_option=False,
         rplus_mode='',
         cpus=2):

    print ''
    print colored('/\__  _\ /\  == \   /\  __ \   /\  ___\   /\  __ \   ',
                  'green')
    print colored('\/_/\ \/ \ \  __<   \ \  __ \  \ \ \____  \ \ \/\ \  ',
                  'green')
    print colored('   \ \_\  \ \_\ \_\  \ \_\ \_\  \ \_____\  \ \_____\ ',
                  'green')
    print colored('    \/_/   \/_/ /_/   \/_/\/_/   \/_____/   \/_____/ ',
                  'green')
    print ''
    print '      An Automatic Parallelizer and Optimizer'
    print 'based on the ' + colored('TRA', 'green') + 'nsitive ' + colored(
        'C', 'green') + 'l' + colored('O',
                                      'green') + 'sure of dependence graphs'
    print '             traco.sourceforge.net               '
    print ''

    DEBUG = True
    AGGRESSIVE_SIMPLIFY = False  # TODO simpl_ub
    VALIDATION = 0  # levels

    FSSCHEDULE = 1  # RTILE expermiental
    INVERSE_TILING = 0

    LPetit = "tmp/tmp_petit" + L + ".t"

    BLOCK = block.split(',')

    for i in range(len(BLOCK), 10):
        BLOCK.append(BLOCK[len(BLOCK) - 1])

    BLOCK2 = [0, 6, 6]
    # BLOCK2 = BLOCK

    linestring = open(plik, 'r').read()
    lines = linestring.split('\n')

    if AGGRESSIVE_SIMPLIFY:
        petit_loop = convert_loop.convert_loop(lines, BLOCK2)
        BLOCK2 = map(str, BLOCK2)
    else:
        petit_loop = convert_loop.convert_loop(lines)

    file = open(LPetit, 'w')

    imperf = 0
    endloop = 0
    startloop = 0
    for line in petit_loop:
        #sprawdz przy okazji jaka petla idealnie czy nie
        if 'for' in line and not 'endfor' in line:
            if startloop == 2:
                imperf = 1
            startloop = 1
        else:
            if startloop == 1:
                startloop = 2
        if 'endfor' in line:
            endloop = 1
        if endloop == 1 and 'endfor' not in line and not line.isspace(
        ) and line != '':
            imperf = 1

        file.write(line + '\n')

    file.close()

    start = time.time()
    loop = Dependence.Kernel_Loop(LPetit)

    loop.Load_Deps()
    loop.Load_instrukcje()
    loop.Preprocess('0')
    loop.Get_Arrays()
    end = time.time()
    elapsed = end - start

    print "Dependence analysis: time taken: ", elapsed, "seconds."

    print colored('R', 'green')
    print loop.isl_rel

    print colored('domain R', 'green')
    print loop.isl_rel.domain()
    print colored('range R', 'green')
    print loop.isl_rel.range()

    IS = loop.isl_rel.domain().union(loop.isl_rel.range())
    #s = IS.compute_schedule(loop.isl_rel, loop.isl_rel)

    #print s
    #sys.exit(0)

    print loop.dane

    cl = clanpy.ClanPy()
    cl.loop_path = plik
    cl.Load()

    ##################################
    # move to clanpy
    # combine clan with Dependence
    arr = map(int, loop.dane)
    arr = sorted(list(set(arr)))
    i = 0

    for i in range(0, len(cl.statements)):
        cl.statements[i].petit_line = arr[i]
        cl.statements[i].bounds = GetBounds(petit_loop,
                                            cl.statements[i].petit_line,
                                            BLOCK2, AGGRESSIVE_SIMPLIFY)
        i = i + 1

    ############################################################

    ### R^+

    isl_rel = loop.isl_rel

    #for i in range(0, len(cl.statements)):
    #    print cl.statements[i].petit_line

    start = time.time()

    # **************************************************************************

    RPLUSUNION = True
    #RPLUSUNION = False # NESTED strong experimental with Pugh only Valid why?

    exact_rplus = '-1'
    isl_relclosure = isl_rel

    if (RPLUSUNION):

        islrp = True

        if (rplus_mode == 'iterate'):
            islrp = False

        exact_rplus = True

        if not isl_rel.is_empty() and rplus_mode != 'remote':
            if islrp:
                isl_relclosure = isl_rel.transitive_closure()
                exact_rplus = isl_relclosure[1]
                isl_relclosure = isl_relclosure[0]
            else:
                isl_relclosure = relation_util.oc_IterateClosure(isl_rel)
                exact_rplus = True

    else:  #R_UNDER still experimental, requires testing
        #############################################################################
        print colored('R_UNDER', 'green')
        stline = []
        subgraphs = []

        isl_relclosure = isl.Map('{[i]->[i] : 1=0}').coalesce()

        for st in cl.statements:
            stline.append(st.petit_line)

        stline.sort()

        for i in range(0, len(stline)):
            w = 0
            for sg in subgraphs:
                if stline[i] in sg:  # it was used
                    w = 1
            if (w == 1):
                continue

            mylist = []
            mylist.append(stline[i])
            for j in range(i + 1, len(stline)):
                cutrel = '{[' + ','.join([
                    "a%d" % l for l in range(0, loop.maxl)
                ]) + ',' + str(stline[i]) + ']->[' + ','.join([
                    "b%d" % l for l in range(0, loop.maxl)
                ]) + ',' + str(stline[j]) + '];'
                cutrel += '[' + ','.join([
                    "a%d" % l for l in range(0, loop.maxl)
                ]) + ',' + str(stline[j]) + ']->[' + ','.join([
                    "b%d" % l for l in range(0, loop.maxl)
                ]) + ',' + str(stline[i]) + ']}'
                cutrel = isl.Map(cutrel)
                cutrel = isl_rel.intersect(cutrel).coalesce()
                if not cutrel.is_empty():
                    mylist.append(stline[j])
            #mylist.append(maxst)
            subgraphs.append(mylist)

        print subgraphs

        for item in stline:
            count = 0
            for sg in subgraphs:
                if item in sg:
                    count = count + 1
            if count > 1 and item != max(stline):
                print 'R_UNDER untested, switch RPLUSUNION to true'
                #exit(1)

        ii = 0
        for sg in subgraphs:  # calculate R_UNDER and its R+
            ii = ii + 1
            print str(ii) + "/" + str(len(subgraphs))
            grel = '{'
            for i in sg:
                for j in sg:
                    grel += '[' + ','.join([
                        "a%d" % l for l in range(0, loop.maxl)
                    ]) + ',' + str(i) + ']->[' + ','.join(
                        ["b%d" % l
                         for l in range(0, loop.maxl)]) + ',' + str(j) + '];'
            grel += '}'
            grel = isl.Map(grel)
            grel = isl_rel.intersect(grel).coalesce()

            gp = grel.transitive_closure()
            if not gp[1]:
                print "NOT EXEACT R+"
            #    print "iterate required"
            #    gp = relation_util.oc_IterateClosure(grel)  # iterate

            #else:
            gp = gp[0]

            if isl_relclosure.is_empty():
                isl_relclosure = gp
            else:
                isl_relclosure = isl_relclosure.union(gp).coalesce()
    #############################################################################

    if rplus_mode == 'remote':
        isl_relclosure, exact_rplus = agent.remote_tc(isl_rel)

    # **************************************************************************

    isl_relplus = isl_relclosure

    print 'Rplus before'
    print isl_relplus

    # lata Pugh - eksperymentalnie
    #isl_rel = isl_rel.subtract(isl_relplus.apply_range(isl_rel))

    print isl_rel
    #isl_relclosure = isl_rel.transitive_closure()[0]
    #isl_relplus = isl_relclosure
    # ---------

    print 'Rplus after'
    print isl_relplus

    end = time.time()
    elapsed = end - start
    print "Transitive closure: time taken: ", elapsed, "seconds."

    isl_ident = isl_rel
    if not isl_rel.is_empty:
        isl_ident = isl_rel.identity(isl_rel.get_space())

    if (DEBUG and 1 == 0):
        print 'R+'
        print isl_relclosure

    #isl_relclosure = rpp
    if (DEBUG):
        color = 'red'
        if (exact_rplus):
            color = 'yellow'
        print colored("!! exact_rplus " + str(exact_rplus), color)

    isl_relclosure = isl_relclosure.union(isl_ident).coalesce()  # R* = R+ u I

    if (INVERSE_TILING):
        isl_relclosure = isl_relclosure.fixed_power_val(-1).coalesce()

    if (DEBUG):
        print colored("R*", 'green')
        print isl_relclosure

    # **************************************************************************
    start = time.time()

    B = (["b%d" % i for i in range(0, loop.maxl)])

    vars = []
    for st in cl.statements:
        if (len(st.original_iterators) == loop.maxl):
            vars = st.original_iterators
            break

    if (len(vars) == 0):
        print 'error 12, propably clan does not work'
        exit(12)

    # TODO to make abstract variubles bounds with variables must be also corrected

    sym_exvars = []
    sym_exvars_p = []
    print vars
    for v in vars:
        sym_exvars.append(v * 2)
        sym_exvars_p.append(v * 2 + 'p')

    if (DEBUG and 1 == 0):
        print sym_exvars
        print vars

    isl_symb = isl_rel.get_var_names(isl.dim_type.param)

    BLOCK = block.split(',')

    for i in range(len(BLOCK), 10):
        BLOCK.append(BLOCK[len(BLOCK) - 1])

    # **************************************************************************

    TILE = []  #isl
    TILE_STR = []  #string

    for st in cl.statements:
        if len(isl_symb) == 0:
            isl_symb = isl.Map(st.domain_map).get_var_names(isl.dim_type.param)
        tile = MakeTile(st, vars, sym_exvars, isl_symb, B)
        tile = ReplaceB(tile, BLOCK)
        TILE_STR.append(tile)
        tile = isl.Set(tile)

        # if statements before st
        domainv = isl.Set(st.domain_map)
        print domainv

        #if len(TILE) == 0:
        #    domainv = isl.Set('[N] -> {[i, j, k, m]: N > 0 and 0 <= i <= -2 + N and 2 + i <= j < N and i < k <= -2 + j and k < m <= -3 - i + j + k and m < j and k < m and j-m < 30}')

        dimdom = domainv.dim(isl.dim_type.set)
        domainv = domainv.insert_dims(isl.dim_type.set, dimdom,
                                      loop.maxl + 1 - dimdom)

        tile = tile.intersect(domainv).coalesce()

        TILE.append(tile)

    if (DEBUG):
        DebugPrint('TILE', TILE, cl.statements)

    # **************************************************************************

    TILE_LT = []
    TILE_GT = []

    for i in range(0, len(cl.statements)):
        TILE_LT_I = ''
        TILE_GT_I = ''
        for j in range(0, len(cl.statements)):

            l = CompareScat(cl.statements[i].scatering,
                            cl.statements[j].scatering, len(vars))

            tile_j = TILE_STR[j]

            PARTS = tile_j.split(':')
            for k in range(0, len(sym_exvars)):
                PARTS[1] = PARTS[1].replace(sym_exvars[k], sym_exvars_p[k])

            PARTS[1] = PARTS[1].replace('}', ')}')

            lex_s_lt = MakeCustomLex(
                sym_exvars, sym_exvars_p, 'LT', l,
                cl.statements[i].petit_line > cl.statements[j].petit_line)
            lex_s_gt = MakeCustomLex(
                sym_exvars, sym_exvars_p, 'GT', l,
                cl.statements[i].petit_line < cl.statements[j].petit_line)

            join_LT = ':  exists  ' + ','.join(
                sym_exvars_p) + ' : ( ' + lex_s_lt
            join_GT = ':  exists  ' + ','.join(
                sym_exvars_p) + ' : ( ' + lex_s_gt

            TILE_LT_IJ = PARTS[0] + join_LT + PARTS[1]
            TILE_GT_IJ = PARTS[0] + join_GT + PARTS[1]

            #print TILE_LT_IJ
            TILE_LT_IJ = isl.Set(TILE_LT_IJ)
            TILE_GT_IJ = isl.Set(TILE_GT_IJ)

            if (j == 0):
                TILE_LT_I = TILE_LT_IJ
                TILE_GT_I = TILE_GT_IJ
            else:
                TILE_LT_I = TILE_LT_I.union(TILE_LT_IJ).coalesce()
                TILE_GT_I = TILE_GT_I.union(TILE_GT_IJ).coalesce()

        TILE_LT.append(TILE_LT_I)
        TILE_GT.append(TILE_GT_I)

    if (DEBUG):
        DebugPrint('TILE_LT', TILE_LT, cl.statements)
        DebugPrint('TILE_GT', TILE_GT, cl.statements)

    if (INVERSE_TILING):
        tmpx = TILE_LT[:]
        TILE_LT = TILE_GT
        TILE_GT = tmpx

# **************************************************************************

    TILE_ITR = []

    for i in range(0, len(cl.statements)):
        if not isl_relclosure.is_empty():
            TILE_ITRI = TILE[i].subtract(
                TILE_GT[i].apply(isl_relclosure)).coalesce()
        else:
            TILE_ITRI = TILE[i]
        if (SIMPLIFY):
            TILE_ITRI = imperf_tile.SimplifySlice(TILE_ITRI)
        TILE_ITR.append(TILE_ITRI)

        #print 'R+(TILE_GT)*TILE[i]'
        #print i
    #  print TILE_GT[i].apply(isl_relclosure).intersect(TILE[i])

    if (DEBUG):
        DebugPrint('TILE_ITR', TILE_ITR, cl.statements)

# **************************************************************************

    TVLD_LT = []

    if not isl_relclosure.is_empty():
        for i in range(0, len(cl.statements)):
            TVLD_LTI = (TILE_LT[i].intersect(
                TILE_ITR[i].apply(isl_relclosure))).subtract(
                    TILE_GT[i].apply(isl_relclosure)).coalesce()
            TVLD_LT.append(TVLD_LTI)

        if (DEBUG):
            DebugPrint('TVLD_LT', TVLD_LT, cl.statements)

# **************************************************************************

    TILE_VLD = []

    for i in range(0, len(cl.statements)):
        if not isl_relclosure.is_empty():
            TILE_VLDI = TVLD_LT[i].union(TILE_ITR[i]).coalesce()
        else:
            TILE_VLDI = TILE_ITR[i]
        if (SIMPLIFY):
            TILE_VLDI = imperf_tile.SimplifySlice(TILE_VLDI)
        TILE_VLD.append(TILE_VLDI)

    if (DEBUG):
        DebugPrint('TILE_VLD', TILE_VLD, cl.statements)

# **************************************************************************

    TILE_VLD_EXT = []

    Rapply = tiling_v3.GetRapply(vars, sym_exvars,
                                 ','.join(isl_symb + sym_exvars) + ',')

    for i in range(0, len(cl.statements)):
        TILE_VLD_EXTI = tiling_v3.Project(TILE_VLD[i].apply(Rapply).coalesce(),
                                          sym_exvars)

        #####################################################################################################################
        if AGGRESSIVE_SIMPLIFY:

            cor_set = ''
            if (len(isl_symb) > 0):
                cor_set = '[' + ','.join(isl_symb) + '] -> '
            else:
                cor_set = ''

            cor_set = cor_set + '{[' + ','.join(sym_exvars) + ',' + ','.join(
                vars) + ',' + 'v] : '

            for k in range(0, i + 1):
                for j in range(0, len(cl.statements[k].bounds)):
                    compar = ' <= '
                    add1 = ' - '
                    add2 = ' + '
                    if cl.statements[k].bounds[j]['step'] == '-1':
                        add1 = ' + '
                        add2 = ' - '
                        compar = ' >= '
                    cor_set = cor_set + vars[j] + compar + cl.statements[
                        k].bounds[j]['ub'] + add1 + BLOCK2[j] + " && "
                    cor_set = cor_set + cl.statements[k].bounds[j][
                        'lb'] + add2 + BLOCK2[j] + compar + vars[j] + " && "

                cor_set = cor_set + "("
                cor_set = cor_set + " v = " + str(
                    cl.statements[i].petit_line) + " "
                cor_set = cor_set + ")}"

                print cor_set

                cor_set = isl.Set(cor_set)

                print '**************************'

                TILE_VLD_EXTI = TILE_VLD_EXTI.intersect(cor_set)
#####################################################################################################################

        TILE_VLD_EXT.append(TILE_VLD_EXTI)

    if (DEBUG):
        DebugPrint('TILE_VLD_EXT', TILE_VLD_EXT, cl.statements)

# **************************************************************************

# TIME TO SCATTER - TO HONOUR ORDER OF STATEMENTS IN IMPERFECTLY NESTED LOOPS

    RMaps = []

    for i in range(0, len(cl.statements)):
        RMap = '{'
        lbx = 0
        ubx = i + 1

        if (INVERSE_TILING):
            lbx = i
            ubx = len(cl.statements)

        for j in range(lbx,
                       ubx):  # to przy odwrotnym tilngu moze trzeba poprawic
            RMap = RMap + '[' + ','.join(sym_exvars + vars) + ',' + str(
                cl.statements[j].petit_line) + '] -> ['

            scati = fix_scat(cl.statements[i].scatering, loop.maxl)
            scatj = fix_scat(cl.statements[j].scatering, loop.maxl)

            combo = [
                x for t in zip(scati + scatj, sym_exvars + vars) for x in t
            ]  # obled

            RMap = RMap + ','.join(combo) + ',' + str(
                cl.statements[j].petit_line) + ']; '
            # normalize  j

        RMap = RMap[:-2] + '}'
        Rmap = isl.Map(RMap)
        RMaps.append(Rmap)

    if (DEBUG):
        DebugPrint('RMaps', RMaps, cl.statements)

    # **************************************************************************

    for i in range(0, len(cl.statements)):
        TILE_VLD_EXT[i] = TILE_VLD_EXT[i].apply(RMaps[i]).coalesce()

    if (DEBUG):
        DebugPrint('TILE_VLD_EXT after Map', TILE_VLD_EXT, cl.statements)

    TILE_VLD_EXT_union = TILE_VLD_EXT[0]

    for i in range(1, len(cl.statements)):
        TILE_VLD_EXT_union = TILE_VLD_EXT_union.union(
            TILE_VLD_EXT[i]).coalesce()

    if (DEBUG):
        print colored('TILE_VLD_EXT to CodeGen', 'green')
        print TILE_VLD_EXT_union

    #if(SIMPLIFY):
    #TILE_VLD_EXT_union= imperf_tile.SimplifySlice(TILE_VLD_EXT_union)

# **************************************************************************

# Optional Schedule

    s = ','.join(["i%d" % i for i in range(1, loop.maxl * 4 + 2)])
    # RFS
    ss = s

    in_ = s.split(',')

    symb = ''
    if (len(isl_symb) > 0):
        symb += '[' + ','.join(isl_symb) + ']' + '->'

    RSched = symb + '{[' + s + '] -> ['

    RValid = RSched
    # RFS
    RFS = RSched

    # *****************************************************  LOOP SKEWING
    print colored('Loop skewing testing...', 'green')

    sdel = isl_rel.deltas()

    inp = []
    for i in range(0, sdel.dim(isl.dim_type.set)):
        inp.append("i" + str(i))

    stest = "{[" + ",".join(inp) + "] : " + inp[1] + " < 0 }"
    stest = isl.Set(stest)
    sdel = stest.intersect(sdel).coalesce()

    if (sdel.is_empty()):
        print colored('Found:  i2 -> i2 + i4', 'yellow')
        s = s.replace('i2', 'i2 + i4')
    else:
        print colored('Failed.', 'yellow')

    #s = s.replace('i4', 'i6')
    #s = s.replace('i2', 'i2 + 2*i4')
    #s = s.replace('i', 'i8')
    #s = s.replace('i10', 'i10 + i8')
    #s = s.replace('i6', '2*i2 + i4 + i6')

    # *****************************************************  LOOP SKEWING

    # *****************************************************  DECREMENTATION
    index_arr = numpy.zeros(shape=(len(cl.statements), loop.maxl))
    for k in range(0, loop.maxl):
        for i in range(0, len(cl.statements)):
            if (k < len(cl.statements[i].bounds)):
                index_arr[i][k] = cl.statements[i].bounds[k]['step']

    print colored('step array (st,loop)', 'green')
    print numpy.matrix(index_arr)

    for k in range(0, loop.maxl):
        vec = index_arr[:, k]
        dec = 1
        for i in range(0, len(cl.statements)):
            if (vec[i] != -1):
                dec = 0
                break
        if (dec == 0):
            continue
        ind = str(2 * loop.maxl + 2 * (k + 1))
        print colored('decrementation on ' + str(k + 1) + ' loop', 'yellow')
        s = s.replace('i' + ind, '-i' +
                      ind)  # TODO rozdzielic na gniazda i v w przyszlosci
    # *****************************************************

    RSched += s + '] : '

    RFS += ss + '] : 1=1 }'

    RSched = RSched + copyconstr.GetConstrSet(in_, TILE_VLD_EXT_union) + "  }"

    print 'RSCHEDULE'

    print RSched

    Rsched = isl.Map(RSched)

    print 'VALIDATION CHECKING '
    if (not isl_rel.is_empty() and 1 == 1):
        s_in = ','.join(["i%d" % i for i in range(1, loop.maxl * 4 + 2)])
        sout = ','.join(["i%d'" % i for i in range(1, loop.maxl * 4 + 2)])
        out_ = sout.split(',')

        i1 = in_[2 * loop.maxl + 1:4 * loop.maxl + 1:2] + [in_[loop.maxl * 4]]
        i2 = out_[2 * loop.maxl + 1:4 * loop.maxl + 1:2] + [in_[loop.maxl * 4]]

        RValid += sout + '] : '

        DomR = isl_rel.domain()

        RValid += copyconstr.GetConstrSet(
            i1, DomR) + ' && ' + copyconstr.GetConstr(i1, i2, isl_rel)

        s_in_ex = ','.join(["ex%d" % i for i in range(1, loop.maxl * 4 + 2)])
        s_out_ex = ','.join(["ex%d'" % i for i in range(1, loop.maxl * 4 + 2)])
        ex_sin = s_in_ex.split(',')
        ex_sout = s_out_ex.split(',')

        RValid += ' && exists ' + s_in_ex + ',' + s_out_ex + ' : ('

        RValid += ' ( ' + tiling_v3.CreateLex(ex_sin, ex_sout) + ' ) && '

        RValid += ' ( ' + copyconstr.GetConstr(in_, ex_sin, Rsched) + ' ) && '
        RValid += ' ( ' + copyconstr.GetConstr(out_, ex_sout, Rsched) + ' ) '

        RValid += ' ) }'

        RValid = isl.Map(RValid).coalesce()

        if (RValid.is_empty()):
            print colored('*** VALIDATION OK ***', 'green')
        else:
            print colored('*** VALIDADION FAILED ***', 'red')
            print colored(RValid, 'green')
            if (FSSCHEDULE == 0):
                print RValid
                sys.exit(0)

        for st in cl.statements:
            z = st.domain_map

        z = isl.Set(z)

        # czy wszystkie z domain sa w TVLD_EXT    VLDUNION RELATION == v

        # I nalezy do TVLD_EXT and exists i,j,v i  nalezy do domain_map i   i,j,v != I ma byc pusty
        VLD_VAL = Rsched.range()

        if (VALIDATION > 0):
            tiling5_valid.Valid1(Rsched, symb, in_, out_, s_in, sout, loop)
    else:
        print "OK"

# **************************************************************************
#### DISCOVER PARALLELISM -- empty

# ii, jj -> ii, jj' : not  jj = jj'
    print colored('Parallelism searching', 'green')

    s = ','.join(["i%d" % i for i in range(1, loop.maxl * 4 + 2)])
    in_ = s.split(',')
    sprim = ','.join(["i%d'" % i for i in range(1, loop.maxl * 4 + 2)])
    out_ = sprim.split(',')

    Rel_base = symb + '{[' + s + '] -> [' + sprim + '] :   '

    #i1 = domain R 12 = R(i1)   ii,i1 nalezy do VLD_EXT i'i',i2 nalezy do VLDEXT i ogr. ponizej np  ii2 <> ii2' ii1 = ii1' relacja

    par_loop = []

    if (not isl_rel.is_empty() and 1 == 1):
        delta = isl_rel.deltas()
        chkc = isl.Set("{[0," + ",".join(vars) + "]}")
        delta = delta.subtract(chkc)

        for i in range(0, loop.maxl * 4, 2):
            j = -1
            print 'c' + str(i + 1),
            Rel = Rel_base
            tmp = ''
            for j in range(0, i):
                tmp += in_[j] + ' = ' + out_[j] + ' && '

            tmp += ' not ( ' + in_[j + 1] + ' = ' + out_[
                j + 1] + '  && ' + in_[j + 2] + ' = ' + out_[j + 2] + ' )  && '

            Rel += tmp
            Rel += copyconstr.GetConstrSet(
                i1, DomR) + ' && ' + copyconstr.GetConstr(i1, i2, isl_rel)

            Rel += ' && ( ' + copyconstr.GetConstrSet(in_, VLD_VAL) + ' ) && '
            Rel += ' ( ' + copyconstr.GetConstrSet(out_, VLD_VAL) + ' )  '

            Rel += ' }'
            #print Rel

            Rel = isl.Map(Rel)

            if (i == 0):
                Rel = delta

            if (Rel.is_empty()):
                print colored('found!', 'green')
                par_loop.append('c' + str(i + 1))
#                break
            else:
                print 'no!'

    end = time.time()
    elapsed = end - start
    print "Algorithm: time taken: ", elapsed, "seconds."

    # **************************************************************************

    vars = map(str, vars)

    start = time.time()
    ast = 0
    if (ast == 1):
        loop_x = iscc.isl_ast_codegen_map(Rsched)
    else:
        loop_x = iscc.iscc_communicate("L :=" + str(Rsched) + "; codegen L;")

    print loop_x

    # **************************************************************************
    lines = loop_x.split('\n')

    loop_str = []

    for line in lines:
        if line.endswith(');'):
            tab = imperf_tile.get_tab(line)
            line = line.replace(' ', '')
            line = line[:-2]
            line = line[1:]

            arr = line.split(',')

            petit_st = arr[4 * loop.maxl]

            s = ''

            for i in range(0, len(cl.statements)):

                # TODO if petit_st has 'c' get all statements make if from petit_line and insert to s, solution for loop over st
                if 'c' in petit_st:
                    combo_st = '{'
                    for j in range(0, len(cl.statements)):
                        combo_st += '\n' + tab
                        combo_st += 'if( ' + petit_st + ' == ' + str(
                            cl.statements[j].petit_line
                        ) + ' ) ' + cl.statements[j].body
                    s = combo_st + '\n' + tab + '}'
                elif cl.statements[i].petit_line == int(
                        petit_st):  # st.petit_line
                    s = cl.statements[i].body

            for i in range(
                    0, len(vars)
            ):  # todo oryginal iterators for loops with mixed indexes
                subt = arr[2 * loop.maxl + 2 * i + 1]
                if (('+' in subt) or ('-' in subt)):
                    subt = '(' + subt + ')'
                s = re.sub(r'\b' + vars[i] + r'\b', subt, s)

            loop_str.append(tab + s)

        else:
            line = line.replace('for (int', 'for(')
            loop_str.append(line)

    end = time.time()
    elapsed = end - start
    print "Code Generation: time taken: ", elapsed, "seconds.\n\n"

    #loop_str = '\n'.join(loop_str)
    filePaths = glob.glob(plik)
    if (output_file != ""):
        nazwa = output_file
    else:
        for filePath in filePaths:
            base = os.path.basename(filePath)
            nazwa = os.path.splitext(base)[0] + "_tiling" + os.path.splitext(
                base)[1]

    text_file = open(nazwa, "w")

    for line in loop_str:
        if (len(par_loop) > 0):
            if ('for( ' + par_loop[0] + ' ' in line):
                print imperf_tile.get_tab(line) + colored(
                    '#pragma omp parallel for', 'green')
                text_file.write(
                    imperf_tile.get_tab(line) + '#pragma omp parallel for' +
                    '\n')
        print line
        text_file.write(line + '\n')

    text_file.close()
    print 'Output written to: ' + nazwa

    for d in loop.Deps:
        del d.Relation

    sys.exit(0)

    ###################################################################################################

    if (FSSCHEDULE):

        rtile = tiling_schedule.get_RTILE(TILE_VLD_EXT_union, sym_exvars,
                                          isl_rel, True)  #Rsched.Range()

        rtile_ii = rtile

        #print rtile_ii

        for i in range(0, loop.maxl):
            rtile_ii = rtile_ii.remove_dims(isl.dim_type.in_,
                                            2 * loop.maxl - i * 2 - 2, 1)
            rtile_ii = rtile_ii.remove_dims(isl.dim_type.out,
                                            2 * loop.maxl - i * 2 - 2, 1)

        print colored('RTILE', 'green')

        print rtile

        sys.exit(0)

        if islrp:
            rtileplus, exact = rtile.transitive_closure()
        else:
            rtileplus = relation_util.oc_IterateClosure(rtile)
            exact = 1

        print colored('RTILE+', 'green')
        print rtileplus
        if (exact != 1):
            print colored('RTILE+ approx', 'yellow')
        else:
            print colored('RTILE+ exact', 'green')

    #    tiling_v2.DynamicRTILE(rtile, Rsched.range(), loop.maxl, cl, vars, RFS)

        try:
            p = int(cpus)  # or int
        except ValueError:
            print 'Bad cpus parameter. '
            sys.exit(0)

        FI = symb + ' {[' + ','.join(
            sym_exvars) + ',v] ->  [p] : (exists k : ('

        item = ''
        for i in range(0, p):
            item = item + ' (p=' + str(i) + ' ' + ' && ' + sym_exvars[
                0] + ' - (2k + ' + str(i) + ') = 0 ) || '

        FI += item[:-3] + '  )) &&'

        vv = ["i%d" % i for i in range(1, loop.maxl * 4 + 2)]
        s_in = ','.join(vv)
        s_out = ','.join(["i%d" % i for i in range(2, loop.maxl * 2 + 1, 2)
                          ]) + ',' + vv[len(vv) - 1]
        rmap_fi = '{[' + s_in + '] -> [' + s_out + ']}'
        rmap_fi = isl.Map(rmap_fi)

        II_SET = TILE_VLD_EXT_union.apply(rmap_fi).coalesce()

        print colored('II_SET', 'green')
        print II_SET

        FI += copyconstr.GetConstrSet(sym_exvars + ['v'], II_SET) + '}'

        FI = isl.Map(FI).coalesce()

        print colored('FI', 'green')
        print FI

        RPROC = symb + '{[' + ','.join(sym_exvars) + ',v] -> [' + ','.join(
            sym_exvars_p) + ',vp] : '

        domRTILE = rtile_ii.domain().coalesce()

        RPROC += copyconstr.GetConstrSet(
            sym_exvars + ['v'], domRTILE) + ' && ' + copyconstr.GetConstr(
                sym_exvars + ['v'], sym_exvars_p + ['vp'], rtile_ii)

        RPROC += ' && exists p,pp : ( not(p=pp) && ' + copyconstr.GetConstr(
            sym_exvars + ['v'], ['p'], FI) + ' && ' + copyconstr.GetConstr(
                sym_exvars_p + ['vp'], ['pp'], FI) + ' ) }'

        #print RPROC
        RPROC = isl.Map(RPROC).coalesce()

        print colored('RPROC', 'green')
        print RPROC

        s = ','.join(["i%d" % i for i in range(0, loop.maxl + 1)])
        sv = s.split(',')
        s1 = ','.join(["o%d" % i for i in range(0, loop.maxl + 1)])
        sv1 = s1.split(',')
        s2 = ','.join(["ex%d" % i for i in range(0, loop.maxl + 1)])
        sve = s2.split(',')
        R_RESIDUAL = symb + '{[' + s + '] -> [' + s1 + '] : '
        R_RESIDUAL += copyconstr.GetConstrSet(
            sv,
            RPROC.domain().coalesce()) + '&& '
        R_RESIDUAL += copyconstr.GetConstr(
            sv, sv1, RPROC) + '&&  not exists ' + s2 + ' : ('
        R_RESIDUAL += tiling_v3.CreateLex(
            sve, sv) + ' && ' + copyconstr.GetConstr(sve, sv1, RPROC) + ')}'

        R_RESIDUAL = isl.Map(R_RESIDUAL).coalesce()

        print colored('R_RESIDUAL', 'green')
        print R_RESIDUAL
        irp = R_RESIDUAL.fixed_power_val(-1)

        R_P_RESIDUAL = symb + '{[' + ','.join(
            sym_exvars) + ',v] -> [p,' + ','.join(sym_exvars_p) + ',vp] : '
        R_P_RESIDUAL += copyconstr.GetConstr(
            sym_exvars_p + ['vp'], ['p'], FI) + ' && ' + copyconstr.GetConstr(
                sym_exvars + ['v'], sym_exvars_p + ['vp'], irp) + ' }'

        R_P_RESIDUAL = isl.Map(R_P_RESIDUAL)
        print colored('R_P_RESIDUAL', 'green')
        print R_P_RESIDUAL